2020样卷数学2答案
- 格式:pdf
- 大小:465.11 KB
- 文档页数:8
2020年高考全国卷Ⅱ数学(理)试卷一、选择1. 已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)= ( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2. 若α为第四象限角,则( )A.cos2α>0B.cos2α<0C.sin2α>0D. sin2α<03. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为( )A.√55B. 2√55C.3√55D.4√556. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k= ()A.2B.3C.4D.57. 如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H8. 设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.329. 设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)( )A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递减C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递减10. 已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211. 若2x−2y<3−x−3−y,则( )A. ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012. 0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m∑a i m i=1a i+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( ) A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________.①p 1∧p 4 ;②p 1∧p 2 ;③¬p 2∨p 3 ; ④¬p 3∨¬p 4. 三、解答题△ABC 中, sin 2A −sin 2B −sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求△ABC 周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1√2≈1.414.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2x sin22x sin24x⋯sin22n x≤3n4n.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(θ为参数),C2:{x=t+1t,y=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.参考答案与试题解析2020年高考全国卷Ⅱ数学(理)试卷一、选择1.【答案】A【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由题意可知A∪B={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.【答案】D【考点】任意角的三角函数【解析】此题暂无解析【解答】解:∵α为第四象限角,∴−π+2kπ<α<2kπ,2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.【答案】B【考点】生活中概率应用【解析】此题暂无解析【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.【答案】C【考点】等差数列的前n项和等差数列的性质等差数列【解析】此题暂无解析【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块. 故选C.5.【答案】B【考点】点与圆的位置关系点到直线的距离公式【解析】此题暂无解析【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心(1,1)到直线的距离是d=5=2√55,圆心(5,5)到直线的距离是d=√5=2√55.故选B.6.【答案】C【考点】等比数列的前n项和等比关系的确定【解析】此题暂无解析【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n. 又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C.7.【答案】A【考点】由三视图还原实物图【解析】此题暂无解析【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.【答案】B【考点】直线与双曲线结合的最值问题双曲线的渐近线【解析】此题暂无解析【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8. 又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.【答案】D【考点】函数奇偶性的判断复合函数的单调性【解析】此题暂无解析【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,+∞)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.【答案】C【考点】三角形的面积公式三角形五心球的体积和表面积【解析】此题暂无解析【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1. 故选C.11.【答案】A【考点】利用导数研究函数的单调性函数单调性的性质【解析】此题暂无解析【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.【答案】C【考点】函数新定义问题数列的求和【解析】此题暂无解析【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C.二、填空题【答案】√22向量的数量积判断向量的共线与垂直 平面向量数量积 【解析】 此题暂无解析 【解答】解:∵ 单位向量a →,b →的夹角为45∘, ∴ a →⋅b →=|a →|⋅|b →|⋅cos 45∘=√22. ∵ ka →−b →与a →垂直, ∴ (ka →−b →)⋅a →=k −√22=0,∴ k =√22. 故答案为:√22.【答案】36【考点】排列、组合及简单计数问题 【解析】 此题暂无解析 【解答】解:由题意可得,不同的安排方法有C 42A 33=36种. 故答案为:36. 【答案】2√3【考点】 复数的模 【解析】 此题暂无解析 【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i , 故 |z 1|2=a 2+b 2=4, |z 2|2=(√3−a)2+(1−b )2 =a 2+b 2−2√3a −2b +4=4, 则|z 1−z 2|2=(2a −√3)2+(2b −1)2 =4a 2+4b 2−4√3a −4b +4=2(a 2+b 2)+2(a 2+b 2−2√3a −2b)+4 =2×4+4=12, 故|z 1−z 2|=2√3. 故答案为:2√3.①③④【考点】逻辑联结词“或”“且”“非”命题的真假判断与应用空间中直线与平面之间的位置关系空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,若不相交,可能平行,也可能异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,因为直线l⊂平面α,故m⊥l,故p4为真命题.综上可知:①p1∧p4为真命题;②p1∧p2为假命题,③¬p2∨p3为真命题;④¬p3∨¬p4为真命题.故答案为:①③④ .三、解答题【答案】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2, (b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【考点】基本不等式在最值问题中的应用正弦定理【解析】此题暂无解析【解答】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2,(b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【答案】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【考点】众数、中位数、平均数相关系数收集数据的方法此题暂无解析【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【答案】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【考点】圆锥曲线的综合问题椭圆的离心率抛物线的标准方程抛物线的定义椭圆的标准方程【解析】此题暂无解析【解答】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【答案】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【考点】直线与平面所成的角两条直线平行的判定平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【答案】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数.f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯ sin 22n−1x sin 2n x ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x ≤(34)3n2 , ∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x =sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2nx ≤(34)3n 2,∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【考点】 不等式的证明利用导数研究函数的单调性 【解析】 此题暂无解析 【解答】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增; 当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减;当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数. f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯,sin 22n−1x sin 2nx ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22nx ≤(34)3n 2,∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x=sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2n x ≤(34)3n2, ∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【答案】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710,则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2,即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【考点】圆的极坐标方程与直角坐标方程的互化 直线与双曲线结合的最值问题 参数方程与普通方程的互化 点到直线的距离公式 【解析】 此题暂无解析 【解答】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t 可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t 2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710, 则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2, 即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【答案】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.试卷第21页,总21页 因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).【考点】绝对值不等式的解法与证明绝对值三角不等式【解析】此题暂无解析【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。
2020年全国新高考II卷数学试卷试题及答案世代间隔是指相邻两代间传染所需的平均时间。
在新冠肺炎疫情初始阶段,可以用指数模型 $I(t)=e^rt$ 描述累计感染病例数 $I(t)$ 随时间 $t$(单位:天)的变化规律,指数增长率$r$ 与 $R$、$T$ 近似满足 $R=1+rT$。
有学者基于已有数据估计出 $R=3.28$,$T=6$。
据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为 $\ln2\approx0.69$ 天。
已知 $P$ 是边长为2的正六边形 $ABCDEF$ 内的一点,则 $AP\cdot AB$ 的取值范围是 $\mathrm{(B)}$ $(-6,2)$。
若定义在 $\mathbb{R}$ 的奇函数 $f(x)$ 在 $(-\infty,0)$ 单调递减,且 $f(2)=0$,则满足 $xf(x-1)\geq0$ 的 $x$ 的取值范围是 $\mathrm{(D)}$ $[-1,0]\cup[1,3]$。
已知曲线 $C:mx+ny=1$。
mathrm{(A)}$ 若 $m>n>0$,则 $C$ 是椭圆,其焦点在$y$ 轴上;mathrm{(B)}$ 若$m=n>0$,则$C$ 是圆,其半径为$n$;mathrm{(C)}$ 若 $mn<0$,则 $C$ 是双曲线,其渐近线方程为 $y=\pm\frac{mx}{n}$;mathrm{(D)}$ 若 $m=0$,$n>0$,则 $C$ 是两条直线。
下图是函数 $y=\sin(\omega x+\varphi)$ 的部分图像,则$\sin(\omega x+\varphi)=\mathrm{(C)}$ $\cos(2x+\frac{\pi}{2})$。
已知 $a>0$,$b>0$,且 $a+b=1$,则$\mathrm{(B)}$ $2a-b>\frac{1}{2}$。
2020年普通高等学校招生全国统一考试(全国II卷理科)数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。
本试卷满分150分。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A B=( )U A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3} 2.若α为第四象限角,则( )A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块 B.3474块 C.3402块 D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230--=的距离为( )x yA .5B .5C .5D .56.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A .2B .3C .4D .57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32C .1D .11.若2x -2y <3−x -3−y ,则( )A .ln(y-x+1)>0B .ln(y-x+1)<0C .ln ∣x-y ∣>0D .ln ∣x-y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .11001二、填空题(本题共4小题,每小题5分,共20分。
2020考研数学二真题及解析完整版来源:文都教育一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.0x +→,下列无穷小量中最高阶是()A.()20e 1d x t t -⎰B.(30ln d x t t ⎰C.sin 20sin d x t t ⎰D.1cos 30sin d t t -⎰答案:D解析:A.()232001~3x x t x e dt t dt -=⎰⎰B.(35322002ln 1~5x x t dt t x =⎰⎰C.sin 223001sin ~3x x t dt t dt x =⎰⎰D.2311cos 32200sin ~x tdt t dt -⎰⎰25122025x t =52252152102x ⎛⎫== ⎪⎝⎭2.11ln |1|()(1)(2)x x e x f x e x -+=--第二类间断点个数()A.1B.2C.3D.4答案:C 解析:0,2,1,1x x x x ====-为间断点11110000ln |1|ln |1|ln |1|lim ()lim lim lim (1)(2)222x x x x x e x e x e x e f x e x x x ----→→→→+++===-=----0x =为可去间断点1122ln |1|lim ()lim (1)(2)x x x x e x f x e x -→→+==∞--2x =为第二类间断点1111ln |1|lim ()lim 0(1)(2)x x x x e x f x e x ---→→+==--1111ln |1|lim ()lim (1)(2)x x x x e x f x e x ++-→→+==∞--1x =为第二类间断点1111ln |1|lim ()lim (1)(2)x x x x e x f x e x -→-→-+==∞--1x =-为第二类间断点3.10(1)xx x x =-⎰A.2π4B.2π8C.π4D.π8答案:A 解析:10(1)xxx x -⎰令u x =,则原式=1220d (1)u uu u -⎰12020222021sin 2cos d cos 1224uu t u t t t t t πππ=-==⋅=⎰⎰令4.2()ln(1),3f x x x n =-≥时,()(0)n f =A.!2n n --B.!2n n -C.(2)!n n --D.(2)!n n -答案:A 解析:2()02()12(1)22(2)()(1)1(2)222()ln(1),3()[ln(1)]()[ln(1)]()[ln(1)](1)!(1)[ln(1)](1)(2)!(1)[ln(1)](1)(3)!(1)[ln(1)](1)()2;(n n n n n n n n nn n n n f x x x n f x C x x C x x C x x n x x n x x n x x x x x ------=-≥'''=-+-+----=----=----=-'''= ()212()) 2.(1)!(1)(2)!(1)(1)(3)!(1)()22(1)(1)2(1)!(0)2n n n n n n n n n n f x x n x x x x n f n --=----⋅---∴=⋅+⋅⋅⋅---∴=--5.关于函数0(,)00xy xy f x y x y y x ≠⎧⎪==⎨⎪=⎩给出以下结论①(0,0)1fx ∂=∂②2(0,0)1f ∂=∂∂③(,)(0,0)lim (,)0x y f x y →=④00lim lim (,)0y x f x y →→=正确的个数是A.4B.3C.2D.1答案:B解析:①0(0,0)(,0)(0,0)lim x f f x f x x→∂-=∂00lim1x x x→-==②0xy ≠时,f y x∂=∂0y =时,1f x∂=∂0x =时,0f x ∂=∂200(0,0)(0,)(0,0)1lim lim x x y y f y f f x y yy →→''-∂-==∂∂不存在.③(,)(0,0)(,)(0,0)0,lim (,)lim 0x y x y xy f x y xy →→≠==(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y y f x y x →→===(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y x f x y y →→===(,)(0,0)lim (,)0x y f x y →∴=④000,lim (,)lim 0x x xy f x y xy →→≠==000,lim (,)lim 0x x y f x y x →→===000,lim (,)lim x x x f x y y y →→===从而00limlim (,)0.y x f x y →→=6.设函数()f x 在区间[2,2]-上可导,且()()0f x f x '>>,则()A.(2)1f ->-B.(0)(1)f e f >-C.2(1)(1)f e f <-D.3(2)(1)f e f <-答案:B解析:由()()0f x f x '>>知()10()f x f x '->即(ln ())0f x x '->令()ln ()F x f x x =-,则()[-2,2]F x 在上单增因21-<-,所以(2)(1)F F -<-即ln (2)2ln (1)1f f -+<-+(1)(2)f e f ->-同理,10,(1)(0)F F -<-<即ln (1)1ln (0)f f -+<(0)(1)f e f >-7.设四阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组.*A 为A 的伴随矩阵.则方程组*A x =0的通解为().A.112233x k k k ααα=++,其中123,,k k k 为任意常数B.112234x k k k ααα=++,其中123,,k k k 为任意常数C.112334x k k k ααα=++,其中123,,k k k 为任意常数.D.122334x k k k ααα=++,其中123,,k k k 为任意常数答案:C解析:∵A 不可逆∴|A|=0∵120A ≠∴()3r A =∴*()1r A =∴*0A x =的基础解系有3个线性无关的解向量.∵*||0A A A E ==∴A 的每一列都是*0A x =的解又∵120A ≠∴134,,ααα线性无关∴*0A x =的通解为112334x k k k ααα=++8.设A 为3阶矩阵,12,αα为A 属于特征值1的线性无关的特征向量,3α为A 的属于特征值-1的特征向量,则满足1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵P 可为().A.1323(,,)αααα+-B.1223(,,)αααα+-C.1333(,,)αααα+--D.1232(,,)αααα+--答案:D解析:1122,A A αααα==33A αα=-1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ∴的1,3两列为1的线性无关的特征向量122,ααα+P 的第2列为A 的属于-1的特征向量3.α1232(,,)P αααα∴=+-二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9.设()221ln 1x t y t t ⎧=+⎪⎨=++⎪⎩,则212t d y dx ==_______.解析:2221d 1d 11d d d d 1t y y t t t t x t x t t ⎛⎫+ ⎪+++⎝⎭==+1t=2222d d d 1d d d d d d d d d 1y y t y t t t x t x x tt ⎛⎫ ⎪⎛⎫⎝⎭- ⎪⎝⎭===+231t t +=-2212t dy dx ==-10.11301y dy x dx +=⎰⎰_____.解析:11301y dy x dx +⎰⎰22130013001320111x x dx x dy x dx dy x x dx =+=+=+⎰⎰⎰⎰⎰11332013320321(1)(1)312(1)332219x d x x =++=⋅+⎛⎫=- ⎪⎝⎭⎰11.设arctan[sin()]z xy x y =++,则(0,)|dz π=______.解析:d d d z z z x y x x∂∂=+∂∂2(0,π)1[cos()],π11[sin()]z z y x y x xy x y x∂∂=++=-∂+++∂2(0,π)1[cos()],11[sin()]z z x x y y xy x y y∂∂=++=-∂+++∂∴(0,π)(π1)d d z x y x ∂=--∂12.斜边长为2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g ,水密度为ρ,则该平板一侧所受的水压力为______解析:建立直角坐标系,如图所示0202303=2()d 2d 122313aaaF gx a x x g ax x x a g x x ga ρρρρ⋅-=-⎛⎫=- ⎪⎝⎭=⎰⎰13.设()y y x =满足20y y y '''++=,且(0)0,(0)1y y '==,则0()d y x x +∞=⎰_____解析:特征方程2210λλ++=121λλ∴==-12()()xy x C C x e -=+000()d ()2()d [()2()][(0)2(0)]1y x x y x y x xy x y x y y +∞+∞+∞'''=-+'=-+'=+=⎰⎰14.行列式011011110110aaa a --=--________解析:22242011011011011110110110*********11111000021214.00a a a a a a aa a a a a a a a aa a aa a a aa a a----=----+-+-==----=--=-三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分10分)求曲线1(0)(1)x x x y x x +=>+的斜渐近线方程.解析:1lim lim (1)xx x x y x x x x+→+∞→+∞=+lim (1)xxx x x →+∞=+ln ln(1)e lim e x xx x x +→+∞=(ln ln(1))lim e x x x x -+→+∞=11ln lim e x x x +-⋅+→+∞=1ln 11lim e x x x ⎛⎫- ⎪+⎝⎭→+∞=111lim e e x x x ⎛⎫⋅- ⎪-+⎝⎭→+∞==1lim (e )x y x -→+∞-11lim e (1)x x x x x x +-→+∞⎛⎫=- ⎪+⎝⎭1lim e (1)x x x x x x -→+∞⎛⎫=- ⎪+⎝⎭ln 11lim e e x x x x x -+→+∞⎛⎫=⋅- ⎪⎝⎭ln 111lim e e 1x x x x x +-+→+∞⎛⎫=- ⎪⎝⎭1lim e ln 11x x x x x -→+∞⎛⎫=⋅+ ⎪+⎝⎭1011ln 111lim e t t t t t+-→⋅++=1201ln 1lim e t t t t +-→++=1120ln(1)1lim e e 2t t t t +--→-+==∴曲线的斜渐近线方程为111e e 2y x --=+16.(本题满分10分)已知函数()f x 连续且100()lim 1,()(),'()x f x g x f xt dt g x x →==⎰求并证明'()0g x x =在处连续.解析:因为0()lim 1x f x x →=0(0)lim ()0x f f x →∴==所以10(0)(0)0g f dt ==⎰因为1001()()()x g x f xt dt xt u f u du x ==⎰⎰当0x ≠时,02()()()xxf x f u dug x x -'=⎰当0x =时,02000()()(0)1()1(0)limlim lim 022x x x x f u du g x g f x g x x x →→→-'====-⎰02(),0()1,02xf u du x xg x x ⎧⎪≠⎪'∴=⎨⎪=⎪⎩⎰又因为2000()lim ()lim ()x x x xf x g x f u du x →→'=-⎰020()()11lim 122x x f u du f x x x →⎡⎤⎢⎥=-=-=⎢⎥⎢⎥⎣⎦⎰()0g x x '∴=在处连续17.(本题满分10分)求二元函数33(,)8f x y x y xy =+-的极值解析:求一阶导可得22324f x y xf y x y∂=-∂∂=-∂令100601012f x x x f y y y ∂⎧⎧==⎪⎪=⎧∂⎪⎪⎨⎨⎨∂=⎩⎪⎪==⎪∂⎪⎩⎩可得求二阶导可得2222226148f f f x y x x y y ∂∂∂==-=∂∂∂当0,00. 1.0x y A B C -====-=时.20AC B -<故不是极值.当11612x y ==时1. 1. 4.A B C ==-=2110.10,612AC B A ⎛⎫->=> ⎪⎝⎭故且极小值极小值33111111,8661261212216f ⎛⎫⎛⎫⎛⎫=+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.已知222122()()1x x f x x f x x ++=+,求()f x ,并求直线12y =,32y =与函数()f x 所围图形绕x 轴旋转一周而成的旋转体的体积。
2020年全国硕士研究生招生考试数学二试题一、选择题:1~8题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
(1)当x 0时,下列无穷小量中最高阶的是A. ()x0(e 1)dte1x 1t 2 B.x0ln(1 t )dt3 C.sin x0sin t dt2 D.1 cos xsin 3tdt(2)函数f (x ) A.1个(3)ln1 x(e x 1)(x 2)的第二类间断点的个数为C.3个D.4个()B.2个arcsin xx (1 x )dx 1()2A.42 2B.8 C.(n )4D. 8()(4)已知函数f (x ) x ln(1 x ),当n 3时,f A.(0)(n 2)!nD.n !n 2B.n !n 2 C.(n 2)!n()xy ,xy 0 (5)关于函数f (x ,y )x ,y 0,给出下列结论: y ,x 0f ① x2f 1;②x yB.3(0,0)(0,0)1;③(x ,y ) (0,0)limf (x ,y ) 0;④lim lim f (x ,y ) 0.y 0x 0其中正确的个数为A.4(C.2D.1(D.)(6)设函数f (x )在区间 2,2 上可导,且f (x ) f (x ) 0.则A.)f ( 2)1f ( 1)B.f (0) e f ( 1)C.f (1) e 2f ( 1)f (2) e 3f ( 1)*(7)设4阶矩阵A (a ij )不可逆,a 12的代数余子式A 12 0, 1, 2, 3, 4为矩阵A 的列向量组,A 为A 的伴随矩阵,则方程组A *x 0的通解为A.x k 1 1k 22k 33,其中k 1,k 2,k 3为任意数B.x k 1 1k 22k 34,其中k 1,k 2,k 3为任意数C.x k 1 1k 23k 34,其中k 1,k 2,k 3为任意数D.x k 12k 23k 34,其中k 1,k 2,k 3为任意数()(8)设A 为3阶矩阵, 1, 2为A 的属于特征值1的线性无关的特征向量, 3为A 的属于特征值-1的特1001征向量,则满足P AP 0 10 的可逆矩阵P 可为001A.( 13, 2, 3)B.( 1 2, 2, 3)C.( 1 3, 3, 2)()D.( 1 2, 3, 2)二、填空题:9~14小题,每小题4分,共24分.请将答案写在横线上.x t 2 1d 2y (9)设,则22dxy ln(t t 1)(10) ________.t 110dy1yx 3 1dx ________.(0, )(11)设z arctan xy sin(x y ),则dz ________.(12)斜边长为2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为g ,水的密度为 ,则该平板一侧所受的水压力为________.(13)设y y (x )满足y 2y y 0,且y (0) 0,y (0) 1,则y (x )dx ________.a(14)行列式a1 1 11a 0110a________.0 11三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)x 1 x求曲线y x 0 的斜渐近线方程. 1 x x(16)(本题满分10分)已知函数f x 连续且lim x 01f (x ) 1,g (x ) f (xt )dt ,求g (x )并证明g (x )在x 0处连续.0x求函数f x ,y x 8y xy 的极值.33(18)(本题满分10分)21 x 2x 设函数f (x )的定义域为 0, 且满足2f (x ) x f.求f (x ),并求曲线2 x 1 x 213y f (x ),y ,y 及y 轴所围图形绕x 轴旋转所成转体的体积.22(19)(本题满分10分)设平面区域D 由直线x 1,x 2,y x 与x 轴围成,计算Dx 2 y 2dxdy .x设函数f (x ) x 1e t dt .22(Ⅰ)证明:存在 (1,2),使得f ( ) (2 )e ;(Ⅱ)证明:存在 (1,2),使得f (2) ln 2 e .2(21)(本题满分11分)设函数f (x )可导,且f (x ) 0,曲线y f (x )(x 0)经过坐标原点O ,其上任意一点M 处的切线与x 轴交于T ,又MP 垂直x 轴与点P .已知由曲线y f (x ),直线MP 以及x 轴所围图形的面积与 MTP 的面积之比恒为3:2,求满足上述条件的曲线的方程.设二次型f (x 1,x 2,x 3) x 1 x 2x 3 2ax 1x 2 2ax 1x 3 2ax 2x 3经过可逆线性变换222 x 1 y 1222x P 2 y 2 化为二次型g (y 1,y 2,y 3) y 1 y 24y 3 2y 1y 2. x y 33(Ⅰ)求a 的值;(Ⅱ)求可逆矩阵P .(23)(本题满分11分)设A 为2阶矩阵,P ( ,A ),其中 是非零向量且不是A 的特征向量.(Ⅰ)证明P 为可逆矩阵;(Ⅱ)若A A 6 0,求P AP ,并判断A 是否相似于对角矩阵.2 12020考研数学真题(数学二)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上....1.当x →0+时,下列无穷小量中最高阶的是()A.⎰x0(e -1)dtB.⎰ln(1+t )dtC.⎰0t 2x3sin x0sin t dtD.⎰21-cos xsin 3tdt解析:本题选D.考查了无穷小量的阶的比较,同时考查了变上限积分的函数的求导方法、洛必达法则等。
第1页(共17页)2020年普通高等学校招生全国统一考试(全国年普通高等学校招生全国统一考试(全国 Ⅱ卷)Ⅱ卷) 理科数学一、选择题一、选择题1.1.已知集合已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}- C.{2,1,0,3}-- D.{2,1,0,2,3}-- 答案答案: : A 解析解析: :∵{1,0,1,2}A B =-,∴,∴ (){2,3}U C A B ⋃=-. 2.2.若若α为第四象限角,则(为第四象限角,则( ) A.cos 20α> B.cos 20α< C.sin 20α> D.sin 20α< 答案答案: : D解析解析: : ∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(,则至少需要志愿者( ) A.10名B.18名C.24名D.32名 答案答案: : B解析解析: :因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名4.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)(含天心石)()A.3699块B.3474块C.3402块D.3339块 答案答案: : C 解析解析: :设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022nS S a ⨯==+⨯=块.5.5.若过点若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A.55 B.255 C.355 D.455答案答案: : B解析解析: :设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是255d =.6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a++++++=-,则k =( )A.2B.3C.4D.5 答案答案: : C 解析解析: :取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a++++++-+++==-=--,得4k =.7.7.右图是一个多面体的三视图,右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为(,则该端点在侧视图中对应的点为()A.EB.FC.GD.H答案答案: : A 解析解析: :该几何体是两个长方体拼接而成,如图所示,显然选A.8.8.设设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为(的焦距的最小值为() A.4 B.8 C.16 D.32 答案答案: : B 解析解析: :双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODESab ∆==,222216c a b ab =+≥=,当且仅当22a b ==时,等号成立,所以min 4c =,焦距min (2)8c =.9.9.设函数设函数()ln |21|ln |21|f x x x =+--,则()f x () A. 是偶函数,且在1(,)2+∞单调递增单调递增 B.B.是奇函数,且在是奇函数,且在11(,)22-单调递减单调递减C. 是偶函数,且在1(,)2-∞-单调递增单调递增D.D.是奇函数,且在是奇函数,且在1(,)2-∞-单调递减单调递减答案答案: : D解析解析: :函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)ln ln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确正确. .10.10.已知已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为(的距离为( ) A.3B.32C.1D.32答案答案: : C解析解析: :设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则239344ABC S a ∆==,可得3a =,于是33a r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1. 11.11.若若2233x y x y ---<-,则(,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -< 答案答案: :A解析解析: :2323x x y y ---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{{}}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i miaa i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m 的01-序列12......n a a a ,11()(1,2,...,1)mi i ki C k a a k m m+===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是(是() A.11010... B.11011... C.10001... D.11001... 答案答案: : C解析解析: :对于A 选项:选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a+===++++=>∑,不满足,排除;,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;,不满足,排除;对于C 选项,选项, 511111(1)(00001)555i i i C a a +===++++=∑, 52111(2)(00000)055i i i C a a +===++++=∑, 53111(3)(00000)055i i i C a a +===++++=∑, 541111(4)(10000)555i i i C a a +===++++=∑,满足;,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
2020年考研(数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.当x→0+时,下列无穷小量中最高阶是A.(et2-1)dt.B.ln(1+)dt.C.sin t2dt.D.正确答案:D解析:x→0+时,A ∴(et2-1)dt是x的3阶无穷小.B∴是x的5/2导阶无穷小,C=sin(sin2x)·cos x~x2∴sint2dt是x的3阶无穷小.D∴是x的5阶无穷小.故应选D.2.函数f(x)=的第二类间断点的个数为A.1.B.2.C.3.D.4.正确答案:C解析:间断点为:x=-1,x=0,x=1,x=2因此x=0是f(x)的第一类可去间断点;所以x=1是f(x)的第二类间断点;同理由知x=2也是f(x)的第二类间断点.故应选C.3.dx=A.π2/4.B.π2/8.C.π/4.D.π/8.正确答案:A解析:所以x=0是可去间断点;x=1是无穷间断点.故是广义积分今:t=,则x=t2,dx=2t·dt故选A.4.已知函数f(x)=x2ln(1-x).当n≥3时,f(n)(0)=A.-n!/(n-2).B.n!/(n-2).C.-(n-2)!/n.D.(n-2)!/n.正确答案:A解析:5.关于函数f(x,y)=给出以下结论正确的个数是A.4.B.3.C.2.D.1.正确答案:B解析:6.设函数f(x)在区间[-2,2]上可导,且f’(x)>f(x)>0,则A.f(-2)/f(-1)>1.B.f(0)/f(-1)>e.C.f(1)/f(-1)<e2.D.f(2)/f(-1)=0可知,A11a1+A12a2+A13a3+A14a4=0,因为A12≠0,因此a2可由a1,a3,a4线性表示,故a1,a3,a4线性无关.因为r(A)一r(a1,a2,a3,a4)=3,因此a1,a3,a4为基础解系,故应选C.又因为A*A=|A|E=O,A的每一列a1,a2,a3,a4是A*x=0的解向量.只要找到是A*x=0的3个无关解就构成基础解系.8.设A为3阶矩阵,a1,a2为A的属于特征值为1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为A.(a1+a3,a2,-a3).B.(a1+a2,a2,-a3).C.(a1+a3,-a3,a2).D.(a1+a2,-a3,a2).正确答案:D解析:因为a1,a2为属于特征值1的线性无关的特征向量,所以a1+a2,a2仍为属于特征值1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,故-a3为A的属于特征值-1的特征向量矩阵,因为特征向量与特征值的排序一一对应,故只需P=(a1+a2,-a3,a2)就有P-1AP=,故应选D.填空题9.=_______正确答案:一√2解析:10.=________正确答案:2/9(2√2-1)解析:11.设z=arctan[xy+sin(x+y)],则dz|(0,π)=_________正确答案:(π-1)dx-dy解析:12.斜边长为2a等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水压力为_________正确答案:(ρga3)/3解析:13.设y=y(x)满足y”+2y’+y=0,且y(0)=0,y’(0)=l,则y(x)dx=_________正确答案:1解析:由条件知,特征方程为:r2+2r+1=0,特征值r1=r2=-1齐次方程通解为:y=(C1+C2x)e-x,由y(0)=0,y’(0)=1得C1=0,C2=1即y(x)=xe-x,从而知:14.行列式=________正确答案:a2(a2-4)解析:解答题解答应写出文字说明、证明过程或演算步骤。
2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x--=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角1011(50)f ++B .0 12222x y Ca b+:在的直线上, 13141516.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2020年全国普通高等学校招生统一考试试卷 全国Ⅱ卷理科数学一、选择题1.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2B =,则()UAB =( )A.{}2,3-B.{}2,2,3-C.{}2,1,0,3--D.{}2,1,0,2,3--2.若α为第四象限角,则( ) A. cos20α>B. cos20α<C. sin20α>D. sin20α<3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) 52535456.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k = ( )A.2B.3C.4D.57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点.若ODE 的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.329.设函数()ln |21|ln |21|f x x x =+--,则()f x ( ) A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减10.已知ABC 93的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3 B.32C.1 3 11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln 0x y ->D.ln 0x y -< 12.01-周期序列在通信技术中有着重要应用.若序列12na a a 满足{}0,1(1,2,)i a i ∈=,且存在正整数m ,使得i (1,2,)i m a a i +==成立,则称其为01-周期序列,并称满足i (1,2,)i m a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的01-序列12na a a ,11()(1,2,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标.下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k =的序列是( )A.11010B.11011C.10001D.11001二、填空题13.已知单位向量,a b 的夹角为45°,k -a b 与a 垂直,则k =_______.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有___________种.15.设复数1z ,2z 满足122z z ==,12i z z +=+,则12z z -=_______. 16.设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内. 2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 3p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是_________. ①14p p ∧ ②12p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 三、解答题17.ABC 中,222sin sin sin sin sin A B C B C --=. (1)求A ;(2)若3BC =,求ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分为面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,220i i x y i =⋅⋅⋅,,,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得()()()()22202020202011111601200809000800i ii iiii i i i i x yx x y y x x y y =======-=-=--=∑∑∑∑∑,,,,.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,220i i x y i =⋅⋅⋅,,的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()12211yniii nniii i x x yr x x y y ===--=--∑∑∑,2 1.414≈.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于,A B 两点,交2C 于,CD 两点,且43CD AB =. (1)求1C 的离心率;(2)设M 是1C 与2C 的公共点.若5MF =,求1C 与2C 的标准方程.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ; (2)设O 为111A B C 的中心.若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.21.已知函数()2sin sin 2f x x x =.(1)讨论()f x 在区间()0π,的单调性;(2)证明:()33f x ; (3)设n *∈N ,证明:22223sin sin 2sin 4sin 24nnn x x x x .22.已知曲线12,C C 的参数方程分别为2124cos ,4sin x C y θθ⎧=⎪⎨=⎪⎩:(θ为参数),211x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23.已知函数2()21f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.参考答案1.答案:A解析:2.答案:D解析:3.答案:B解析:4.答案:C解析:5.答案:B解析:6.答案:C解析:7.答案:A解析:8.答案:B解析:9.答案:D解析:10.答案:C解析:11.答案:A解析:12.答案:C解析:13.解析:14.答案:36解析:15.答案:解析:16.答案:①③④解析:17.答案:(1)由正弦定理和已知条件得222BC AC AB AC AB--=⋅.①由余弦定理可知2222cosBC AC AB AC AB A=+-⋅.②由①,②得1cos2A=-.因为0πA<<,所以2π3A=.(2)由正弦定理及(1)得sin sin sinAC AB BCB C A===,从而AC B=,π)3cosAB A B B B=--=.故π33cos33BC AC AB B B B⎛⎫++=+=++⎪⎝⎭.又0π3B<<,所以当π6B=时,ABC周长取得最大值为3+解析:18.答案:(1)由已知得样本平均数20116020iiy y===∑,从而该地区这种野生动物数量的估计值为6020012000⨯=.(2)样本(),(1,2,,20)i ix y i =的相关系数()()200.943i ix x y yr--===≈∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.解析:19.答案:(1)由已知可设2C的方程为24y cx=,其中c=.不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为22,b b a a -;,C D 的纵坐标分别为2,2c c -,故2||2|,|4b B CD c aA ==.由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫⨯=- ⎪⎝⎭.解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2,a c b =,故22122:143x y C c c+=.设()00,M x y ,则220022143x y c c+=,204y cx =, 故20024134x xc c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而|5MF =|,故05x c =-,代入①得 22(5)4(5)134c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.解析:20.答案:(1)因为,M N 分别为11,BC B C 的中点,所以1//MN CC ,又由已知得11//AA CC ,故1//AA MN .因为111A B C 是正三角形,所以111B C A N ⊥.又11B C MN ⊥,故11B C ⊥平面1A AMN .所以平面1A AMN ⊥平面11EB C F .(2)由已知得AM BC ⊥.以M 为坐标原点,MA 的方向为x 轴正方向,||MB 为单位长,建立如图所示的空间直角坐标系M xyz -,则2AB =,AM =连结NP ,则四边形AONP 为平行四边形,故PM =,1,03E ⎫⎪⎪⎝⎭.由(1)知平面1A AMN ⊥平面ABC .作NQ AM ⊥,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234,(433NQ a B a a ⎫⎛⎫⎛⎫⎪=---- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭,故21123223210,,4,||33B E a a B E ⎛⎫⎛⎫ ⎪=-----= ⎪ ⎪⎪ ⎝⎭⎭⎝. 又(0,1,0)=-n 是平面1A AMN的法向量,故1111π10sin ,cos ,210||||B E B E B E B E ⎛⎫-〈〉=== ⎪⋅⎝⎭n n n n ⋅.所以直线1B E 与平面1A AMN 所成角的正弦值为10. 解析:21.答案:(1)当π0,3x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当π2π,33x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2π,π3x ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增.(2)证明见解析; (3)证明见解析.解析:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+ 22sin cos sin 22sin cos2x x x x x =+2sin sin3x x =. 当π2π0,,π33x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭时,()0f x '>;当π2π,33x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.所以()f x 在区间π2π0,,,π33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭单调递增,在区间π2π,33⎛⎫⎪⎝⎭单调递减.(3)因为(0)(π)0f f ==,由(1)知,()f x 在区间[]0,π的最大值为π3f ⎛⎫= ⎪⎝⎭为2π3f ⎛⎫= ⎪⎝⎭,而()f x 是周期为π的周期函数,故33()f x . (3)由于()()()2223332332121321sinsin 2sin 2sin sin 2sin 2|sin |sin sin 2sin 2sin 2sin 2|sin |()(2)2sin 2()(2)2nn n n n n n n x xxx x xx x x x x x x f x f x f x xf x f x f x ---=⋅=⋅⋅= 所以23222333sin sin 2sin 24nn nn x xx ⎛⎫= ⎪ ⎪⎝⎭. 22.答案:(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 解析:(1)1C 的普通方程为()404x y x +=. 由2C 的参数方程得22212x t t =++,22212y t t =+-,所以224x y -=. 故2C 的普通方程为224x y -=.(2)由2244x y x y +=⎧⎪⎨-=⎪⎩得5232x y ⎧=⎪⎪⎨⎪=⎪⎩,,所以P 的直角坐标为53,22⎛⎫ ⎪⎝⎭. 设所求圆的圆心的直角坐标为()0,0x ,由题意得22005924x x ⎛⎫=-+ ⎪⎝⎭,解得01710x =. 因此,所求圆的极坐标方程为17cos 5ρθ=23.答案:(1)32x x ⎧⎨⎩或112x ⎫⎬⎭;(2)(][),13,-∞-+∞.解析:(1)当2a =时,72,3,()1,34,27, 4.x x f x x x x -⎧⎪=<⎨⎪->⎩11因此,不等式()4f x 的解集为31122x x x ⎧⎫⎨⎬⎩⎭∣或. (2)因为222()|21|21(1)f x x a x a a a a =-+-+-+=-, 故当2(1)4a -,即12a -时,()4f x .所以当3a 或1a -时,()4f x . 当-13a <<时,()22221(1)4f a a a a =-+=-<.所以a 的取值范围是(,1][3,)-∞-⋃+∞。