混沌遗传模拟退火组合算法性能研究
- 格式:pdf
- 大小:332.27 KB
- 文档页数:4
华东理工大学学报(自然科学版)Journal of East China University of Science and Technology (Natural Science Edition )Vol.34No.12008202收稿日期:2007203213作者简介:柳 贺(19792),女,安徽凤阳人,博士生,研究方向为智能控制理论与应用、间歇过程建模与控制研究。
通讯联系人:黄 道,E 2mail :dhuang @ 文章编号:100623080(2008)0120126205基于混沌搜索和模式搜索的混合优化方法柳 贺1, 黄 猛1, 柳桂国1,2, 黄 道1(1.华东理工大学信息科学与工程学院,上海200037;2.浙江工商职业技术学院,浙江宁波315020) 摘要:混沌搜索能够有效跳出局部极小,然而其细搜索能力不足;模式搜索具有很强的细搜索能力,但是其搜索结果的好坏在很大程度上依赖于初始点的选择。
为了提高基于混沌搜索的优化方法的搜索精度,基于混沌搜索和模式搜索,本文提出了一种混合混沌模式搜索方法。
该方法在混沌搜索的基础上再进行模式搜索得到最终的搜索结果。
混沌搜索结果的精度不需要很高,却可以为模式搜索提供有效的初始点,避免搜索陷入局部极小,只需要简单搜索即可得到理想的最优解。
仿真结果表明混合混沌模式搜索方法简单、高效。
关键词:最优化;混沌搜索;模式搜索法中图分类号:TP301文献标识码:AA H ybrid Optimization MethodB ased onChaotic Search and P attern SearchL I U He 1, H UA N G Meng 1, L I U Gui 2g uo1,2, H UA N G D ao1(1.S chool of I nf orm ation S cience and Engi neeri ng ,East Chi na U ni versit y of S cience andTechnolog y ,S hang hai 20037,Chi na;2.Zhej i ang B usi ness Technolog y I nstit ute ,N i ngbo 315020,Zhej i ang ,Chi na )Abstract :Chaotic search can effectively jump out of local minima but it has poor fine search ability.Pattern search met hod has excellent local search ability ;however it s search result mostly depends on t he initial point.To enhance t he precision of optimization result s ,a hybrid chaotic pattern search met hod (HCPSM )is presented in t his paper based on t he chaotic search and pattern search met hod.The final result is found by pattern search based on t he result of chaotic search.The result of chaotic search is not required to be high p recise ,but it can p rovide an effective initial point for pattern search met hod to avoid t he local minima.The ideal optimum can be found by simple pattern search based on good initial point.Simulation result s show t hat t he HCPSM is simple and high effective.K ey w ords :optimization ;chaotic search ;pattern search met hod 混沌是非线性系统中一种较为普遍的现象,具有随机性、遍历性和规律性。
模拟退火算法改进综述及参数探究一、概述1. 模拟退火算法简介模拟退火算法(Simulated Annealing,SA)是一种基于物理退火过程的随机优化算法,最早由_______等人于1953年提出,后经_______等人在1983年成功引入组合优化领域。
其核心思想借鉴了固体物质在退火过程中的物理特性,即在加温时,固体内部粒子随温升变为无序状,内能增大而在徐徐冷却时,粒子逐渐变得有序,最终在常温时达到内能最小的基态。
模拟退火算法通过模拟这一过程,在解空间中随机搜索目标函数的全局最优解。
算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解。
在模拟退火过程中,算法以某种概率接受较差的解,从而具有跳出局部最优解的能力。
只要计算时间足够长,模拟退火法可以保证以概率0收敛于全局最优点。
在实际应用中,由于计算速度和时间限制,其优化效果和计算时间存在矛盾,收敛时间往往过长。
模拟退火算法因其通用性和概率全局优化性能,在工程实践中得到了广泛应用,如VLSI布局问题、生产调度、控制工程、机器学习、神经网络、信号处理等领域。
通过模拟退火算法,可以有效地解决各种复杂的组合优化问题,提高求解的效率和精度。
近年来,随着算法优化领域的发展,模拟退火算法也在不断改进和完善。
研究者通过改进算法的参数设置和冷却策略,提高算法的收敛速度和全局搜索能力另一方面,将模拟退火算法与其他优化算法相结合,形成混合优化算法,以进一步提升算法的性能和适用范围。
在接下来的章节中,我们将对模拟退火算法的改进方法和参数探究进行详细的综述和分析,以期为读者提供更深入的理解和更高效的应用策略。
2. 模拟退火算法的应用领域在组合优化问题中,模拟退火算法具有显著的优势。
这类问题包括旅行商问题、背包问题、调度问题等,它们都属于NP难问题,难以在多项式时间内找到最优解。
模拟退火算法通过模拟物理退火过程,能够在可接受的时间内找到近似最优解,因此在这些领域得到了广泛应用。
基于遗传算法的模拟退火优化模型研究随着计算机科学技术的不断发展和计算机运算能力的不断提高,计算机科学领域已经取得了很多重大的突破和进展。
其中,优化算法是非常重要的一个学科,在人工智能、运筹学、自动控制等领域都有着广泛的应用。
其中,遗传算法和模拟退火算法是目前最为常用的两种优化算法,它们的结合也越来越普遍。
在这样的背景下,对基于遗传算法的模拟退火优化模型进行研究,具有非常重要的理论和实践意义。
一、遗传算法遗传算法是一种模拟自然界进化规律的算法。
遗传算法最初由美国的约翰·霍兰德教授于20世纪70年代中期提出,旨在模拟生物进化过程,对某一复杂问题进行优化求解。
遗传算法的最大优点是具有全局搜索的能力,并且不容易陷入局部最优解,解决了很多其他优化算法所无法解决的问题。
遗传算法从进化论的发现看来,它的算法模型是类似于自然选择过程的。
二、模拟退火算法模拟退火算法是一种基于物理学中退火过程模拟的一种优化算法,它最早是由美国数学家柯克帕特里克(Kirkpatrick)等人在20世纪80年代开发的。
模拟退火算法的思想是模拟固体材料在高温下慢慢冷却过程中,原子从高温状态随机运动过程中得到平衡分布的思路,在状态跳变的过程中,通过接受不太优的状态,来避免陷入局部最优解,最终得到全局最优解。
三、基于遗传算法的模拟退火优化模型由于遗传算法和模拟退火算法各自具有优点和缺点,因此,可以利用双重混合算法将两者的优点结合起来。
比较常用的方法是将模拟退火算法作为遗传算法的局部搜索算法,使遗传算法具有更好的全局搜索能力和更快的收敛效果。
具体来说,基于遗传算法的模拟退火优化模型可以分为以下几个步骤:步骤1:初始化个体——设置种群大小和初始种群,计算适应度函数和产生初始群体。
步骤2:选择——采用轮盘赌或竞赛选择算法,选择优良的个体。
步骤3:交叉——将选择的优良个体进行交配,生成后代。
步骤4:变异——对后代进行变异,增加搜索空间的多样性。
基于遗传算法和模拟退火算法的混合算法基于遗传算法和模拟退火算法的混合算法是一种将两种优化算法结合起来的方法,旨在克服两种算法各自的缺点,并发挥它们的优势,以获得更好的优化结果。
该混合算法可以分为两个阶段:遗传算法阶段和模拟退火算法阶段。
在遗传算法阶段,通过模拟生物进化的过程来最优解。
首先,需要定义问题的适应度函数,作为解决方案的评价指标。
然后,随机生成一组初始解作为种群,并通过适应度函数计算每个解的适应度值。
根据适应度值,进行选择、交叉和变异操作,生成新的解,并更新种群。
通过多轮迭代,逐步优化解的适应度值,直到达到停止条件。
然而,遗传算法在过程中会陷入局部最优解,并且速度相对较慢。
为了克服这些缺点,需要引入模拟退火算法阶段。
在模拟退火算法阶段,通过模拟物质的退火过程来最优解。
首先,需要定义初始解和问题的目标函数。
然后,定义一种温度下解的邻域结构,并通过目标函数计算解的值。
采用Metropolis准则来接受或拒绝新解,以便在空间中充分探索各个解。
逐渐降低温度,逐步缩小解的邻域范围,并最终收敛到最优解。
通过将遗传算法和模拟退火算法结合起来,可以克服两种算法各自的缺点,发挥它们的优势。
遗传算法具有全局能力和并行能力,可以大范围的解空间;而模拟退火算法可以在局部中跳出局部最优解,并且速度相对较快。
混合算法的核心思想是通过遗传算法来进行全局,找到一个较好的解,然后使用模拟退火算法在该解附近进行局部,进一步优化解。
混合算法的主要步骤如下:1.基于遗传算法生成初始种群,并计算适应度值。
2.通过选择、交叉和变异操作生成新的解,并更新种群。
3.迭代执行遗传算法阶段,直到达到停止条件。
4.使用遗传算法得到的最优解作为模拟退火算法的初始解。
5.基于模拟退火算法进行局部,使用目标函数进行评价。
6.逐渐降低温度,缩小解的邻域范围,并最终收敛到最优解。
通过混合遗传算法和模拟退火算法,可以充分利用遗传算法的全局和并行能力,同时利用模拟退火算法的快速优化能力和局部能力,从而获得更好的优化结果。
遗传算法与模拟退火算法的混合优化策略遗传算法与模拟退火算法是两种常用的优化算法,它们在不同的问题领域中都有广泛的应用。
本文将探讨遗传算法与模拟退火算法的混合优化策略,以及它们在解决实际问题中的优势和应用案例。
1. 遗传算法的基本原理遗传算法是受到生物进化理论启发而发展起来的一种优化算法。
它模拟了自然界中的进化过程,通过遗传操作(选择、交叉和变异)来搜索最优解。
遗传算法的基本原理是通过不断迭代的过程,利用适应度函数对候选解进行评估和选择,从而逐步逼近最优解。
2. 模拟退火算法的基本原理模拟退火算法是一种基于物理退火过程的优化算法。
它模拟了固体物质在高温下冷却的过程,通过接受一定概率的次优解,从而避免陷入局部最优解。
模拟退火算法的基本原理是通过不断迭代的过程,通过随机扰动和接受准则来搜索最优解。
3. 遗传算法与模拟退火算法的混合优化策略遗传算法和模拟退火算法有着不同的搜索策略和特点,它们在解决问题时各有优势。
因此,将两种算法进行混合优化可以充分利用它们的优点,提高搜索效率和结果质量。
在混合优化策略中,可以将遗传算法和模拟退火算法结合起来,形成一个交替迭代的过程。
具体而言,可以先使用遗传算法进行初步的全局搜索,然后将得到的一组较好的解作为初始解输入到模拟退火算法中进行进一步的局部搜索。
通过这种方式,可以在全局和局部两个层次上进行搜索,充分利用两种算法的优点。
4. 混合优化策略的优势和应用案例混合优化策略的优势在于可以充分利用遗传算法的全局搜索能力和模拟退火算法的局部搜索能力,从而在解决复杂问题时取得更好的结果。
此外,混合优化策略还可以提高算法的鲁棒性和收敛速度,使得优化过程更加高效。
混合优化策略在实际问题中有着广泛的应用。
例如,在工程设计中,可以利用遗传算法进行参数优化,然后使用模拟退火算法进行进一步的优化,以得到更优的设计方案。
在机器学习中,可以使用遗传算法进行特征选择,然后使用模拟退火算法进行模型参数优化,以提高模型的性能和泛化能力。
遗传算法和模拟退火算法相结合的并行实现SC02011055 杨雪华沈阳计算技术研究所摘要:遗传算法具有自组织、自适应、自学习等特征,而且优胜劣汰和简单的遗传操作使计算不受其搜索空间限制条件的约束以及不需要其它的辅助信息,因此遗传算法能获得较高的效率和简单、易操作和通用的特性;模拟退火算法是一种较好的改进遗传算法性能的方法,该算法是根据迭代改进思想提出的,不仅能增强遗传算法的全局收敛性,还能加快进化速度,得到满意的全局最优解。
将两者的有机结合,既克服了传统遗传算法的缺点,又发挥了它们的优点,是一种优化的算法改进。
关键词遗传算法,模拟退火,并行算法,并行处理1、提出背景:遗传算法(genetic algorithm)是一种借鉴生物界自然选择思想和自然遗传机制的全局随机搜索算法,最早是由美国Michigan大学的Holland提出的,这种算法是模拟达尔文的进化论创建的,它模拟生物遗传进化的过程,引入了选择、复制、交叉重组和变异等方法,并将进化论中的“物竟天择,适者生存”的概念引入到算法中,因此被命名为“Genetic”。
它把问题的可能解组成种群,把每一个可能的解看成种群的个体,运行时,算法在整个种群空间内随机搜索,按一定的评估策略(或适应度函数)对每一个体作评价,不断使用选择、交叉、变异这三种遗传算子,使问题的解不断进化,直至产生最优解。
因为它在解决大空间、非线性、全局寻优等复杂问题时具有传统方法所不具备的独特的优越性,所以自从它被提出后,已经得到了广泛的研究和应用。
但是,该传统的遗传算法有两个严重的不足:1)容易过早收敛2)在进化后期搜索效率较低,这使得最终搜索得到的结果往往不是全局最优解,而是局部最优解,并且该算法不能有效地克服过早收敛现象,因此,现在大量的研究集中于如何改进传统的遗传进化思想。
目前各种改进思想层出不穷,已经取得了大量的成果。
近年来,模拟退火算法被引入到遗传算法中,显现出良好的应用背景。
求解三维装箱问题的混合遗传模拟退火算法一、本文概述装箱问题,也称为装箱优化问题,是一类广泛存在于现实生活中的组合优化问题。
特别是在物流、工业工程、计算机科学等领域,装箱问题以其高度的复杂性和实际应用价值而备受关注。
其中,三维装箱问题更是因其涉及物品的三维形状和空间利用率的优化而显得尤为复杂。
近年来,随着智能优化算法的发展,遗传算法和模拟退火算法等启发式搜索算法在求解此类问题上展现出了强大的潜力。
本文旨在探讨一种结合遗传算法和模拟退火算法的混合算法,以求解三维装箱问题。
我们将首先介绍三维装箱问题的定义、特点以及求解难度,然后详细阐述混合遗传模拟退火算法的设计原理、实现过程以及关键参数的选择。
通过对比实验和结果分析,我们将验证该混合算法在求解三维装箱问题上的有效性和优越性。
本文的主要内容包括:三维装箱问题的数学模型及求解难点分析;混合遗传模拟退火算法的设计和实现;算法性能的实验验证与对比分析;以及结论与展望。
通过本文的研究,我们期望能为三维装箱问题的求解提供一种新的有效方法,并为相关领域的实际应用提供理论支持和实践指导。
二、相关理论基础三维装箱问题(Three-Dimensional Bin Packing Problem,3D-BPP)是一个经典的组合优化问题,涉及到如何将一组不同尺寸的三维物体有效地放入有限数量的容器中,同时尽可能减少容器的使用数量。
由于该问题的复杂性,传统的数学方法往往难以在合理的时间内找到最优解,因此,启发式算法和元启发式算法在求解此类问题上显示出其独特的优势。
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化搜索算法。
它通过模拟生物进化过程中的选择、交叉、变异等操作,在问题的解空间中寻找最优解。
遗传算法具有较强的全局搜索能力,但容易陷入局部最优解,导致搜索效率降低。
模拟退火算法(Simulated Annealing, SA)则是一种基于物理退火过程的优化算法。