稳定受迫振动共振的研究
- 格式:pdf
- 大小:216.46 KB
- 文档页数:3
受迫振动与共振现象的研究振动是自然界中一种常见的物理现象,无论是机械系统、电子电路还是分子结构,都可以发生振动。
受迫振动是其中一种特殊的振动形式,它在受到外界周期性激励后产生的振动。
共振现象则是在受迫振动中常见的一种现象,它描述了系统在外界激励频率与系统固有频率相匹配时的特殊状态。
本文将探讨受迫振动与共振现象的研究。
受迫振动是一种非平衡状态下的振动,不同于自由振动。
在受迫振动中,外界施加的周期性力或位移使系统产生周期性的响应。
例如,在机械系统中,一个悬挂在弹簧上的质点受到周期性的外力作用,就会引起该质点的受迫振动。
受迫振动通常可以通过线性微分方程来描述。
假设一个简谐振子受到一个周期性外力的作用,其运动方程可以表示为:\[m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0\cos(\omega t)\]其中,m是振子的质量,x是振子的位移,b是阻尼系数,k是弹性系数,F0是外力振幅,ω是外力的角频率。
在进行受迫振动的研究时,共振现象是一个重要的现象。
共振是指当外界激励的频率与系统固有频率相等或接近时,系统会表现出极大的响应。
这是因为在共振状态下,外界激励与振动系统内部的自由振动频率相匹配,从而使得能量在系统内部得到最大的传递。
共振现象具有许多实际应用。
在建筑工程中,共振现象被广泛应用于减震器的设计,用于减少地震或风力对建筑物产生的振动影响。
在电子电路中,共振现象可以用于选择性放大或滤波,将特定频率信号从混杂的信号中提取出来。
此外,共振现象还存在于许多其他领域,如天文学、生物学和音乐等。
为了研究受迫振动和共振现象,科学家和工程师采用了许多不同的方法和技术。
在实验室中,他们可以使用震动台或其他类型的振动装置来模拟外界激励,并测量系统的响应。
通过改变激励频率、幅度或相位,研究者可以确定共振频率以及共振响应的特性。
此外,数值模拟也是研究受迫振动和共振现象的重要手段。
一、实验目的1. 了解受迫振动的基本原理和共振现象。
2. 通过实验验证受迫振动共振的条件,并观察共振现象。
3. 研究不同频率、阻尼和激励力对受迫振动共振的影响。
4. 掌握实验数据采集和分析方法,提高实验技能。
二、实验原理受迫振动是指在外力作用下,物体发生的振动现象。
当外力的频率与物体的固有频率相同时,会发生共振现象,此时物体的振幅达到最大值。
实验原理基于牛顿第二定律,物体的运动方程可表示为:\[ m\ddot{x} + c\dot{x} + kx = F(t) \]其中,\( m \) 为物体的质量,\( c \) 为阻尼系数,\( k \) 为弹簧劲度系数,\( x \) 为物体的位移,\( F(t) \) 为外力。
当外力为简谐振动时,即 \( F(t) = F_0 \cos(\omega t) \),则运动方程可简化为:\[ m\ddot{x} + c\dot{x} + kx = F_0 \cos(\omega t) \]三、实验仪器与设备1. 波尔共振仪2. 信号发生器3. 数字示波器4. 阻尼器5. 连接线四、实验步骤1. 将波尔共振仪的摆轮与阻尼器连接,并调整阻尼器,使摆轮处于自由振动状态。
2. 打开信号发生器,设置合适的频率和幅度,产生简谐振动信号。
3. 将信号发生器的输出信号连接到波尔共振仪的输入端,开始实验。
4. 使用数字示波器观察波尔共振仪的振动信号,记录振幅和频率。
5. 调整信号发生器的频率,观察共振现象,记录共振频率和振幅。
6. 改变阻尼器的阻尼系数,观察阻尼对共振现象的影响。
7. 改变激励力的幅度,观察激励力对共振现象的影响。
五、实验结果与分析1. 实验结果表明,当信号发生器的频率与波尔共振仪的固有频率相同时,发生共振现象,振幅达到最大值。
2. 随着阻尼系数的增加,共振频率逐渐降低,振幅逐渐减小。
3. 随着激励力幅度的增加,共振现象更加明显,振幅达到最大值。
六、实验结论1. 受迫振动共振现象是当外力频率与物体的固有频率相同时,物体振幅达到最大值的现象。
实验报告:受迫振动与共振1.实验目的:本实验旨在通过研究受迫振动与共振现象,探究受迫振动的特点和共振的产生条件,并对实验结果进行分析和讨论。
2.实验器材:振动平台弹簧、质量块受迫振动装置功率放大器示波器频率计3.实验原理:受迫振动是指一个振动系统受到外力的作用,从而导致振幅的变化和相位的偏移。
在一定条件下,当外力的频率与系统的固有频率相等时,共振现象就会出现,此时振幅达到最大。
4.实验步骤:步骤1:搭建受迫振动装置,包括振动平台、弹簧和质量块。
步骤2:调整振动平台的频率和振幅,使其与受迫振动装置的固有频率相等。
记录调整后的频率和振幅值。
步骤3:接通功率放大器,调节输出功率,使受迫振动装置的振幅达到最大。
记录此时的频率和振幅值。
步骤4:使用示波器观察受迫振动的振动曲线,并记录相关数据。
步骤5:根据实验数据计算共振频率和共振宽度,并进行分析和讨论。
5.实验结果:调整后的频率和振幅值记录如下:频率:X Hz振幅:X cm受迫振动装置达到共振的频率和振幅值记录如下:共振频率:X Hz共振振幅:X cm6.实验讨论:通过实验数据计算得到的共振频率和共振宽度是否符合理论预期?受迫振动的振幅是否随着外力频率的增加而增加?如何改变外力的频率和幅度,以观察受迫振动的不同响应?7.实验结论:受迫振动是受到外力作用的振动,其振幅和相位会随着外力频率的变化而发生变化。
共振是指外力频率与系统固有频率相等时,振幅达到最大的现象。
通过实验可以观察到受迫振动的共振现象,并计算出共振频率和共振宽度。
以上为受迫振动与共振实验报告的基本内容和结构。
根据实际情况,还可以添加实验数据的图表、数据分析和实验误差的讨论等内容。
音叉的受迫振动与共振实验(共享)
音叉是一种能够发出声音的乐器,它的振动频率非常稳定。
在本次实验中,我们将使
用音叉来研究受迫振动和共振的现象。
本实验的目的是通过对音叉在不同频率下的受迫振
动和共振现象的观察,深入了解受迫振动和共振的规律和应用。
实验器材:
音叉、传声器、信号发生器、示波器等。
实验原理:
受迫振动是指物体振动受到外力的影响,强制振动。
外力的大小、方向和频率都会影
响振幅和频率的变化规律。
当外力频率与物体本身的振动频率相同时,就发生了共振现象。
共振能够引起振幅的急剧增加,结构破坏和噪音等问题,因此需要避免。
实验步骤:
第一步:将信号发生器连接到传声器,将传声器与示波器相连,设置示波器为X-Y模式。
第二步:将音叉竖直放置,用橡皮筋固定,用手拨动音叉,使其振动。
用示波器观察
到的波形确认音叉的振动频率。
第三步:将传声器放置在音叉旁,用信号发生器向音叉传递外力,改变外力的频率,
观察到音叉振动的效果,并记录下振幅和频率的变化规律。
第四步:通过调整信号发生器的频率,在相同的频率下观察到共振现象。
并记录下相
应的振幅和频率。
实验结果:
实验结果表明,当信号发生器输出的频率接近音叉自然频率时,音叉的振幅最大。
当
外力频率不等于音叉自然频率时,振动幅度逐渐减小。
这表明外力频率与音叉自然频率之
间存在着共振现象,声音会变得非常响亮。
然而,外力频率稍高或稍低于音叉自然频率时,振动幅度降至最低。
结论:。
受迫振动和共振的研究振动科学是物理学的重要组成部分。
其中受迫振动....和共振..问题的研究,不但在理论上涉及经典和现代物理科学的发展;更在工程技术领域受到极大的重视并不断取得新的成果。
例如:在建筑、机械等工程问题中,经常须避免“共振”现象的出现以保证工程质量;但目前新研发的很多仪器和装置的工作原理又是基于各种“共振”现象的产生;在微观科学研究领域中“共振”也已成为重要的研究手段。
本实验以音叉振动系统为研究对象,用电磁激振线圈的电磁力作为驱动力使音叉起振;并以另一电磁线圈作为检测振幅传感器,观测受迫振动系统的振幅与驱动力频率之间的关系,以研究“受迫振动”与“共振”现象及其规律。
一、 实验目的(1) 研究音叉振动系统在周期性外力作用下振幅与外力频率的关系,测绘其关系曲线,并求出系统的共振频率和系统的振动锐度(和品质因素Q 值有关的参量);(2) 通过改变音叉双臂同一位置处所加金属块的质量,研究系统的共振频率与系统质量的关系;(3) 通过测量音叉的共振频率,确定未知物体的质量,以了解音叉式传感器的工作原理;(4) 改变音叉阻尼状态,了解阻尼力对音叉系统的共振频率及其振动锐度的影响。
二、 实验原理1. 简谐振动与阻尼振动众所周知:弹簧振子、单摆、复摆、扭摆等振动系统在作小幅度振动,并且其所受各种阻尼力小到可以忽略的情况下,可视为简谐振动状态。
此类振动满足下述简谐振动....方程: 02022=+x dtx d ω (1) 上式的解为:)cos(00ϕω+=t A x (2)以理想弹簧振子为例:其固有角频率mK =0ω,K 为弹簧的劲度系数,m 为振动系统的有效质量,振幅A 和初位相0ϕ与振动系统的初始状态有关,系统的振动周期T =Km πωπ220=。
即振动周期仅与系统的质量及弹簧的劲度系数有关;由此可知:理想弹簧振子的振动频率f=m K T π211=。
但是,实际的振动系统存在各种阻尼因素。
仍以弹簧振子为例:其振动幅度在摩擦力(空气阻力、内力等)的阻尼下会逐步减小直到零——即阻尼振动....状态。
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。
2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。
3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。
二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。
三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。
其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。
2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。
根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。
临界阻尼:振动较快地回到平衡位置。
大阻尼:不产生振动。
3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。
稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。
受迫振动的研究实验报告一、引言。
受迫振动是物理学中一个重要的研究课题,它在许多领域都有着重要的应用,如机械工程、电子工程、生物医学工程等。
本实验旨在通过对受迫振动的研究,探讨受迫振动的特性及其在实际应用中的意义。
二、实验原理。
受迫振动是指在外力作用下,振动系统产生的振动。
在本实验中,我们将研究的对象定为单摆系统。
单摆系统是一个典型的受迫振动系统,它由一个质点和一根不可伸长的细线组成,质点受到重力作用而产生周期性的振动。
当外力施加在单摆系统上时,就会产生受迫振动。
三、实验内容。
1. 实验仪器,单摆装置、振动传感器、数据采集系统等。
2. 实验步骤:a. 将单摆装置悬挂好,并调整至静止状态。
b. 将振动传感器连接至数据采集系统,并将数据采集系统连接至计算机。
c. 施加外力,记录单摆系统的振动数据。
d. 分析数据,得出受迫振动的特性参数。
四、实验结果与分析。
通过实验数据的采集与分析,我们得出了如下结论:1. 受迫振动的频率与外力的频率相同,且振幅受到外力的影响。
2. 外力的频率与振幅的变化会影响受迫振动的稳定性。
3. 受迫振动的共振现象会在特定的外力频率下出现。
五、实验结论。
本实验通过对单摆系统的受迫振动进行研究,得出了受迫振动的特性及其在实际应用中的意义。
受迫振动在机械工程、电子工程、生物医学工程等领域都有着重要的应用价值,对其特性的深入了解有助于我们更好地应用于实际工程中。
六、实验总结。
通过本次实验,我们对受迫振动的特性有了更深入的了解,同时也认识到了受迫振动在实际应用中的重要性。
希望通过今后的学习与实践,能够更好地将受迫振动理论运用于工程实践中,为相关领域的发展做出贡献。
七、致谢。
在本次实验中,感谢所有参与实验的同学们的辛勤劳动和支持,也感谢实验中得到的指导和帮助。
以上就是本次实验的全部内容,希望对受迫振动的研究有所帮助。
一、实验目的与要求1. 理解并掌握受迫振动的概念及其特点。
2. 学习使用实验设备(如波尔共振仪)进行受迫振动实验。
3. 通过实验观察并分析受迫振动的幅频特性和相频特性。
4. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
5. 学习使用频闪法测定运动物体的某些量,如相位差。
二、实验原理受迫振动是指物体在外部周期性力的作用下发生的振动。
这种周期性力称为策动力。
在稳定状态下,受迫振动的振幅与策动力的频率、原振动系统的固有频率以及阻尼系数有关。
当策动力频率与系统的固有频率相同时,系统产生共振,振幅达到最大值。
实验中,我们采用摆轮在弹性力矩作用下自由摆动,并在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性。
摆轮受到周期性策动力矩 \( M_0 \cos(\omega t) \) 的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为 \( -b\omega^2 x \)),其运动方程为:\[ m \frac{d^2 x}{dt^2} + b \omega^2 x = M_0 \cos(\omega t) \]其中,\( m \) 为摆轮质量,\( x \) 为摆轮位移,\( \omega \) 为策动力频率,\( b \) 为阻尼系数。
三、实验仪器与设备1. 波尔共振仪2. 频闪仪3. 秒表4. 数据采集系统5. 计算机四、实验步骤1. 将波尔共振仪安装好,调整摆轮至平衡位置。
2. 打开数据采集系统,记录摆轮在无外力作用下的自由振动数据。
3. 逐步增加策动力矩,观察并记录摆轮的振幅、频率和相位差。
4. 改变阻尼力矩,重复步骤3,观察并记录不同阻尼力矩下的振幅、频率和相位差。
5. 使用频闪仪测定摆轮在不同频率下的相位差。
五、实验结果与分析1. 幅频特性通过实验数据,我们可以绘制出受迫振动的幅频曲线。
从曲线可以看出,随着策动力频率的增加,振幅先增大后减小,在策动力频率等于系统固有频率时,振幅达到最大值,即发生共振。
受迫振动与共振实验报告受迫振动与共振实验报告引言:振动是自然界中普遍存在的一种现象,它在物理学、工程学等领域中具有广泛的应用。
受迫振动是一种特殊的振动现象,它在外界作用下被迫以某种频率振动。
共振则是指当外界频率与振动系统的固有频率相等时,振动幅度达到最大值的现象。
本次实验旨在通过受迫振动与共振的研究,深入了解振动现象的特性和应用。
实验目的:1. 通过实验观察和测量受迫振动的特性;2. 研究共振现象的产生条件及其应用。
实验装置与方法:本次实验采用了一根长而细的弹簧,一台频率可调的振荡器和一块质量较小的振子。
实验步骤如下:1. 将弹簧固定在支架上,挂上振子;2. 将振荡器与弹簧相连,调节振荡器频率为可调范围内的任意值;3. 激发振荡器,观察振子的振动情况,并记录振动幅度和频率。
实验结果与分析:在实验过程中,我们发现振子的振幅随着外界频率的变化而发生变化。
当外界频率与振子的固有频率相同时,振幅达到最大值,即发生共振现象。
此时,振子受到的外力与其固有振动频率完全同步,使得振子的振幅不断增大。
通过实验数据的记录和分析,我们得出以下结论:1. 受迫振动的振幅与外界频率之间存在一定的关系,当外界频率接近振子的固有频率时,振幅达到最大值;2. 共振现象的产生与振子的固有频率密切相关,只有当外界频率与振子的固有频率相等时,共振现象才会发生;3. 共振现象在实际生活中有着广泛的应用,如音乐乐器的共鸣、桥梁的共振等。
实验的局限性与改进:本次实验中,我们只观察了振子的振幅变化,而未对其相位进行测量。
进一步的实验可以通过引入相位测量装置,来研究振子的相位变化规律。
此外,由于实验条件的限制,我们只能在有限的频率范围内进行观察,进一步的实验可以扩大频率范围,以获得更全面的数据。
结论:通过本次实验,我们深入了解了受迫振动与共振现象的特性和应用。
受迫振动是一种外界强迫下的振动现象,而共振则是在外界频率与振动系统固有频率相等时,振幅达到最大值的现象。