2009年济宁市中考数学试题及答案(word版)
- 格式:doc
- 大小:596.26 KB
- 文档页数:8
绝密级 试卷类型A济宁市二〇〇九年高中阶段学校招生考试物 理 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共7页。
第Ⅰ卷3页为选择题,20分;第Ⅱ卷4页为非选择题,40分;共60分。
物理、化学、生物三科考试时间共150分钟。
2. 物理、化学、生物三科第Ⅰ卷答在同一张答题卡上。
物理为1-10题,化学为11-20题,生物为21-35题。
3.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。
第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案。
4.答第Ⅱ卷前,务必将密封线内的项目填写清楚,并将座号填写在第5页右侧。
答第Ⅱ卷时,用钢笔或圆珠笔直接答在试卷上。
考试结束,试题和答题卡一并收回。
第I卷(选择题 共20分)选择题(每小题2分,共20分。
每小题的四个选项中,只有一个选项是符合题目要求的。
) 1.图1所示的工具中,属于费力杠杆的是2.水电站用拦河坝提高上游水位,被提高了水位的水流下来时,冲击水轮机的叶轮,带动发电机发电.在这个过程中,能量的转化顺序正确的是A .势能、 动能、 电能B .动能、 势能、 电能C .内能、 电能、 动能D . 动能、 电能、 势能A. 钢丝钳B. 起子 C 羊角锤. D.镊子图13. 水是一种重要资源,人类的生存及工农业生产与水息息相关。
以下与水有关的说法中不正确...的是 A .水在任何温度下都能汽化B .水结冰时要吸收热量C .水的比热容比沙石、干泥土的比热容大得多,这是沿海地区昼夜温差较小的主要原因D .随着社会的发展和人口的增长水资源已出现严重危机,我们一定要节约用水 4.为了探究声音的响度与振幅的关系,小明设计了如图2所示的几个实验。
你认为能够完成这个探究目的的是5.下列说法中错误的...是 A 、用久了的电灯灯丝变细是升华现象 B 、秋天的早晨,大雾逐渐散去是液化现象C 、被水蒸气烫伤比沸水烫伤更严重是因为水蒸气液化时要放出热量D 、人出汗后,微风吹过感到凉爽,是因为汗液蒸发加快,带走更多的热量 6.物理小组制作的潜水艇模型如图4所示。
一、选择题(共12小题,每小题3分,满分36分)1、(2010•福州)2的倒数是( )A 、12B 、﹣12C 、2D 、﹣2考点:倒数。
分析:根据倒数的概念求解.解答:解:2的倒数是12.故选A .点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2009•济宁)如图,△ABC 中,∠A=70°,∠B=60°,点D 在BC 的延长线上,则∠ACD 等于( )A 、100°B 、120°C 、130°D 、150°考点:三角形的外角性质。
分析:∵△ABC 中,∠A=70°,∠B=60°,∴∠ACD=∠A+∠B=70°+60°=130°.解答:解:∵∠ACD 是△ABC 的一个外角,∴∠ACD=∠A+∠B ,∵∠A=70°,∠B=60°,∴∠ACD=70°+60°=130°.故选C .点评:本题考查的是三角形内角与外角的关系,三角形的外角等于与它不相邻的两个内角的和.3、(2009•济宁)下列运算中,正确的是( )A 、√9=±3B 、(a 2)3=a 6C 、3a•2a=6aD 、3﹣2=﹣9考点:负整数指数幂;算术平方根;幂的乘方与积的乘方;单项式乘单项式。
专题:计算题。
分析:分别根据算术平方根、幂的乘方、单项式的乘法、负整数指数幂的运算法则进行计算. 解答:解:A 、√9=3;B 、正确;C 、3a•2a=6a 2;D 、3﹣2=19.故选B .点评:正确理解负整数指数次幂的含义,幂的乘方,积的乘方的运算法则是解答此题的关键.4、(2009•济宁)山东省地矿部门经过地面磁测,估算济宁磁异常铁矿的内蕴经济资源量为10 800 000 000吨.这个数据用科学记数法表示为()A、108×108吨B、10.8×109吨C、1.08×1010吨D、1.08×1011吨考点:科学记数法—表示较大的数;估算无理数的大小。
2009年山东省烟台市中考数学试卷一、选择题(每小题4分,共计48分) 1.的相反数是( )A .B .C .D . 2.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似3.学完分式运算后,老师出了一道题“化简:” 小明的做法是:原式; 小亮的做法是:原式; 小芳的做法是:原式. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设是方程的两个实数根,则的值为( ) A .2006 B .2007 C .2008 D .20095.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( ) A .6 B .8 C .12 D .246.如图,数轴上两点表示的数分别为B 关于点A的对称点为C ,则点C 所表示的数为() A .B .C .D .7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩8.如图,直线经过点和点, 直线过点A ,则不等式的解集为( ) A .B .C .D .9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A .2种 B .3种 C .4种 D .5种10.如图,等边的边长为3,为上一点,且,为上一点,若,则的长为( )A .B .C .D .11.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( ) A .73cm B .74cm C .75cm D .76cm二、填空题(本题共6个小题,每小题4分,满分24分) 13.若与的和是单项式,则 .14.设,,则的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .|3|-33-1313-23224x xx x +-++-222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++a b ,220090x x +-=22a a b ++A B ,1-2-1-2-1y kx b =+(12)A --,(20)B -,2y x =20x kx b <+<2x <-21x -<<-20x -<<10x -<<ABC △P BC 1BP =D AC 60APD ∠=°CD 322312342y ax bx c =++24y bx b ac =+-a b cy x++=523m x y +3n x y m n =0a b >>2260a b ab +-=a bb a+-16.如果不等式组的解集是,那么的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,与中,交于.给出下列结论: ①;②;③;④. 其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分) 19.(620.(8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.(8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为,底部B 点的俯角为,小华在五楼找到一点D ,利用三角板测得A 点的俯角为(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1).2223xa xb ⎧+⎪⎨⎪-<⎩≥01x <≤a b +ABC △AEF △AB AE BC EF B E AB ==∠=∠,,,EF D AFC C ∠=∠DF CF =ADE FDB △∽△BFD CAF ∠=∠02)++a 30°45°60°173.=(第20题图)27 (第21题图)DCA②①(第22题图)23.(10分) 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(10分) 如图,AB,BC分别是的直径和弦,点D为上一点,弦DE交于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且,连接,交于点M,连接.求证:(1);(2).O⊙BC O⊙HC HG=BH O⊙MD ME,DE AB⊥HMD MHE MEH∠=∠+∠BA(第24题图)25.(14分) 如图,直角梯形ABCD 中,,,且,过点D 作,交的平分线于点E ,连接BE . (1)求证:;(2)将绕点C ,顺时针旋转得到,连接EG..求证:CD 垂直平分EG .(3)延长BE 交CD 于点P .求证:P 是CD 的中点.26.(14分)如图,抛物线与轴交于两点,与轴交于C 点,且经过点,对称轴是直线,顶点是.(1) 求抛物线对应的函数表达式;(2) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3) 设直线与y 轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;(4) 当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).BC AD ∥90BCD ∠=°2tan 2CD AD ABC =∠=,AB DE ∥BCD ∠BC CD =BCE △90°DCG △23y ax bx =+-x A B ,y (23)a -,1x =M C,M x N P P A C N ,,,P 3y x =-+D BD E B D ,A B E ,,BC F AEF △E 3y x =-+A DGE C B (第25题图)2009年山东省烟台市中考数学试卷答案13.14.15.16.1 17.20 18.①,③,④19.(6分).··············································································· 2分.····················································································· 4分··································································································································· 6分20.(8分)解:(1)·············································································································· 1分(2) ········································································································································ 3分(3)根据题意,画树状图: ····································································································· 6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,(4的倍数). ························································································· 8分···························· 6分由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,(4的倍数). ····································································································· 8分21.(8分)解:(1).··············································· 1分初一学生总数:(人). ··············································································· 2分(2)活动时间为5天的学生数:(人).活动时间为7天的学生数:(人). ······························································ 3分频数分布直方图(如图)·························· 4分(3)活动时间为4天的扇形所对的圆心角是. ·································· 5分(4)众数是4天,中位数是4天. ························································································· 7分(5)该市活动时间不少于4天的人数约是(人). ······························································· 8分22.(8分)解:过点作于.,.. ································· 3分在中,,····················· 4分················· 5分在中,, ···································································· 6分(米).所以,雕塑的高度约为6.8米. ························································································ 8分23.(10分)解:(1)根据题意,得,即. ································································································· 2分(2)由题意,得.整理,得.·························································································· 4分4172)+(11|1=+++111=-+1=1213P41164==P41164==1(10%15%30%15%5%)25%a=-++++=2010%200÷=20025%50⨯=2005%10⨯=36030%108⨯=°°6000(30%25%15%5%)4500⨯+++=C CE AB⊥E906030903060D ACD∠=-︒=∠=-=°°,°°°90CAD∴∠=°11052CD AC CD=∴==,Rt ACE△5sin5sin302AE AC ACE=∠==°5cos5cos3032CE AC ACE=∠==°Rt BCE△545tan4532BCE BE CE∠=∴==°,°551) 6.822AB AE BE∴=+=≈AB(24002000)8450xy x⎛⎫=--+⨯⎪⎝⎭2224320025y x x=-++22243200480025x x-++=2300200000x x-+=1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始(第21题图)DBA(第22题图)C解这个方程,得. ···················································································· 5分 要使百姓得到实惠,取.所以,每台冰箱应降价200元. ···································· 6分 (3)对于, 当时, ·································································································· 8分.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. ············ 10分 24.(10分)(1)证明:连接,. ································ 1分 切于点,, ············· 2分 , ·················································· 3分 ,. ···························· 4分 ,即. ···································· 5分 (2)连接.由(1)知. 是的直径,.6分. ················································································································ 7分四边形内接于,. ······················································· 8分 .是的外角,. ····································· 9分 . ························································································· 10分25.(14分) 证明:(1)延长交于. ,,. ···································· 1分 在中,,,即. ,. ···························· 3分,即. ···························································································································· 4分 (2)平分,.由(1)知,,. ···················· 6分由图形旋转的性质知. ················································ 8分都在的垂直平分线上,垂直平分. ·············································· 9分 (3)连接.由(2)知,. ... ········································································ 11分,.由(1)知.,. ···································· 12分 又,,. ··················································· 13分,.是的中点. ····················································· 14分28.(14分)解:(1)根据题意,得 ·················· 2分解得抛物线对应的函数表达式为. ········· 3分 (2)存在.在中,令,得. 令,得,.,,.又,顶点. ················································································ 5分 容易求得直线的表达式是. 在中,令,得.,. ········································································································ 6分 在中,令,得..,四边形为平行四边形,此时. ··································· 8分 (3)是等腰直角三角形.理由:在中,令,得,令,得.直线与坐标轴的交点是,. ,. ··························································································· 9分又点,.. ······················································· 10分 由图知,. ·············································· 11分,且.是等腰直角三角形. ··································· 12分 (4)当点是直线上任意一点时,(3)中的结论成立. 14分12100200x x ==,200x =2224320025y x x =-++241502225x =-=⎛⎫⨯- ⎪⎝⎭150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值OC HC HG HCG HGC =∴∠=∠,HC O ⊙C 190HCG ∴∠+∠=°12OB OC =∴∠=∠,3HGC ∠=∠2390∴∠+∠=°90BFG ∴∠=°DE AB ⊥BE DE AB ⊥AB O ⊙∴BD BE =BED BME ∴∠=∠BMDE O ⊙HMD BED ∴∠=∠HMD BME ∴∠=∠BME ∠HEM △BME MHE MEH ∴∠=∠+∠HMD MHE MEH ∴∠=∠+∠DE BC F AD BC ∥AB DF ∥AD BF ABC DFC ∴=∠=∠,Rt DCF △tan tan 2DFC ABC ∠=∠=2CDCF ∴=2CD CF =22CD AD BF ==BF CF ∴=1122BC BF CF CD CD CD ∴=+=+=BC CD =CE BCD ∠∴BCE DCE ∠=∠BC CD CE CE ==,BCE DCE ∴△≌△BE DE ∴=CE CG BE DG DE DG ==∴=,,C D ∴,EG CD ∴EG BD BE DE =12∴∠=∠AB DE ∥32∴∠=∠13∴∠=∠AD BC ∥4DBC ∴∠=∠BC CD =DBC BDC ∴∠=∠4BDP ∴∠=∠BD BD =BAD BPD ∴△≌△DP AD ∴=12AD CD =12DP CD ∴=P ∴CD 34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,12.a b =⎧⎨=-⎩,∴223y x x =--223y x x =--0x =3y =-0y =2230x x --=1213x x ∴=-=,(10)A ∴-,(30)B ,(03)C -,2(1)4y x =--∴(14)M -,CM 3y x =--3y x =--0y =3x =-(30)N ∴-,2AN ∴=223y x x =--3y =-1202x x ==,2CP AN CP ∴=∴=,AN CP ∥∴ANCP (23)P -,AEF △3y x =-+0x =3y =0y =3x =∴3y x =-+(03)D ,(30)B ,OD OB ∴=45OBD ∴∠=°(03)C -,OB OC ∴=45OBC ∴∠=°45AEF ABF ∠=∠=°45AFE ABE ∠=∠=°90EAF ∴∠=°AE AF =AEF ∴△E 3y x =-+A D GEC B (第25题图)F P(第24题图)(第26题图)。
济宁市二○○九年高中阶段学校招生考试数 学 试 卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,36分,第Ⅱ卷8页为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在第8页右侧,用钢笔或圆珠笔直接答在试卷上.考试结束,试题和答题卡一并收回.第Ⅰ卷(选择题 共36分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共36分)1. 2的倒数是 A. 12 B. -12C. 2D.-2 2. 如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长 线上, 则∠ACD 等于 A. 100° B. 120° C. 130° D. 150° 3.下列运算中,正确的是A . 39±=B . ()a a 236=C . a a a 623=⋅D . 362-=-4. 山东省地矿部门经过地面磁测,估算济宁磁异常铁矿的内蕴经济资源量为10 800 000 000吨. 这个数据用科学记数法表示为A. 108×10 8吨B. 10 .8×10 9吨C. 1 .08×10 10吨D. 1 .08×10 11吨5. 下列图形中,既是轴对称图形又是中心对称图形的是( )(第5题)6. 在函数31-=x y 中,自变量x 的取值范围是 A 、x ≠0 B 、x >3 C 、x ≠ -3 D 、x ≠37. 如图,在长为8 cm 、宽为4 cm A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 28. 已知aA. aB. a -C. - 1D. 0(第2题) ABC D (第7题)9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)剪去上面的小直角三角形.将留下的纸片展开,得到的图形是10.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A.12B.14C.15D.11011. 一个几何体的三视图如右图所示,那么这个几何体的侧面积是A. 4πB.6πC. 8πD. 12π12. 小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a b c-+>. 你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个(第10题)(第12题)A B C D(第9题)(第11题)济宁市二○○九年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)二、填空题:13. 分解因式:2ax a -= .14. 已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 .15. 在等腰梯形ABCD 中,AD ∥BC , AD =3cm, AB =4cm, ∠B =60°, 则下底BC 的长为 cm .16. 如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心 B 都在反比例函数1y x =的图象上,则图中阴影部分的 面积等于 . 17. 请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为 只、树为 棵.18.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .三、解答题:19.(6分)计算:(π-1)°+11()2-+275--23.20.(6分)解方程:xx x -=+--23123.21.(8分)(第16题)(第18题)第1个第2个第3个作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(222.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为 1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(第22题) A B C D M N α β 图1图2 P MN甲品牌乙品牌(第21题)(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? .23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.24.(9分)如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ).(1)当t 为何值时,⊙P 与AB 相切;(2)作P D A C ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s =时,四边形PDBE 为平行四边形.25.(9分)x(第23题) (第24题) 图1 图2某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?26. (12分)在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N(如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数; (3)设M B N ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.数学试题参考答案及评分标准一、选择题13.(1)(1)a x x +- 14.外离 15.7 16.π 17. 20,5 18.121三、解答题19.解:原式=1+2+(27-5)-23………………………………………4分=3+33-5-23…………………………………5分=3-2. …………………………………6分20.解:方程两边同乘以(x -2),得 ……………………………………………1分x -3+(x -2)=-3. ………………………………………………………3分解得x =1. ……………….………………………………………………5分检验:x =1时,x -2≠0,所以1是原分式方程的解. .……………………6分(第26题)x21.解:(1)计算平均数、方差如下表:6分(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱. ………………………………………………8分22.解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-.∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+.∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .………………………………4分(2) ①测角仪、皮尺; ② 站在P 点看塔顶的仰角、自身的高度.(注:答案不唯一) ……………………………………8分23. 解:(1)设直线l 的函数表达式为y =k x +b .∵ 直线l 与直线y =—2x —1平行,∴ k =—2.∵ 直线l 过点(1,4),∴ —2+b =4,∴ b =6.∴ 直线l 的函数表达式为y =—2x +6. ………………………3分直线l 的图象如图. …………………………………………4分(2) ∵直线l 分别与y 轴、x 轴交于点A 、B ,∴点A 、B 的坐标分别为(0,6)、(3,0).∵l ∥m ,∴直线m 为y =—2x +t .∴C 点的坐标为(,0)2t . ∵ t >0,∴ 02t . ∴C 点在x 轴的正半轴上.当C 点在B 点的左侧时,13(3)69222t t S =⨯-⨯=-; x(第23题)当C 点在B 点的右侧时, 13(3)69222t t S =⨯-⨯=-. ∴△ABC 的面积S 关于t 的函数表达式为39(06),239(6).2t t S t t ⎧-⎪⎪=⎨⎪-⎪⎩…………………………8分 24.(1)解:当⊙P 在移动中与AB 相切时,设切点为M ,连PM ,则090AMP ∠=.∴APM ∆∽ABC ∆.∴AP PM AB BC =. ∵AP t =,5AB ==, ∴153t =.∴53t =.………………………………………………4分 (2)证明:∵BC AC ⊥,PD AC ⊥,∴BC ∥DP . 当165t s =时,165AP =. ∴164455PC =-=.∴35EC ===. ∴312355BE BC EC =-=-=. ∵ADP ∆∽ABC ∆,∴PD AP BC AC =.∴16534PD =, ∴125PD =.∴PD BE =. ∴当165t s =时,四边形PDBE 为平行四边形. ……………9分 25.解:(1) (130-100)×80=2400(元);…………………………………4分(2)设应将售价定为x 元,则销售利润 130(100)(8020)5x y x -=-+⨯……………………………………6分 24100060000x x =-+-24(125)2500x =--+.……………………………………………8分当125x =时,y 有最大值2500.∴应将售价定为125元,最大销售利润是2500元. ……………9分26.(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045. ∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒.∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.又∵OA OC =,OAM OCN ∠=∠,∴OAM OCN ∆≅∆.∴AOM CON ∠=∠.∴1(90452AOM ∠=︒-︒)=22.5︒. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45︒-22.5︒=22.5︒.……………………………………………8分(3)答:p 值无变化.证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠, 000904545CON AOM AOM ∠=--∠=-∠,∴AOE CON ∠=∠.又∵OA OC =,0001809090OAE OCN ∠=-==∠.∴OAE OCN ∆≅∆.∴,OE ON AE CN ==.又∵045MOE MON ∠=∠=,OM OM =,∴OME OMN ∆≅∆.∴MN ME AM AE ==+.∴MN AM CN =+,∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=.∴在旋转正方形OABC 的过程中,p 值无变化. ……………12分(第26题)x卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。
2009年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.如果将收入500元记作500元,那么支出237元记作__________元.2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则EF =__________.3.分解因式:x 2-4=____________________.4.化简:823+=__________.5.二元一次方程组⎩⎨⎧=-=+2332y x y x 的解是__________.6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,则∠ACE =__________°.9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和-3,则m =__________. 10.请写出一个对任意实数都有意义.........的分式.你所写的分式是_____________.(第8题图)A C E DB二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.11.下列图形中,不是..正方体表面展开图的是(第11题图)D C BA12.如图,在⊙O 中,∠BOC =100°,则∠A 等于A .100°B .50°C .40°D .25°13.已知一个多边形的内角和是900°,则这个多边形是A .五边形B .六边形C .七边形D .八边形14.已知下列运算:①()4222y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有A .①②③④B .①②③C .①②④D .①② 15.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积是A .25πB .50πC .100πD .200π17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分的面积是A .4πB .2πC .πD .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121B .61C .41D . 31 B (第17题图)(第12题图)。
☆绝密级 试卷类型A2011年山东济宁市高中阶段学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,30分;第Ⅱ卷8页为非选择题,70分;共100分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上. 每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在第8页右侧,用钢笔或圆珠笔直接答在试卷上.考试结束,试题和答题卡一并收回.第I卷(选择题 共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共30分) 1. 4的算术平方根是A . 2B . -2C . ±2D . 162. 据统计部门报告,我市去年国民生产总值为238 770 000 000元, 那么这个数据用科学记数法表示为A . 2. 3877×10 12元B . 2. 3877×10 11元C . 2 3877×10 7元D . 2387. 7×10 8元3.若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是 A . 直角三角形 B . 锐角三角形 C . 钝角三角形 D . 等边三角形 4.把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y -5.已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm6.若0)3(12=++-+y y x ,则y x -的值为A .1B .-1C .7D .-77.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是8.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是A . 3个B . 4个C . 5个D . 6个9.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB .C .8cmD .cm10. 在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目的地C ,此时小霞在营地A 的 A . 北偏东20︒方向上 B . 北偏东30︒方向上 C . 北偏东40︒方向上 D . 北偏西30︒方向上∙∙ ABCDx(第7题)(第8题)C北(第9题)剪去☆绝密级 试卷类型A济宁市二○一一年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共15分;只要求填写最后结果)11.在函数y =, 自变量x 的取值范围是 .12.若代数式26x x b -+可化为2()1x a --,则b a -的值是 .13. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .14.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .15.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤) 16.(5分)04sin 45(3)4︒+-π+-A(第15题)17.(5分)上海世博会自2010年5月1日到10月31日,历时184天.预测参观人数达7000万人次.如图是此次盛会在5月中旬入园人数的统计情况. (1)请根据统计图完成下表.(2)推算世博会期间参观总人数与预测人数相差多少? 18.(6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .19.(6分)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .(1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由. 20.(7分)ABCEFD(第19题)。
2009年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分) 1.3-的相反数是( )A .3B .3-C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( )A .30︒B .60︒C .120︒D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米 6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .6 7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、308.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )A B C D9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )A .230cmB .230cm πC .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( ) A .()53--, B .()53, C .()53-,D .()53-,二、填空题(本大题共5个小题,每小题3分,共15分) 13.分解因式:29x -= .14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球则该队主力队员身高的方差是 厘米17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73≈) 三、解答题(本大题共7个小题,共57分) 18.(7分)(1)计算:()()2121x x ++- (2)解分式方程:2131x x =--. 19.(7分)(1)已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数.20.(8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余.下.的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)1- 2- 3-正面背面21.(8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?22.(9分)已知:如图,正比例函数y ax=的图象与反比例函数kyx=的图象交于点()32A,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)()M m n,是反比例函数图象上的一动点,其中03m<<,过点M作直线MN x∥轴,交y轴于点B;过点A作直线AC y∥轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(第22题图)23.(9分)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.24.(9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.CB (第23题图) (第24题图)2009年山东省济南市中考数学试卷答案13. ()()33x x +- 14.3 15.216.2 17.62.1 18.(1)解:()()2121x x ++-=22122x x x +++- ································································································· 2分 =23x + ························································································································ 3分(2)解:去分母得:()213x x -=- ················································································· 1分 解得1x =- ············································································································· 2分检验1x =-是原方程的解 ····················································································· 3分 所以,原方程的解为1x =- ················································································· 4分 19.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ··························································································· 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ························································································· 2分 ∴AE CF = ········································································································ 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ··································································································· 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ··········································· 2分 ∵AC 是O 的切线∴90CAO =︒∠ ··································································································· 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ························ 4分20.解:(1)k 为负数的概率是23··························································································· 3分 (2)画树状图············································································ 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ······························································································· 6分所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ···································· 8分 21.解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ············ 1分由题意得20018001801700x y x y +=⎧⎨+=⎩······························································································ 3分解这个方程组得8005x y =⎧⎨=⎩ ································································································· 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.·································· 5分 (2)设该公司职工丙六月份生产z 件产品·············································································· 6分 由题意得80052000z +≥ ······························································································ 7分解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ··········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ·········································································································· 2分 ∴反比例函数的表达式为:6y x = ············································································ 3分正比例函数的表达式为23y x = ············································································· 4分(2)观察图象,得在第一象限内, 当03x <<时,反比例函数的值大 于正比例函数的值.(3)BM DM = ······················································································································ 7分理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB = ∵3OC = ∴4OB = ····················································································································· 8分 即4n =∴632m n ==∴3333222MB MD ==-=, ∴MB MD = ··············································································································· 9分23.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ·········································································································· 1分在Rt ABK △中,sin 4542AK AB =︒==.2 3 1 32 11- 2-3开始第一次 第二次2cos 454242BK AB =︒== ············································································· 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ······································································ 3 (2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ······································································································ 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·············································································································· 5分 即10257t t -=解得,5017t = ······················································································ 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t =······················································································································· 7分 ②当MN NC =时,如图④,过N 作NE MC ⊥于E由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC t c NC t -==又在Rt DHC △中,3cos 5CH c CD == ∴535t t -=解得258t = ······························································································ 8分 132cos 1025tFC C MC t ===-解得6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形····················· 9分24.解:(1)由题意得129302b a a bc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ···················································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ········································· 3分(2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+ 则302k b b -+=⎧⎨=-⎩,······························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.··········································································· 5分 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭, ························································································· 6分 (3)S 存在最大值 ····································································································· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ········································································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ······································································ 9分(第23题图⑤)A DC B H N MF (第24题图)。
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
济宁市二○一五年高中段学校招生考试
一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共36分)
1. 2的倒数是( )A. 12 B. -1
2
C. 2
D.-2
2. 如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,
则∠ACD 等于( )
A. 100°
B. 120°
C. 130°
D. 150° 3.下列运算中,正确的是( )
A . 39±=
B . ()a a 236=
C . a a a 623=⋅
D . 362
-=- 4. 山东省地矿部门经过地面磁测,估算济宁磁异常铁矿的内蕴经济资源量为10 800 000 000吨. 这个数据用科学记数法表示为( )
A. 108×10 8吨
B. 10 .8×10 9吨
C. 1 .08×10 10吨
D. 1 .08×10 11吨
5. 下列图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
6. 在函数3
1
-=x y 中,自变量x 的取值范围是( )
A 、x ≠0
B 、x >3
C 、x ≠ -3
D 、x ≠3
7. 如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )
A. 2 cm 2
B. 4 cm 2
C.8 cm 2
D. 16 cm 2 8. 已知a 为实数,
( ) A. a B. a - C. - 1 D. 0
9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)剪去上面的小直角三角形.将留下的纸片展开,得到的图形是( )
10.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板
(第2题) A B D
(第7
题)
A B C
D
(第9题)
上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )A.
12 B. 14 C. 15 D. 1
10
11. 一个几何体的三视图如右图所示,那么这个几何体的侧面积是( ) A. 4π B.6π C. 8π D. 12π
12. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有( )
A .2个
B .3个
C .4个
D .5个
第Ⅱ卷(非选择题 共84分) 二、填空题:
13. 分解因式:2ax a -= .
(删除)14. 已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 .
(删除)15. 在等腰梯形ABCD 中,AD ∥BC , AD =3cm, AB =4cm, ∠B =60°, 则下底BC 的长为 cm .
16. 如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1
y x
=
的图象上,则图中阴影部分的面积等于 .
17. 请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为 只、树为 棵.
18.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .
(第16题)
(第
18
第1个第2个第3个(第10题)
(第12题)
(第11题)
三、解答题:
19.(6分)计算:(π-1)°+11
()2
-+275--23.
20.(6分)解方程:x
x x -=+--23
123. 21.(8分)作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量
如下图: (1)完成下表:
(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.
乙品牌
(第21题)
(第22题) A B C D M N α β 图1
图2 P M N 22.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.
(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在
塔前的平地上选择一点A ,用测角仪测出看塔
顶()M 的仰角35α= ,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β= ,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈ ,结果保留整数).
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题: ①在你设计的测量方案中,选用的测量工具是: ;
②要计算出塔的高,你还需要测量哪些数据?
.
23.(8分)
阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象
所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且
12b b ≠,我们就称直线1l 与直线2l 互相平行. 解答下面的问题:
(1)求过点(1,4)P 且与已知直线21y x =--平行的
直线l 的函数表达式,并画出直线l 的图象;
(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如
果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式
.
x
24.(9分) 如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ).
(1)当t 为何值时,⊙P 与AB 相切;
(2)作P D A C ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当16
5
t s
=时,四边形PDBE 为平行四边形.
25.(9分)某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)求商家降价前每星期的销售利润为多少元?
A
A
图1 图2
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
26. (12分)
在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).
(1)求边OA 在旋转过程中所扫过的面积;
(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;
(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.
(第26题)
x
三、解答题。