七年级数学下册第11周周测
- 格式:doc
- 大小:146.00 KB
- 文档页数:2
一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 下列等式中,正确的是()A. -5 + 3 = -2B. -5 + 3 = 2C. -5 - 3 = -2D. -5 - 3 = 23. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 04. 下列代数式中,同类项的是()A. 3x^2B. 2xyC. 4x^2yD. 5x^2 + 2xy5. 已知a、b、c是等差数列,且a + b + c = 9,则a + c的值为()A. 3B. 6C. 9D. 126. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x - 1C. y = 3x^2 - 2x + 1D. y = 4x - 37. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 梯形D. 圆形8. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB的长度为()A. 5cmB. 6cmC. 7cmD. 8cm9. 下列方程中,有唯一解的是()A. 2x + 3 = 5B. 3x - 2 = 7C. 2x^2 - 5x + 3 = 0D. 3x^2 - 2x + 1 = 010. 下列数中,是质数的是()A. 15B. 16C. 17D. 18二、填空题(每题5分,共50分)11. 计算:-3 + (-2) = _______12. 等差数列{an}中,首项a1 = 2,公差d = 3,则第10项a10 = _______13. 已知二次函数y = -x^2 + 2x - 1,其顶点坐标为(_______,_______)。
14. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为(_______,_______)。
2 勤学早七年级数学(上)第1章《有理数》周测(二)(测试范围:1.3有理数的加减法 解答参考时间90分钟 满分120分)一、选择题(每小题3分,共30分)1. 温度从-2°C 上升5°C 后是( C )A . 1°CB . -1°C C . 3°CD . 5°C2. —辆汽车从车站出发向东行驶20千米,然后向西行驶50千米,此时汽车的位置是( B )A .车站的东边70千米处B .车站的西边30千米处C .车站的西边70千米处D .车站的东边30千米处3. 将-6—(+3)—(-7)+(—2)中的减法改成加法,并写成省略加号的和的形式是( A )A .—6-3+7—2B .6—3—7—2C .6—3+7-2D .6+3—7-24.计算-3—|—6|的结果为( A )A .—9B .-3C .3D .95.数轴上点A 表示-4,点B 表示-2,则表示A ,B 两点间的距离的算式是( B )A .-4+2B .—2—(―4)C .2-(-4)D .2-46. 如图,数轴上-动点A 向左移动1个单位 长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( C )A .7B .3C .-3D -37.若|a |=5,b =—2,且a <b ,则a +b 的值是( B )A .7B .-7C .3D .-38.x <0,y >0时,则 x ,x +y ,x —y ,y 中最大的是( D )A .xB .x —yC .x +yD .y9.如图,数轴上标出若干个点,每相邻两个点的距离为1个单位长度,点E ,F ,M ,N 对应的数分别为a ,b ,c ,d ,且d —2a =8,那么数轴的原点是( B )A . E 点B .F 点C .M 点D .N 点10.若a ,b ,c 三个数在数轴上对应点的位置如图所示,下列几个判断;①a <c <b ;②-a <b ;③a +b >0;④c -a <0中,错误的个数是( D )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一种机器零件,图纸标明是0.010.0140φ+-,合格品的最大直径与最小直径的差是 0.02 .12.某市某天上午的气温是3°C ,中午上升了5°C ,下午由于冷空气南下,到夜间又下降l 0°C ,则夜间这时的气温是 -2 °C .13.已知a 是-3的相反数与-12的绝对值的差是比-7大5的数,c 是比4小8的数,则a +b —c = -7.14. 若a ,b 互为相反数,m 的绝对值为3,则a b m a b m+-++的值是 -3或3 .15. 符号“f”表示一种运算,它对一些数的运算规律如下;(1)f(—1)=0,f(—2)=—1,f(—3)=—2,f(—4)=—3,…;(2)f(12)=2,f(13)=3,f(14)二4,f(15)=5,….利用以上规律计算f(12008)+f(—2018)= 1 .16. 计算:1—2+3—4+…+2017—2018+2019= 1010 .三、解答题(共8题,共72分)17.(8分)计算:⑴15-―(―0.8); (2)(+8.37)+(—2.37).解:(1)0.6;(2)6.18.(8分)用适当的方法计算:(1)-6+2—3—(-7);⑵11131 (1)1(2)(3)(1)24244 --+-----解:⑴0;(2)14 -.19.(8分)一辆出租车在东西方向的马路上行驶,从起点开始向东行驶记为正,司机记录他一天的行程如下:(单位:千米)—9,—8,9,-2,9,8,8,-8,29,-36,50,-24.(1)这一天出租车最后停在离起点多远地方?(2)若每100千米耗油11升,出租车这一天用了多少升油?解:(1)—9+(—8)+9+(—2)+9+8+8+(—8)+29+(—36)+50+(—24 )=26,∴这一天出租车最后停在出发地东26千米的地方;(2)[|—9|+|—8|+|9|+|—2|+|9|+|8|+|8|+|—8|+|29|+|—36|+|50|+|—24|]÷100×11=22(升),∴这一天出租车用油22升.20.(8分)小明在电脑中设置了一个有理数的运算程序:输人数a,加*键,再输入数b,就可以得到运算;a*b=(a-b)-|b-a|.(1) 求(-5)*3的值;(2) 求(3*4)*(—6)的值.解;⑴—16;(2)0.21.(8分)(1)若|a|=2,b=—3,c是最大的负整数,求a+b—c的值;(2)已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a—b的值.解:⑴—4;(2)±2.22.(10分)观察下列各式的特征:|7—6|=7—6;|6—7|=7—6;11111111||;||25255225-=--=-,根据规律,解决相关问题: (1)把下列各式写成去掉绝对值符号的形式(不要求写出计算结果);填空:①|3-4|= ; ②33||87-= ; (2)当a >b 时,|a —b |= ;当a <b 时,|a —b |= ;(3)有理数a 在数轴上的位置如图,则化简|a —2|+|a +2|的结果为 ;⑷计算:1111111|1|||||||2324320182017-+-+-++-K . 解;(1)①4-3;3378-; (2)a —b ;b —a ;(3)4; (4)20172018.23.(10分)若a ,b 是表示两个不同点A ,B 的有理数,且|a |=5,|b |=2,它们在数轴的位置如图所示.(1)试确定a ,b 的值;(2)求表示a ,b 两数的点的距离;(3)若点C 在数轴上,点C 到点A 的距离是点C 到点B 距离的3倍,则点C 表示的数为_____. 解:(l )a =—5,b =—2;(2)3; (3)11124--或.24.(12分)如下表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)填空;a = ,b = ,c = ,第2018个格子中的数为 ;⑵计算:|c -a |+|a -c |+|a -b |+|b -a |+|c -b |+|b -c |;(3)从第1个格子开始,前m 个格子中所填整数之和能为109吗?若能,求m 的值;若不能,请说明理由. 解:⑴8,4,1,8;(2)原式=48;(3)由(1)知每3格一循环,数分别为1,8,-4,和为5,∵20×5+1+8=109,∴m =20×3+2=62.。
人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。
广西钦州市第十一中学七年级数学2021年秋季学期第一次周测试卷(含答案)一、 选择题1. 如果水位下降3米记作3米,那么水位上升4米,记作( )A.1米B.7米C.4米D.7米2. 下列四个数中,是负数的是( )A.|2|B.(2) 2C.(2)D.|2|3. 向东行进50m 表示的意义是( )A.向东行进50mB.向南行进50mC.向北行进50mD.向西行进50m4. 某大米包装袋上标注着“净含量10kg ±150g ”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A.100gB.150gC.300gD.400g5. 在(41),1,0,|4|,(+3),+(1 21),|08|这几个有理数中,负数的个数是( )A.5个B.4个C.3个D.2个 6. 在(5),(5) 2 , |5|,(5) 2 中负数有( )A.0个B.1个C.2个D.3个7. 若向东走5m ,记为+5m ,则3m 表示为( )A.向东走3mB.向南走3mC.向西走3mD.向北走3m8. 下列算式中,运算结果为负数的是( )A.|(3)|B.3 2C.(3)D.(3) 29. 下列4个数中:(1) 2021 , |2|,π,3 2 , 其中正数的个数有( )个.A.1B.2C.3D.410. 在2,0.414,5,0,2.6, 31, 3.14中,负数的有( ) A.2个 B.3个 C.4个 D.5个11. 下列各式中,结果为正数的是( )A.|2|B.(2)C.2 2D. (2)×212. 飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( )A.8米B.+8米C.15米D.+15米二、 填空题13. 我国现采用国际通用的公历纪年法,如果我们把公元2021年记作+2021年,那么,处于公元前500年的春秋战国时期可表示为_______________ .14. 水位升高3米时水位变化记作+3米,水位下降5米时水位变化记作_______________ 米.15. 如果收入500元记作+500元,那么支出200元应记作_______________ 元.16. 如果将“收入50元”记作“+50元”,那么“20元”表示_______________三、解答题(2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?18. (3)+(4)(+11)(19)参考答案一、选择题1、C2、D3、D4、D5、A6、C7、C8、B9、C 10、B 11、B 12、C二、填空题13、500 14、5 15、200 16、支出20元三、解答题17、(1)130万 35万(2)+130万 35万(3)95万18、 1。
第一学期七年级数学周测卷(测试范围:1-3章)班级:_____ 姓名:_______一. 选择题(每题5分,共40分)1.已知正负数可以表示具有相反意义的量,如果将水位上升0.2米记作+0.2米,那么水位下降1.3米记作( )米.3.1.+A 3.1.-B 5.1.+C 1.1.-D2. 按四舍五入法,近似数9.620是精确到了A.十分位B.百分位C.千分位D.万分位3.用代数式表示“m 的平方与n 的5倍的差”,结果正确的是( )n m A 5.- 5.2-m B n m C 5.2- n m D 5.+4.2023年全国人口普查中,我国总人口数约达1410000000人。
将其用科学记数法表示为( )710141.⨯A 8104.1.⨯B 81041.1.⨯C 91041.1.⨯D5.下列各式计算正确的是( )1)3(2.-=---A 18)2.(3=÷-B3260.=-÷-)(C 16)54(20.-=-÷D 6.下列说法正确的是( )A.负数就是带负号的数B.12--m 一定表示负数C.绝对值相等的两个数互为相反数D.0是最小的正整数7.如图,在数轴上若点A 所表示的数等于-6,则点B 所表示数的相反数等于( )2.-A 2.B 4.C 6.D8.已知代数式y x 32-的值为-1,则式子564+-y x 的结果是( )4.-A 3.-B5.C 3.D二. 填空题(每题5分,共30分)9.在,10--,5)2(-),(6-+22-中,负数的个数是_____个.10.在数轴上,表示-3的点和5的点之间的距离是_____.11.七年级3班总人数为m 人,其中男生占总人数的五分之二,则女生的人数是________.12.比较大小:)53(_____43+---.(填>,<或=) 13.已知=-=++-y x y x 304)2(2,则________.14.观察下列各式:⋅⋅⋅======,7293,2433,813,273,93,33654321根据以上排列规律,203的个位上的数字是_______.三. 解答题(共4小题,共30分)15.(10分)计算)(91361063)1(2-⨯+-+- 2125101)2(36⨯-÷-+-)()(16.(8分)当12=-=y x ,时,求代数式12532-+-y xy x 的值.17.(6分)用代数式表示下列问题.(1)已知钢笔的单价为m 元,用100元买4支钢笔,应找回多少元?(2)妈妈的体重比小兰的2倍少15千克,若妈妈的体重为a 千克,则小兰的体重是多少千克?18.(6分)已知有理数m 和n.(1)用代数式表示“m 的平方与n 的平方的差”.(2)若0315<,且的倒数等于,n m n m --=,求(1)中代数式的值.答案一. 选择题1. B2.C3.C4.D5.C6.B7.B8.D二. 填空题9.410.811.m 53 12. <13.1014.1三.解答题15.计算944991361063)1(2-=-++-=-⨯+-+-)()( 54212125101)2(36-=--+=⨯-÷-+-)()()( 16. 当12=-=y x ,时,231210121121)2(5)2(32=-++=-⨯+⨯-⨯--⨯=原式17.m 41001-)( 1522-a )(18.(1)22n m -(2)当35-=-=n m ,时, 16925)3()5(22=-=---=原式。
一、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. √0答案:D解析:有理数包括整数和分数,而√0=0是一个整数,因此选D。
2. 如果a=3,那么下列等式中不正确的是()A. a²=9B. a³=27C. a⁴=81D. a⁵=243答案:C解析:将a=3代入各选项中,可得:A. 3²=9B. 3³=27C. 3⁴=81D. 3⁵=243显然,C选项中的81不正确,因此选C。
3. 下列各数中,无理数是()A. √4B. √2C. √-1D. √9答案:B解析:无理数是不能表示为两个整数比的实数。
√2是无理数,因为它不能表示为两个整数的比,而其他选项都可以表示为整数,因此选B。
4. 已知a+b=5,a-b=3,则a的值为()A. 4B. 2C. 3D. 1答案:A解析:将两个等式相加,得2a=8,因此a=4。
5. 下列图形中,中心对称图形是()A. 等腰三角形B. 矩形C. 等边三角形D. 正方形答案:B解析:中心对称图形是指存在一个点,使得图形上的任意一点关于这个点对称。
矩形具有这个性质,因此选B。
二、填空题(每题4分,共16分)6. 5的平方根是_________。
答案:±√5解析:5的平方根是一个无理数,它可以表示为±√5。
7. 如果x²=4,那么x的值为_________。
答案:±2解析:x²=4可以写成x²-4=0,即(x+2)(x-2)=0,因此x=±2。
8. 下列等式中,正确的是_________。
答案:2(x+3)=2x+6解析:将等式两边都乘以2,得2x+6=2x+6,因此等式成立。
9. 一个长方形的长是8cm,宽是4cm,它的周长是_________cm。
答案:24解析:长方形的周长计算公式为2(长+宽),代入长8cm和宽4cm,得周长为2(8+4)=24cm。
七年级数学下册第十一周周测试题
姓名 班级 考试号
一、精心选一选!一定能选对!(每小题4分,共28分)
1.下列方程是二元一次方程的是( ).
(A )21x += (B )222x y += (C )14y x += (D )103
x y += 2.方程组2021x y x y +=⎧⎨-=⎩
解的个数有( )个. (A )1 (B )2 (C )3 (D )4 3.若方程组01
ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,那么a 、b 的值是( ). (A )10a b ==,(B )112
a b ==,(C )10a b =-=,(D )00a b ==, 4.若m 、n 满足2|21|(2)0m n -++=,则mn 的值等于( ).
(A )-1 (B )1 (C )-2 (D )2
5. 下列说法中正确的是( ).
(A )二元一次方程325x y -=的解为有限个
(B )方程327x y +=的解x 、y 为自然数的有无数对
(C )方程组00x y x y -=⎧⎨+=⎩
的解为0 (D )方程组中各个方程的公共解叫做这个方程组的解
6. 方程组51x y x y +=⎧⎨-=⎩,的解是( )(A)14x y =⎧⎨=⎩
, (B)23x y =⎧⎨=⎩,(C)32x y =⎧⎨=⎩,(D)41x y =⎧⎨=⎩, 7. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程组中正确的是
( )
(A )6825075%x y x y +=⎧⎨=⎩(B )8625075%x y y x +=⎧⎨=⎩(C )8625075%x y x y +=⎧⎨=⎩(D )6825075%x y y x +=⎧⎨=⎩
二、耐心填一填!一定能填对!(每题4分,共24分)
1.已知方程23x y -=,用含x 的式子表示y 的式子是________________,
用含y 的式子表示x 的式子是_____________________。
2.已知112
x y =⎧⎪⎨=⎪⎩是方程42ax y +=的一个解,那么a =__________. 3.已知4x y +=,10x y -=,则2xy =________.
4.若121
x y ⎧=⎪⎨⎪=-⎩同时满足方程23x y m -=和方程4x y n +=,则m ·n =_________.
5.解二元一次方程组1819136345
x y x y +=⎧⎨+=⎩用________法消去未知数________比较方便. 6.若12x y =⎧⎨=-⎩,20x y =⎧⎨=⎩
都是方程4ax by -=的解,则a =______,b =________. 三、用心想一想!一定能做对!(共48分)
1.(8分)解方程组:11233210
x y x y +⎧-=⎪⎨⎪+=⎩ 2.(8分)解方程组:⎩⎨⎧x +y =93(x +y )+2x =33
3.(10分)已知 是关于x 、y 的方程组 的解,
求5m -2n 的值.
4、(10分)若方程组 2(1)(1)4x y k x k y +=⎧⎨-++=⎩
的解x 与y 相等,求k 的值.
5. (12分)小刚有苹果和梨共20个,其中苹果比梨的2倍少4个,小刚苹果和梨各有
多少个?(请列方程组进行解答)
x =-1 y =3 2x -my =7 nx +3y =-4。