2019年高考数学艺术生百日冲刺 专题03导数及其应用测试题-有答案解析
- 格式:doc
- 大小:411.12 KB
- 文档页数:7
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.右图是函数f (x )=x 2+ax +b 的部分图象,则函数()ln '()g x x f x =+的零点所在的区间是( )A .11(,)42B .(1,2)C .1(,1)2D .(2,3) 答案 C二、填空题2.若曲线1C :43236y x ax x =--与曲线2C :e x y =在1x =处的切线互相垂直,则实数a 的值为 ▲ .3.从边长为10 cm×16 cm 的矩形纸板的四个角上截去四个相同的小正方形,做成一个无 盖的盒子,盒子容积的最大值是 .4. 设向气球内以每秒100立方厘米的速度注入气体,假设气体的压力不变,那么当气球半径为20厘米时,气球半径增大的速度为每秒 ▲ 厘米.5.函数=x3-15x2-33x +6的单调减区间为________6.已知2112{|lg 0},{|222,}x M x x N x x Z -+===<<∈,则M N = .7.已知点(1,1)A 和点(1,3)B --在曲线C :32(,,y ax bx d a b d =++为常数)上,若曲线在点A 和点B 处的切线互相平行,则32a b d ++= ▲ .【考点定位】此题考查的是曲线的切线问题和导数的运算,紧扣切点是本题的关键。
8.曲线12++=x xe y x在点(0,1)处的切线方程为 .9. 在同一平面直角坐标系中,已知函数()y f x =的图象与x y e =的图象关于直线y x =对称,则函数()y f x =对应的曲线在点(,()e f e )处的切线方程为 ▲ .10.给出下列命题:①函数)(x f y =的图象与函数3)2(+-=x f y 的图象一定不会重合; ②函数)32(log 221++-=x x y 的单调区间为),1(∞+;③ππ---=+⎰e dx e x x 1)(cos 0; ④双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是45. 其中正确命题的序号是 (把你认为正确命题的序号都填上).答案 ③11.若曲线()4f x x x =-在点P 处的切线平行于直线30x y -=,则点P 的坐标为 。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=( ) A .sinx B .-sinxC .cos xD .-cosx (2005湖南理)2.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为(2012新课标理)3.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)fxyO(2,0)P()y f x =()y f x '=1 (第10题(B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f二、填空题4.函数2(0)y x x =>的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a + ,k 为正整数,116a =,则135a a a ++= . 5.函数2|32|y x x =-+的极大值为 .6.曲线y =e x在点A(0,1)处的切线斜率为________.7.如果曲线y =x 4-x 在点P 处的切线垂直于直线y =-13x ,那么点P 的坐标为_________ 8. 已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是 ▲ .9. 若直线y x b =-+为函数1y x =的一条切线,则实数b = ▲ .10.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲ .11.已知函数32()23125f x x x x =--+在区间[0,3]上的最大值与最小值分别为,M m ,则M m -= .12.已知函数y = f (x ),x ∈[0,2π]的导函数y = f ' (x )的图象, 如图所示,则y = f (x ) 的单调增区间为 ▲ .13.已知函数3()3f x x x =-,求函数()f x 在3[3,]2-上的最大值和最小值.14. 函数231()23f x x x =-在区间[]1,5-上的最大值是 32315.若曲线21x y x -=+在1x =处的切线与直线10ax y ++=平行,则实数a 等于16.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <117.已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c 应满足的条件是__________.三、解答题18.已知函数()ln f x x x =-, ()ln ag x x x=+,(0a >). (1)求函数()g x 的极值;(2)已知10x >,函数11()()()f x f x h x x x -=-, 1(,)x x ∈+∞,判断并证明()h x 的单调性;(3)设120x x <<,试比较12()2x x f +与121[()()]2f x f x +,并加以证明. 19.已知函数()ln f x x ax =-()a ∈R . (1)当2=a 时,求函数()f x 的单调区间;(2) 当a >0时,求函数()f x 在[1,2]上最小值. (本题满分16分)20. 已知函数32()f x x ax bx c =+++在0x =处取得极大值2,其图象在1x =处的切线与直线320x y -+=垂直.(1)求()f x 的解析式;(2)当(]x ∈-∞时,不等式'2()69xf x m x x ≤-+恒成立,求实数m 的取值范围.21.如图,在海岸线一侧C 处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A 、B 两个报名点,满足A 、B 、C 中任意两点间的距离为10千米。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④(2012福建文)2.已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或13.f(x)是定义在(0,+∞)上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数a 、b ,若a <b ,则必有 A .af(b) ≤bf(a) B .bf(a) ≤af(b) C .af(a) ≤f(b)D .bf(b) ≤f(a)二、填空题4.设直线y=a分别与曲线2y x =和xy e =交于点M 、N ,则当线段MN 取得最小值时a的值为___________. 5. 函数)42sin(π+-=x y 的单调增区间是 ▲6.函数2|32|y x x =-+的极大值为 . 7.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为(A) 1n (B) 11n + (C) 1n n + (D) 1(2009陕西卷文)8.由曲线x y x y 232=-=和围成图形的面积为 。
答案232 9.与直线2-=x y 平行且与曲线x x y ln 2-=相切的直线方程为 ▲ .10.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.三、解答题11.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞.(Ⅰ)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小; (Ⅱ)求证:()f x 在(0,)+∞上是增函数;(Ⅲ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.12.已知抛物线42-=x y 与直线2+=x y (Ⅰ)求两曲线的交点;(Ⅱ)求抛物线在交点处的切线方程.13. 已知函数()ln(1)(1),xf x a e a x =+-+(其中0a >) ,点1,12233(()),(,()),(,())A x f x B x f x C x f x 从左到右依次是函数()y f x =图象上三点,且2132x x x =+.(Ⅰ) 证明: 函数()f x 在R 上是减函数; (Ⅱ)求证:⊿ABC 是钝角三角形;(Ⅲ) 试问,⊿ABC 能否是等腰三角形?若能,求⊿ABC 面积的最大值;若不能,请说明理由.14.已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有 51a -<<且12a ≠-15.设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力. 【参考答案】【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b =)91(log )91(log 33f c =,则c b a ,,的大小关系是( )A .c b a >>B .a b c >>C .c a b >>D .b c a >> 答案 C2.设球的半径为时间t 的函数()R t 。
若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径A.成正比,比例系数为CB. 成正比,比例系数为2CC.成反比,比例系数为CD. 成反比,比例系数为2C 9.二、填空题3.函数3()31f x ax x =-+对于[]1,1x ∈-总有()0f x ≥成立,则a = . 4.已知函数221()23ln 2f x x ex e x b =+--在0(,0)x 处的切线斜率为零,若函数()()aF x f x x'=+有最小值m ,且2m e >,则实数a 的取值范围是 . 5.如果曲线y =x 4-x 在点P 处的切线垂直于直线y =-13x ,那么点P 的坐标为_________ 6.(文)直线4y x b =+是曲线41y x =-的一条切线,则实数b 的值为 7.已知()f x 是定义在(,0)(0,)ππ- 上的奇函数,其导函数为'()f x ,当0x π<<时,'()cos sin ()0f x x x f x -> ,则不等式()cos 0f x x > 的解集为______________8.函数y =x 3-6x +a 的极大值为____________,极小值为____________.[答案] a +42 a -4 2[解析] y ′=3x 2-6=3(x +2)(x -2), 令y ′>0,得x >2或x <-2, 令y ′<0,得-2<x <2, ∴当x =-2时取极大值a +42, 当x =2时取极小值a -4 2.9.函数2log y x =的单调递减区间是 ▲ .10.已知函数x x x f sin )(=,∈x R ,则)5(πf ,)1(f ,)(3π-f 的大小关系为 ▲11.曲线C :2sin )(++=xe x xf 在0=x 处的切线方程为 ★ ;12.已知函数f (x )的定义域为[-2,+∞),部分对应值如下表,)(x f '为f (x )的导函数,函数)(x f y '=的图象如右图所示,若两正数a ,b 满足1)2(<+b a f ,则33++a b 的取值范围是 . 答案 ⎪⎭⎫⎝⎛37,53 13. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是 ▲ .14.曲线31y x x =++在点(1,3)处的切线的方程是_______________15.若曲线x x x f -=4)(在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 .16.已知函数()log a f x x =和()2log (22),(0,1,)a g x x t a a t R =+->≠∈的图象在2x =处的切线互相平行,则t =__________.三、解答题17.已知函数R x t x t tx x x f ∈-+-+=,213232)(223,其中t ∈R . ()1当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程;()2当0t ≠时,求()f x 的单调区间;()3证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )答案 D2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为 A .3B .52C .2D .32(江苏) 二、填空题 3.设曲线y =e ax 有点(0,1)处的切线与直线x +2y +1=0垂直,则a =_________. 24.在实数集R 上定义运算:()().(),x x y x a y a f x e ⊗=-=为实常数若(),x g x e x -=+令()()().F x f x g x =⊗若函数))0(,0()(F P x F 在点处的切线斜率为1,则此切线方程为________________.5.设曲线(1)x y ax e =-在点A 01(,)x y 的切线为1l ,曲线1x x y e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______6. 函数21ln 2y x x =-的单调递减区间为 __________________. 7.曲线()ln f x x x =在点1x =处的切线方程为 ▲ .(第11题图)8.设函数()2ln f x x x =+,若曲线()y f x =在点()()1,1f 处的切线方程为y ax b =+,则a b += .9.函数y =2x x 2+1的极大值为______,极小值为______. [答案] 1 -1[解析] y ′=2(1+x )(1-x )(x 2+1)2, 令y ′>0得-1<x <1,令y ′<0得x >1或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1.10.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+= ☆ .11.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 . (2009陕西卷理)13.若函数2()(2)1f x m m x m =--+-在(,)-∞+∞上单调递减,则实数m 的取值范围是 .14.若函数()ln a f x x x =-在[1,]e 上的最小值为32,则实数a 的值为 ▲ .15.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为______________.16.在曲线106323-++=x x x y 的切线中斜率最小的切线方程是____________.17.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= ▲ . (江苏)三、解答题18.(1)求f (x )=x 3-x 2+1在点(1,1)处的切线方程 (2)求f (x )=x 3-x 2+1过点(1,1)的切线方程(本题满分15分)19.已知函数2332)(ax x x f -=, x x x g 63)(2-=,又函数)(x f 在)1,0(单调递减,而在),1(+∞单调递增.(1)求a 的值;(2)求M 的最小值,使对∀[]2,221-∈x x 、,有M x g x f ≤-)()(21成立;(3)是否存在正实数m ,使得)()()(x mg x f x h +=在)2,2(-上既有最大值又有最小值?若存在,求出m 的取值范围;若不存在,请说明理由. (本小题共16分)20.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑵ 函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;(文)21.已知函数()a x x x x f +++-=9323. (1)求()x f 的单调递减区间;(2)若()x f 在区间[]2,2-上的最大值为20,求它在该区间上的最小值.22.燕子每年秋天都要从北方飞到南方过冬。
专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数31y ax =+的图象与直线y x =相切,则a =( )A .18B .14C .12D .1(2005浙江文)2.由直线x=0,3,3==-y x ππ与曲线y=c osx 所围成的封闭图形的面积为( )A .21B .1C .23D .3(2011湖南理6)3.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ( )A .1个B .2个C .3个D . 4个答案 A解析 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 函数)(x f 在开区间),(b a 内有极小值的点即函数由减函数变为增函数的点,其导数值 为由负到正的点,只有1个,选A .4.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )(2008福建理)二、填空题5.从边长为10 cm×16 cm 的矩形纸板的四个角上截去四个相同的小正方形,做成一个无 盖的盒子,盒子容积的最大值是 . 6.函数的单调递增区间是 (0,e ) .(4分)7.函数2|32|y x x =-+的极大值为 . 8.计算定积分=+⎰-dx x x 112)sin (___________。
9.已知定义在R 上的函数2()(3)f x x ax =-,函数()()()([0,2])g x f x f x x '=+∈,若()g x 在0x =处取得最大值,则正数a 的取值范围是 ▲ .10.已知函数32()f x x ax bx c =+++(其中,,a b c 为常数),若()y f x =在1x =-和13x =-时分别取得极大值和极小值,则a = ▲ .11.给出下列命题:①函数)(x f y =的图象与函数3)2(+-=x f y 的图象一定不会重合;②函数)32(log 221++-=x x y 的单调区间为),1(∞+;③ππ---=+⎰edx e x x 1)(cos 0;④双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是45.其中正确命题的序号是 (把你认为正确命题的序号都填上). 答案 ③12.曲线y=x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为__________。
1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣12.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.19.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.110.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.2.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.【解答】解:由y=f(x)在[﹣6,6],知f(﹣x),∴f(x)是[﹣6,6]上的奇函数,因此排除C又f(4),因此排除A,D.故选:B.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x或0<x,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x或x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x时,函数的值也为0,故排除C.故选:D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.9.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.1【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a,符合条件;综上所述,a,故选:C.10.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.【解答】解:根据题意,函数f(x)=e x+ae﹣x,若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+ae x=﹣(e x+ae﹣x),变形可得a=﹣1,函数f(x)=e x+ae﹣x,导数f′(x)=e x﹣ae﹣x若f(x)是R上的增函数,则f(x)的导数f′(x)=e x﹣ae﹣x≥0在R上恒成立,变形可得:a≤e2x恒成立,分析可得a≤0,即a的取值范围为(﹣∞,0];故答案为:﹣1,(﹣∞,0].13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.【解答】解:由y=x(x>0),得y′=1,设斜率为﹣1的直线与曲线y=x(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.【解答】解:设A(x0,lnx0),由y=lnx,得y′,∴,则该曲线在点A处的切线方程为y﹣lnx0,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.【解答】解:存在t∈R,使得|f(t+2)﹣f(t)|,即有|a(t+2)3﹣(t+2)﹣at3+t|,化为|2a(3t2+6t+4)﹣2|,可得2a(3t2+6t+4)﹣2,即a(3t2+6t+4),由3t2+6t+4=3(t+1)2+1≥1,可得0<a,可得a的最大值为.故答案为:.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.【解答】解:∵y=2ln(x+1),∴y′,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.【解答】解:函数f(x)=x3﹣2x+e x的导数为:f′(x)=3x2﹣2+e x2+20,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a,故答案为:[﹣1,].。
2019年艺术生高考数学复习导数部分(附九年高考精选试题)艺考之路·文化课快速提分第3讲导数及其应用知识梳理:1.导数的几何意义导数f'(x)表示曲线y=f(x)在点P(x,f(x))处的切线斜率,即k=f'(x)。
2.导数的运算1) (x^α)'=αx^(α-1) (α为常数);2) (ax)'=a (a>0且a≠1);(e^x)'=e^x;3) (log_a x)'=1/(xlna) (a>0且a≠1);(ln x)'=1/x;4) (sin x)'=cos x;(cos x)'=-sin x;5) [f(x)±g(x)]'=[f(x)]±[g(x)];6) [f(x)·g(x)]'=f(x)g'(x)+f'(x)g(x);7) [g(x)^(-1)]'=-g'(x)/[g(x)^2] (g(x)≠0)。
3.用导数研究函数的单调性在某个区间(a,b)内,如果f'(x)>0,则函数y=f(x)在这个区间内单调递增;如果f'(x)<0,则函数y=f(x)在这个区间内单调递减。
4.函数的极值与最值如果在函数y=f(x)的定义域I内存在x,使得在x附近的所有点x都有f(x)≤f(x),则称函数y=f(x)在点x=x处取得极大值,记作f(x)=max;如果在x附近的所有点x都有f(x)≥f(x),则称函数y=f(x)在点x=x处取得极小值,记作f(x)=XXX。
导数的几何意义及运算例1 求下列函数的导数。
1) f(x)=lnxsinx;(2) f(x)=xex;(3) f(x)=excosx-x;(4)f(x)=(1+x)/(2x)例2 曲线y=x^2+1/x 在点(1,2)处的切线方程为y=3x-1.练:1.(2018·天津卷)已知函数f(x)=exlnx,f'(x)为f(x)的导函数,则f'(1)的值为e。
专题3导数及其应用测试题命题报告:1.高频考点:导数的几何意义切线方程,留言导数求函数的单调区间,极值以及最值,利用导数解决实际问题.2.考情分析:高考主要以选择题填空题以及解答题形式出现,在全国卷所占分值是12-17分,一般解答题形式出现,考察利用导数研究函数的性质以及求极值最值问题。
3.重点推荐:基础卷第10题需要构造函数,利用导数与函数的单调性的关系求解。
一.选择题(本大题共12题,每小题5分)1. (2018•平罗县校级期中)已知函数f(x)=e2x,则=()A.1 B.0 C.e2D.2e2[答案]D【解析】:∵f′(x)=2e2x,∴=f′(1),∴f′(1)=2e2,故选:D.2. (2018•攀枝花期末)设f′(x)是函数的导函数,则f'(0)的值为()A.1 B.0 C.﹣1 D.【答案】:C【解析】根据题意,,其导数f′(x)==﹣,则f'(0)=﹣1;故选:C.3. (2018•银川三模)已知函数f(x)=cosx+alnx在x=处取得极值,则a=()A.B.C.D.﹣【答案】C【解析】:∵f(x)=cosx+alnx,∴f′(x)=﹣sinx+,∵f(x)在x=处取得极值,∴f′()=﹣+=0,解得:a=,经检验符合题意,故选:C.4. (2018春•云阳县期末)已知函数f(x)=x3﹣ax+1在[1,+∞)上是单调递增函数,则实数a的取值范围是()A.a<3 B.a≤3 C.a≤1 D.1<a<3【答案】:B【解析】求导函数,可得f′(x)=3x2﹣a,∵f(x)在[1,+∞)上单调递增,∴3x2﹣a≥0在[1,+∞)上恒成立,∴a≤3x2在[1,+∞)上恒成立,∴a≤3,故选:B.5. (2018•柳州一模)设a∈R,若函数y=x+alnx在区间(,e)有极值点,则a取值范围为()A.(,e)B.(﹣e,﹣)C.(﹣∞,)∪(e,+∞)D.(﹣∞,﹣e)∪(﹣,+∞)【答案】B6. (2018•吉安期中)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C.D.【答案】A【解析】:由f(x)的图象判断出可得从左到右函数的单调性在y轴左侧先增,再减,在y轴的右侧,函数单调递减,∴导函数y=f′(x)的图象可能为区间(﹣∞,0)内,先有f′(x)>0,再有f′(x)<0,在(0,+∞)再有f′(x)>0.故选:A.7. (2018•邯郸二模)若过点P(﹣1,m)可以作三条直线与曲线C:y=xe x相切,则m的取值范围是()A.(﹣,+∞)B.()C.(0,+∞)D.()【答案】D【解析】:设切点为(x0,y0),过点P的切线程为,代入点P坐标化简为m=,即这个方程有三个不等根即可,令,求导得到f′(x)=(﹣x﹣1)(x+2)e x,函数在(﹣∞,﹣2)上单调递减,在(﹣2,﹣1)上单调递增,在(﹣1,+∞)上单调递减,故得到f(﹣2)<m<f(﹣1),即,故选:D.综上,若∃x∈(1,+∞),使得f(x)>﹣a,a的取值范围为a.…………12分19. (2018•新余期末)函数f(x)=x3+ax2+bx﹣c,过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.(1)若y=f(x)在x=﹣2时有极值,求f(x)的表达式;(2)在(1)的条件下,求y=f(x)在[﹣3,1]上的最小值.【思路分析】(1)f′(x)=3x2+2ax+b,由过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.可得f (1)=6=1+a+b﹣c,f′(1)=3+2a+b=3.又y=f(x)在x=﹣2时有极值,可得f′(﹣2)=12﹣4a+b=0,联立解得a,b,c.(2)在(1)的条件下,f(x)=x3+2x2﹣4x+7.x∈[﹣3,1].f′(x)=3x2+4x﹣4=(3x﹣2)(x+2),令f′(x)=0,解得x=或﹣2.列表即可得出.【解析】:(1)f′(x)=3x2+2ax+b,∵过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.∴f(1)=6=1+a+b﹣c,f′(1)=3+2a+b=3.又y=f(x)在x=﹣2时有极值,∴f′(﹣2)=12﹣4a+b=0,联立解得:a=2,b=﹣4,c=﹣7.∴f(x)=x3+2x2﹣4x+7.(2)在(1)的条件下,f(x)=x3+2x2﹣4x+7.x∈[﹣3,1].f′(x)=3x2+4x﹣4=(3x﹣2)(x+2),令f′(x)=0,解得x=或﹣2.列表如下:x [﹣3,﹣2)﹣2 (﹣2,)f′(x)+ 0 ﹣ 0 +f(x)单调递增极大值单调递减极小值单调递增由表格可得:x=时,函数f(x)取得极小值,=.又f(﹣3)=10>.∴函数f(x)最小值为=.20. (2018 •新罗区校级月考)设函数f(x)=axlnx+(a>0).(Ⅰ)已知函数在x=1处取得极值,讨论函数f(x)的单调性;(Ⅱ)设g(x)=f(x)﹣ax,若g(x)≥0恒成立,求实数a的取值范围.【思路分析】(I)函数f(x)=axlnx+(a>0),x>0.f′(x)=alnx+a﹣,根据函数在x=1处取得极值,可得f′(1)=0,解得a.进而得出单调性.(II)g(x)=f(x)﹣ax,a>0,g(x)≥0恒成立,可得axlnx+﹣ax≥0,x>0.可得alnx+﹣a≥0恒成立,令h(x)=alnx+﹣a,利用导数研究函数的单调性即可得出.【解析】:(I)函数f(x)=axlnx+(a>0),x>0.∴f′(x)=alnx+a﹣,∵函数在x=1处取得极值,∴a﹣1=0,解得a=1.∴f′(x)=lnx+1﹣,可得:函数f′(x)在(0,+∞)上单调递增,又f′(1)=0,∴x∈(0,1)时,f′(x)<0;x∈(1,+∞)时,f′(x)>0.∴函数f(x)在x∈(0,1)时单调递减;x∈(1,+∞)时,函数f(x)单调递增.(II)g(x)=f(x)﹣ax,a>0,g(x)≥0恒成立,∴axlnx+﹣ax≥0,x>0.可得alnx+﹣a≥0恒成立,令h(x)=alnx+﹣a,则h′(x)=﹣==,∴0<x<时,h′(x)<0,此时函数h(x)单调递减;x>时,h′(x)>0,此时函数h(x)单调递增.∴h(x)min==aln+﹣a≥0,∴ln≥1,解得:a≤,∴a的取值范围是(0,].21. (2018•思明区校级月考)已知函数f(x)=(m≥0),其中e为自然对数的底数.(1)讨论函数f(x)的极值;(2)若m∈(1,2),证明:当x1,x2∈[1,m]时,f(x1)>﹣x2+1+.【思路分析】(1)求导对m分类讨论,即可得出单调性与极值.(2)当x1,x2∈[1,m]时,f(x1)>﹣x2+1+,只要证明f(x1)min>即可,由(1)可知:f(x)在x∈[1,m]内单调递减,可得f(x1)min=f(m).因此f(x1)min>⇔x2>﹣.m ∈(1,2),令g(m)=﹣.m∈(1,2),利用导数研究其单调性即可得出.【解析】(1):f′(x)==.①m>0时,1﹣m<1,令f′(x)=0,解得x=1或1﹣m.则函数f(x)在(﹣∞,1﹣m)上单调递减,在(1﹣m,1)内单调递增,在(1,+∞)上单调递减.∴x=1﹣m时,函数f(x)取得极小值;x=1时,函数f(x)取得极大值.②m=0时,f′(x)=≤0,函数f(x)在R上单调递减,无极值.(2)证明:当x1,x2∈[1,m]时,f(x1)>﹣x2+1+,只要证明f(x1)min>即可,由(1)可知:f(x)在x∈[1,m]内单调递减,∴f(x1)min=f(m)=.∴f(x1)min>⇔x2>﹣.m∈(1,2),令g(m)=﹣.m∈(1,2),g′(m)=﹣=<0,∴函数g(m)在m∈(1,2)上单调递减,∴g(m)<g(1)=1+﹣=<1≤x2,因此结论成立.22. (2018•道里区校级二模)已知函数h(x)=ae x,直线l:y=x+1,其中e为自然对数的底.(1)当a=1,x>0时,求证:曲线f(x)=h(x)﹣x2在直线l的上方;(2)若函数h(x)的图象与直线l有两个不同的交点,求实数a的取值范围;(3)对于第(2)中的两个交点的横坐标x1,x2及对应的a,当x1<x2时,求证:a>.【思路分析】(1)可令g(x)=,求出二阶导数,求得单调区间,可得g(x)的单调性,即可得证;(2)由题可得ae x=x+1,即有a=,设m(x)=,求出导数和单调性,作出图象,即可得到所求范围;(3)由(2)可得ae x1=x1+1,ae x2=x2+1,作差可得a=,运用分析法证明,即证>,即为x2﹣x1>1﹣=1﹣,运用换元法和构造函数,求得导数和单调性,即可得证.【解析】:(1)证明:当a=1,x>0时,令g(x)=,g′(x)=e x﹣x﹣1,g″(x)=e x﹣1,当x>0时,g″(x)>0,g′(x)递增,g′(x)>g′(0)=0,∴g(x)递增,g(x)>g(0)=0,∴曲线f(x)=h(x)﹣x2在直线l的上方;(2)由y=ae x和y=x+1,可得ae x=x+1,即有a=,设m(x)=,可得m′(x)=,当x>0时,m′(x)<0,m(x)递减;当x<0时,m′(x)>0,m(x)递增,可得m(x)在x=0处取得极大值,且为最大值1,图象如右上:由图象可得0<a<1时,a=有两解,可得函数h(x)的图象与直线l有两个不同的交点,则a的范围是(0,1);设n(t)=t﹣1+,t>0,n′(t)=1﹣=>0,可得n(t)在t>0上递增,可得n(t)>n(0)=0,可得t>1﹣成立,则当x1<x2时,a>.。