蝶阀的流量系数的计算
- 格式:doc
- 大小:108.50 KB
- 文档页数:5
调节阀的计算选型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1.调节阀流量系数计算公式 1.1 流量系数符号:Cv —英制单位的流量系数,其定义为:温度60°F (15.6℃)的水,在16/in 2(7KPa)压降下,每分钟流过调节阀的美加仑数。
Kv —国际单位制(SI 制)的流量系数,其定义为:温度5~40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:Cv ≈1.16 Kv1.2 不可压缩流体(液体)Kv 值计算公式式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQ L —液体流量 m 3/h ρ—液体密度g/cm 3 F L —压力恢复系数,与调节阀阀型有关,附后 F F —流体临界压力比系数,C V FP P F /28.096.0-=P V —阀入口温度下,介质的饱和蒸汽压(绝对压力KPa ) P C —物质热力学临界压力(绝对压力KPa )注:如果需要,本公司可提供部分介质的P V 值和P C 值 1.2.2 高粘度液体Kv 值计算当液体粘度过高时,按一般液体公式计算出的Kv 值误差过大,必须进行修正,修正后的流量系数为R VF K V K ='式中:K ′V—修正后的流量系数 K V —不考虑粘度修正时计算的流量系数 F R —粘度修正系数 (FR 值从F R ~Rev 关系曲线图中确定)计算雷诺数Rev 公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q v 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F VQ v 49490Re =式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQg —气体流量 Nm 3/h G —气体比重(空气=1)t —气体温度℃ Z —高压气体(PN >10MPa )的压缩系数 注:当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z >1,具体值查有关资料。
1、流量系数计算公式表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。
C-工程单位制(MKS制)的流量系数,在国内长期使用。
其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。
Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。
Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。
注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。
(1)Kv值计算公式(选自《调节阀口径计算指南》)①不可压缩流体(液体)(表1-1)Kv值计算公式与判不式(液体)低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流量系数为:在求得雷诺数Rev值后可查曲线图得FR值。
计算调节阀雷诺数Rev公式如下:关于只有一个流路的调节阀,如单座阀、套筒阀,球阀等:关于有五个平行流路调节阀,如双座阀、蝶阀、偏心施转阀等文字符号讲明:P1--阀入口取压点测得的绝对压力,MPa;P2--阀出口取压点测得的绝对压力,MPa;△P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;Pc--热力学临界压力(绝压),MPa;F F--液体临界压力比系数,F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数QL--液体体积流量,m3/h P L--液体密度,Kg/cm3ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h,②可压缩流体(气体、蒸汽)(表1-2)Kv值计算公式与判不式(气体、蒸气)表1-2文字符号讲明:X-压差与入口绝对压力之比(△P/P1);X T-压差比系数;K-比热比;Qg-体积流量,Nm3/hWg-质量流量,Kg/h; P1-密度(P1,T1条件),Kg/m3T1-入口绝对温度,K;M-分子量;Z-压缩系数;Fg-压力恢复系数(气体);f(X,K)-压差比修正函数; P1-阀入口取压点测得的绝对压力,MPa;PN-标准状态密度(273K,1.0.13×102kPa),Kg/Nm3;③两相流(表1-3)Kv值计算公式(两相流)表1-3。
====Word 行业资料分享--可编辑版本--双击可删====
源-于-网-络-收-集 阀门的流量系数C V 、K V 和流阻系数ζ。
1.阀门的流量系数是衡量阀门流通能力的指标,流量系数越大说明流体渡过阀门时的压力损失越小。
流量系数表示流体流经阀门产生单位压力损失时流体的流量。
C V =Q 2
1P P G - (2/12)/(min /in Lb USgal ) 当阀门全开时,阀两端压差为1磅/英寸2,流体用60℉的清水时,通过阀门的美加仑/分的流量数。
Q —体积流量 (美加仑/分)
Δp —阀门压力损失 (磅/英寸2)
G —水的相对密度=1
K V =Q 21P P -ρ
(m 2 ) Kv 值是指水流经阀门的两端压差为100KPa 时,某给定
行程所流过以m 3 /h 计,介质密度取Kg/m 3的流量数值。
Q —体积流量 (米3/小时)
Δp —阀门压力损失 100KPa
ρ—介质密度 (公斤/米3,取ρ=1)
2.流阻系数。
它与Cv 值的换算关系
ζ2
d
d :阀门内径或阀座口径in(英寸)
ζ:流阻系数 (无量纲)
DN400闸阀Cv=28931
DN400蝶阀Cv=16388 (全开时)。
阀门的流量系数以及气蚀系数详解阀门的重要参数是阀门的流量系数和气蚀系数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。
我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。
一、阀门的流量系数阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。
按KV值计算式式中:KV—流量系数Q—体积流量m3/hΔP—阀门的压力损失barP—流体密度kg/m3二、、阀门的气蚀系数用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。
式中:H1—阀后(出口)压力mH2—大气压与其温度相对应的饱和蒸气压力之差mΔP—阀门前后的压差m各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。
如图所示。
如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。
如蝶阀容许气蚀系数为2.5,则:如δ>2.5,则不会发生气蚀。
当2.5>δ>1.5时,会发生轻微气蚀。
δ<1.5时,产生振动。
δ<0.5的情况继续使用时,则会损伤阀门和下游配管。
阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。
通过上述计算则一目了然。
所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三:(1)发生噪声(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂)(3)对材料的破坏(对阀体和管道产生侵蚀)再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法:a.把阀门安装在管道较低点。
b.在阀门后管道上装孔板增加阻力。
c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。
综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。
两个重要参数在阀门运用中起到举足轻重的作用。
阀门的流量系数、流阻系数、压力损失阀门的流量系数、流阻系数、压力损失一、阀门的流量系数阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。
国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。
流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。
1.流量系数的定义流量系数表示流体流经阀门产生单位压力损失时流体的流量。
由于单位的不同,流量系数有几种不同的代号和量值。
2.阀门流量系数的计算3.流量系数的典型数据及影响流量系数的因素公称通径DN50mm的各种型式阀门的典型流量系数见表。
流量系数值随阀门的尺寸、形式、结构而变。
几种典型阀门的流量系数随直径的变化如图1-9所示。
对于同样结构的阀门,流体流过阀门的方向不同。
流量系数值也有变化。
这种变化一般是由于压力恢复不同而造成的。
如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。
当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。
当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。
对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。
阀门内部的几何形状不同,流量系数的曲线也不同。
阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。
当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。
压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。
二、阀门的流阻系数流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p 表示。
1. 阀门元件的流体阻力阀门的流阻系数 ! 取决于阀门产品的尺寸、结构以及内腔形状等。
阀门流量计算公式
阀门流量计算
流通能⼒的计算,主要指Kv值的计算
1、⼀般液体的Kv值计算
a.⾮阻塞流
计算公式:
b.阻塞流
计算公式:
2、低雷诺数修正(⾼粘度液体Kv值的计算)
液体粘度过⾼时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv 值,误差较⼤,必须进⾏修正。
此时计算公式为:
式中:――粘度修正系数,由Re查图求得。
对于单座阀、套筒阀、、⾓阀等只有⼀个流路的阀
对于双座阀、蝶阀等具有⼆个平⾏流路的阀
式中:K′v――I不考虑粘度修正时计算的流通能⼒;
――流体运动粘度mm2/S
F R-Rev关系图
3.⽓体的Kv值的计算:
a.⼀般⽓体
当P2>0.5P1时
当当P2≤0.5P1时
当P2>0.5P1时
当P2≤0.5P1时
式中:Z――⽓体压缩系数。
4.蒸汽的Kv值的计算
a.饱和蒸汽
当P2>0.5P1时
当P2≤0.5P1时
部分蒸汽的K值如下:
⽔蒸汽K=19.4 甲烷、⼄烯蒸汽K=37
氨蒸汽K=25 丙烷、丙烯蒸汽K=41.5
氟⾥昂11K=68.5 丁烷、异丁烷蒸汽K=43.5 b.过热⽔蒸汽当P2>0.5P1时
当P2≤0.5P1时。
阀门的流量系数阀门的流量系数、流阻系数、压力损失点击次数:249 发布时间:2009-10-28 10:22:51 阀门的流量系数、流阻系数、压力损失一、阀门的流量系数阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。
国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。
流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。
1.流量系数的定义流量系数表示流体流经阀门产生单位压力损失时流体的流量。
由于单位的不同,流量系数有几种不同的代号和量值。
2.阀门流量系数的计算3.流量系数的典型数据及影响流量系数的因素公称通径DN50mm的各种型式阀门的典型流量系数见表。
流量系数值随阀门的尺寸、形式、结构而变。
几种典型阀门的流量系数随直径的变化如图1-9所示。
对于同样结构的阀门,流体流过阀门的方向不同。
流量系数值也有变化。
这种变化一般是由于压力恢复不同而造成的。
如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。
当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。
当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。
对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。
阀门内部的几何形状不同,流量系数的曲线也不同。
阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。
当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。
压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。
二、阀门的流阻系数流体通过阀门时,其流体阻力损失以阀门前后的流体压力降?p表示。
阀门流量系数的速算方法流量系数的速算方法在我们的设计工作中经常要进行各式各样的计算,流量系数正是其中之一。
阀门的流量系数Cv和Kv值是衡量阀门流动能力的重要参数之一,流量系数的大与小,说明了流体通过阀门时其压力损失的大与小,流量系数越大则压力损失越小阀门的流通能力也就越好。
国外的阀门厂通常都把不同类型、不同口径的阀门Cv值列入产品样本中。
在我国,许多用户都要求制造方在样图中例明产品的流量系数Cv值或Kv值。
在新的API规范6D《管线阀门》第22版明确规定:“制造厂(商)应为买方提供流量系数Kv值”。
显然流量系数对管道和阀门设计过程来说是一个非常重要的参数。
阀门的流量系数Cv值最早是由美国流体控制协会在1952年提出的,它的定义是:在通过阀门的压力降每平方英寸1磅(1bf/in2)的标准条件下,温度为15.6℃的水,每分钟流过的美制加仑数(Usgal/min)。
阀门的流量系数Cv随阀门的尺寸、形式、结构而变化,这些变化最终与阀门的压力降有关。
Cv值的计算公式为:Cv=Q(G/ΔP)0.5(1)式中Cv——流量系数Q——体积流量(Usgal/min)ΔP——阀门的压力降(1bf/in2)G——水的密度G=1阀门的流量系数Cv值取决于阀门的结构,而且必须由自身的实际试验来确定。
DN50阀门的典型流量系数(表一)流量系数Cv 值是“英制”的计量单位,人们依据Cv 值的技术定义制定了“米制”计量单位的阀门流量系数Kv 值。
Kv 值的定义是:在通过阀门的压力降为1巴(bar )的标准条件下,温度为5-40℃的水每小时流过阀门的立方米体积流量(m 3/h )Kv 值的计算公式:形式Cv 截止阀40-60角式截止阀47Y 形阀门阀杆与管道中心线夹角为45°72阀杆与管道中心线夹角为60°65V 形孔旋塞阀60-80蝶阀蝶板厚度为通道直径的7%333蝶板厚度为通道直径的35%154常规闸阀300-310夹管阀360旋启式止回阀76隐蔽式止回阀123球阀(缩径)131球阀(全径)440Kv=Q(P/ΔP)0..5(2)式中Kv——流量系数Q——体积流量(m3/h)ΔP——阀门的压力降(1bar)G——水的密度(kg/m3)Cv与Kv的关系实际上就是英制单位与米制单位的换算关系。
蝶阀开度与流量的计算蝶阀是工业领域常见的一种阀门,它的开度与流量之间有着密切的关系。
了解蝶阀开度与流量的计算方法对于工程师和操作人员来说是非常重要的。
我们需要了解蝶阀的工作原理和结构。
蝶阀是一种通过旋转阀盘来控制流体流动的阀门。
它由阀体、阀盘和阀杆组成。
当阀盘旋转时,阀盘上的孔会与阀体内的孔口对齐,从而控制流体的流动。
蝶阀的开度是指阀盘旋转的角度或位置,一般以百分比表示。
开度为0%时,阀盘完全关闭,流体无法通过;开度为100%时,阀盘完全打开,流体可以自由通过。
在实际应用中,蝶阀的开度一般在0%到100%之间调节。
蝶阀的流量是指单位时间内通过阀门的流体体积。
流量与阀门的开度密切相关。
当蝶阀的开度增大时,流体通过阀门的通道也会增大,流量也会随之增大;反之,当蝶阀的开度减小时,流体通过阀门的通道减小,流量也会随之减小。
蝶阀的流量计算可以通过实验测定或使用公式计算。
在实验测定中,可以通过改变蝶阀的开度,同时测量流体通过阀门的流速,然后根据流速和流通面积计算得到流量。
这种方法直观简单,但需要实际操作和测量设备。
另一种常用的方法是使用公式计算蝶阀的流量。
蝶阀的流量计算公式一般基于流体力学原理和实验数据。
这些公式考虑了阀门的结构、流体的性质和流动条件等因素。
其中,一个常用的公式是蝶阀的流量计算公式:Q = C × A × √(2gH)其中,Q表示流量,C表示流量系数,A表示阀门的流通面积,g 表示重力加速度,H表示液位差。
这个公式适用于液体通过蝶阀的流量计算。
在实际应用中,流量系数C是根据实验测定得到的。
不同类型和尺寸的蝶阀具有不同的流量系数,工程师可以根据具体情况选择合适的系数。
除了上述公式,还有一些其他的流量计算方法,如K值法和Cv值法。
这些方法也是根据实验测定得到的,可以根据具体情况选择合适的方法进行流量计算。
蝶阀的开度与流量之间存在着密切的关系。
了解蝶阀开度与流量的计算方法对于工程师和操作人员来说是非常重要的。
调节阀流量系数计算公式和选择数据1、流量系数计算公式表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。
C-工程单位制(MKS 制)的流量系数,在国内长期使用。
其定义为:温度5-40 C的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。
Cv-英制单位的流量系数,其定义为:温度60 C F (15.6 C)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。
Kv-国际单位制(SI 制)的流量系数,其定义为:温度5-40 C的水,在10Pa (0.1MPa )压降下,1小时流过调节阀的立方米数。
注:C、Cv、Kv 之间的关系为Cv=1.17Kv , Kv=1.01C国内调流量系数将由C系列变为Kv系列。
(1)Kv值计算公式(选自《调节阀口径计算指南》)①不可压缩流体(液体)(表1-1)Kv值计算公式与判别式(液体)低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流量系数为:在求得雷诺数Rev值后可查曲线图得FR值。
计算调节阀雷诺数Rev公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀,球阀等:文字符号说明:对于有五个平行流路调节阀,如双座阀、 蝶阀、偏心施转阀等4949O (2L"—严兰二pv/pc坨7 丨『io m io :|$ io'RevP1--阀入口取压点测得的绝对压力, MPa ; P2--阀出口取压点测得的绝对压力,MPa ;△ P--阀入口和出口间的压差,即( P1-P2), MPa ; Pv--阀入口温度饱和蒸汽压(绝压) ,MPa ; Pc--热力学临界压力(绝压),MPa ; F F --液体临界压力比 系数,F R --雷诺数系数,根据 ReV 值可计算出;3QL--液体体积流量,m/h V -运动粘度,10-5m 2/s②可压缩流体(气体、蒸汽) (表1-2)Kv 值计算公式与判别式(气体、蒸气)PcF L --液体压力恢复系数3P L --液体密度,Kg/cm W L --液体质量流量,kg/h ,表1-2尸射局艸关弟曲线1.0吓幵 1 ]卩「「W f'文字符号说明:X-压差与入口绝对压力之比(△ P/P1);X T-压差比系数;K-比热比; 3Qg-体积流量,Nm /hP1-密度(P1, T1条件):Wg-质量流量,Kg/h ;Kg/m3T1-入口绝对温度,K ;M-分子量;Z-压缩系数;Fg-压力恢复系数(气体)P1-阀入口取压点测得的绝f(X,K)-压差比修正函数;对压力,MPa ;PN-标准状态密度(273K2 31.0.13 10 kPa) , Kg/Nm ;③两相流(表1-3)Kv值计算公式(两相流)表1-3注:本计鄆公式仅适用干气(汽).液均匀谁合栩流休.并冲单相谎体均未达到阻塞漁条件. 文字符号说明: pi-阀人口取压点测得的绝对压力. 以--阀岀II 取圧点、测得的绝对压力,--气体、蒸汽质kg/h ; pe--两相锻育效密度,®'nPPL ■气体、裁汽密tt (pi.ri 条件),kg/m$; px-气体、英汽标准状态密度(273K t 1.0l3Xl02kpah kg/Nm>; pL --液体密度,kjj/m* Fg--气体压力恢父系数;彳X,心一压差比修正系数.Fgftt 与於人卩计算式同町体i|•算式相同; T L■人口绝对温度.K : M —分予诫:Z-■压缩系数; F F —ffi 体临界压力比系敌.<2)cMiin 公式(选自«调节阀口径计算设计規定》CD5OA12-84) ①液体(表27) C 值计畀公式与判别式Oft 体)MPa: MPo;WL —液体质电流札kg/h :相密度条件).汲2-几一压力恢貝系数,怙哥调节阀压办恢复能力的系数;小一阀人□温度下液体介质的饱和蕉汽圧力(绝对压力)• kgf/cm 2rfllOOkPa;X ・・压基比,阀压降与阀人口压力之比.即*= 笊 尺■■液体临界压力比系数;“卅-■临界压差比,产土BQ 塞流时之X ; • ‘ 用-・比热比系数,空气介质为,1F 空气介质为△K--气沐绝热t&Sc ;Y-购胀系数,考虑气体(燕汽)密度在阀内发生变化的校正系故':14O L —液体体积aflltmVh :0•■气休休积流就■ E/h :(际准伏态-272K.1 OlhlO'PQ%—液体质址流如kg/h 必一蒸气质融流址kg/h ;Pi —液体密度仙6条件下).g/cm 5 屮一气体密度 kg/Nm s (标准状态一273K. 1.013X10呼3)pr ■慕汕密度(puT 僚件下Xkg/cm >门一阀入I 」处流体温取K (开尔文) Z--气体压缩系数■ : M —分子虽G —气体相对密度(空气为1).O )山武・雷尼威尔公司Cv 值计住公式(选门昊忠仪表厂c 产甜技术参数>)③气体•彼汽(丧2-Ctfi 计萍公式与判别式(气体.蒸汽)瀝动1:«别式气体计算公式非阻塞渡文字符号说明:pi —阀人口处流体绝对压力.kgf/cm?或10OkPa; 0 —阀出li 处流体绝对压力.kgr/cm^或lOOkPa; △p—阀两端任爰,0 hqi.".或LOOkPa; X< F K X T或匚■环①液体(表37)(Cv 工1.170Cv值计算公式与判别式(液体)表37文〒符号说明:Q一液体的股大流量.ni5/h; 0・*燉尢漩値时阀逬口压力,kgf/cm2ab$;p一-呆大流悵时阀出I」压力,kgf/em^bs; △/>--阀两瑞压并■ 3¥)-卩釘kfg/cm? G—液体的相廿密度(水•";He—计算流昴內的允许圧倉kfg/cnf刃一进口温度下液体的饱和蕪汽乐力.kgf/cm^abs; △r—iJ口压力下液体饱和滔烦与进M温度之差、匚⑦气体(丧3-2)文字符号说明:Q—标准状态(760mmHg,15g下气体的最大流ft. mVh;pi—fitA流尿时阀逬口压力.kgf/cm2abs; p2 —M大流.駅吋阀出口压力,kgf/cm2abs;△p—阀两端压差,Ap=pi-P2, kgf/cm2; G—气体的相对密度C空气巧);r-诡体温度,'C.③蒸汽(衣3・3)6值计算公女与判別式(蒸汽)表3-3(4)Fisher 公可CV 值计耳公式(选0FISHER 公诃《控制阀『砒 那:版}①液休(农4-1) 6值计耳公式与判别兀(液体)义字符号说明: W"水蒸汽、H 它張汽的故大渡St S ;P- — M 大熬開时的阀出I 」压力,kgC^m 2abs;K —K=E0.0013x 过热泪度,t ) w —岀11压力卜集汽比容.cmVg;P 一最大流址时的阀进L 】压力.kgf/cm 2abs;△p --泗两站压差,△p=i P 】-g kgf/cm 2; Vi —iff f ]压力卜蒸汽比务cm 3/£;C 仁Cg/Cv (C1由制造厂提供); Cg--气体流理系数; Cv--液体流量系数; △ P--压差,Psi ;P1--阀入,Psia ;G--气体相对密度(空气 =1.0);3T--气体入口的绝对温度,°R (兰金氏度);d1--人口蒸汽的密度,Ib/ft ;3Qscth--气体流量,scth (标准英尺寸 /小时);Qib/hr--蒸汽流量,lb/hr 。
调节阀流量系数CV值的来历与计算方法液流:在此:Q = 液流量(每分钟加仑数)△P = 通过的压降(psi)S = 介质的具体重这个方程式适用于湍流和粘性接近于水的液体。
(Cv是指介质温度为60 o F的水,通过阀门产生1.0 psi压降时的每分钟流量。
)(这时水的具体重力是1。
)1915 年美国的 FISHER GOVERNER 公司按设计条件积累了图表,按图表先定口径。
由于用这个方法调节阀的费用减少了,电动调节阀的寿命延长了,因此当时得到了好评。
但是按选定的口径比现在计算出来的还大些。
后来按选定法对液体,气体,蒸汽及各种形式的气动调节阀进行了进一步的算法研究。
直到 1930 年美国的 FOXBORO 公司 ROLPHRJOKWELL 和 DR.@.E.MASON 对以下的V型 ( 等百分比 ) 球阀 , 最初使用CV值 , 并发表了CV 计算公式。
1944年美国的MASON — NELLAN REGULATOR 公司把 ROKWELL 和 MAXON 合并为 MASON — NEILAN ,发表了 @ V 计算公式。
1945 年美国的 SONALD EKMAN 公司发表了和 MASON — NELLAN 差不多的公式,但对流通面积和流量系数相对关系展开研究工作。
1962 年美国的 F@I ( FLUID @ONTROLS INSTITUTE )发表了 FCI 58-2 流量测定方法,并发表了调节阀口径计算。
迄今还在使用的CV 计算式,但同 FCI 62-1 。
1960 年西德的 VDI/VDE 也发表了 KV 计算式,但同 FCI62-1 相同,仅仅是单位改为公制。
1966~1969 年日本机械学会关于调节阀基础调查分会对定义瘩的口径计算,规格书,使用方法进行调查研究。
但到现在还未结束。
1977 年美国的 ISA ( INSTRUMENT SOCIETY OF AMERICA )发表了标准 S39 。
调节阀流量系数CV值的来历与计算方法液流:在此:Q = 液流量(每分钟加仑数)△P = 通过的压降(psi)S = 介质的具体重这个方程式适用于湍流和粘性接近于水的液体。
(Cv是指介质温度为60 o F的水,通过阀门产生1.0 psi压降时的每分钟流量。
)(这时水的具体重力是1。
)1915 年美国的 FISHER GOVERNER 公司按设计条件积累了图表,按图表先定口径。
由于用这个方法调节阀的费用减少了,电动调节阀的寿命延长了,因此当时得到了好评。
但是按选定的口径比现在计算出来的还大些。
后来按选定法对液体,气体,蒸汽及各种形式的气动调节阀进行了进一步的算法研究。
直到 1930 年美国的 FOXBORO 公司 ROLPHRJOKWELL 和 DR.@.E.MASON 对以下的V型 ( 等百分比 ) 球阀 , 最初使用CV值 , 并发表了CV 计算公式。
1944年美国的MASON — NELLAN REGULATOR 公司把 ROKWELL 和 MAXON 合并为 MASON — NEILAN ,发表了 @ V 计算公式。
1945 年美国的 SONALD EKMAN 公司发表了和 MASON — NELLAN 差不多的公式,但对流通面积和流量系数相对关系展开研究工作。
1962 年美国的 F@I ( FLUID @ONTROLS INSTITUTE )发表了 FCI 58-2 流量测定方法,并发表了调节阀口径计算。
迄今还在使用的CV 计算式,但同 FCI 62-1 。
1960 年西德的 VDI/VDE 也发表了 KV 计算式,但同 FCI62-1 相同,仅仅是单位改为公制。
1966~1969 年日本机械学会关于调节阀基础调查分会对定义瘩的口径计算,规格书,使用方法进行调查研究。
但到现在还未结束。
1977 年美国的 ISA ( INSTRUMENT SOCIETY OF AMERICA )发表了标准 S39 。
压力恢复系数F L =0.55液体临界压力Pc=34100KPa 流量Q =80液体比重r=0.812液体的蒸气压力Pv=0.6上游压力P1=11下游压力P2=10.8压力降△P=P1-P2=阻塞压力降△Pc1=V=阻塞压力降△Pc2=F L 2(P1-(0.96-0.28 )Pv =比较Pv与0.5P1值的大小阻塞压力降△Pc =3.146比较△P与△Pc的大小判别流动状态阀门系数Kv值=161.1955334阀门系数Cv值=189.5659473压力恢复系数F L=0.55流量Q N=45000气体重度r N=0.47上游压力P1=7.5下游压力P2=7.498压力降△P =P1-P2=温度t =30°C判别流动状态100KPa kg/Nm 3IF(Pv<0.5P1,△Pc=△Pc1,否则为△Pc=△Pc2)m 3/h或t/h g/cm 3100KPa 100KPa 100KPa IF(△P<△Pc,为一般流动"1",否则为阻塞流动"2")1100KPa 阀门系数Kv值一.液体IF(△P<△Pc,Kv="Kv1",否则为Kv="Kv2")100KPa Q =阀门系数Kv1值=阀门系数Kv2值===Q=阀门系数Kv2值二.气体Nm 3/h 阀门系数Kv1值==1比较 与0.5F L 2的大小IF( <0.5F L 2,为一般流动"1",否则为阻塞流动"2")P r ∆Pcr ∆)21()273(P P P t r N +∆+380Q N 330Q N L F 1*1)273(P t r N +IF( <0.5F L2,Kv="Kv1",否则为Kv="Kv2")阀门系数Kv值=8159.574047计算程序使用说明:1.黄色区域需输入已知条件数据.2.粉红区域为阀门系数Kv值的结果.3.Cv=1.176Kv附表1:典型附表2:常用a 333a a aa a 3/h="Kv2")。
蝶阀额定cv值蝶阀是一种常见的阀门类型,用于控制流体的流量和压力。
蝶阀通过调节阀门的开闭程度来控制流体的流量,其开度通常由0到90度范围变化。
蝶阀的额定CV值是其性能参数之一,下面将详细介绍蝶阀额定CV值的相关内容。
CV值全称为Coefficient of Flow,意为流量系数,是用于评估阀门性能的重要参数。
CV值是指在给定的压力下,阀门完全开启时单位时间内流过阀门的液体体积。
CV值的大小直接影响到阀门的调节能力,即流体的流量大小。
CV值越大,阀门的流量越大;反之,CV值越小,阀门的流量越小。
蝶阀的额定CV值主要由其结构和内部孔径决定。
蝶阀通常是由一个闭合的圆盘和固定在管道内部的轴组成。
圆盘的大小和形状会影响到蝶阀的流体流量。
一般来说,蝶阀的CV值越大,其圆盘的直径越大,流体通过阀门的通道越大,从而导致流量增大。
当选择蝶阀时,额定CV值通常是一个重要的选择因素。
根据应用需求和设计参数,选择适当的CV值可以确保阀门能够满足所需的流量要求。
选择过小的CV值可能会导致流量不足,无法满足系统的需要;选择过大的CV值可能会导致流量过大,产生过大的压力损失或无法达到所需的流量调节效果。
对于不同类型的蝶阀,其额定CV值可以根据具体的设计和标准进行计算和确定。
例如,根据API标准,计算蝶阀的额定CV值需要考虑到蝶阀的通道直径、圆盘的几何形状以及流体的密度等因素。
在实际应用中,通常会根据系统的流量需求和性能要求来选择合适的蝶阀型号和额定CV值。
此外,蝶阀的额定CV值还可以通过实验测量获得。
在实验中,可以通过控制蝶阀的开度和测量流量来计算CV值。
这种方法可以更加准确地评估蝶阀的性能,并确定其额定CV值。
实验测量的结果可以用于验证计算得出的额定CV值,并提供参考依据。
综上所述,蝶阀的额定CV值是衡量阀门性能的重要参数,其大小直接影响到阀门的流量和调节能力。
选择合适的CV值可以确保蝶阀能够满足系统的流量要求。
根据具体的设计和应用需求,可以通过计算或实验测量来确定蝶阀的额定CV值。
蝶阀的力矩计算公式如下:
M=X0.0654X△PXD3
式中:M 蝶阀的驱动力矩 kg·m
△P 阀前后差压 mmH2O
D 蝶阀直径 m
K 系数 2-4倍
可压缩流体流经蝶阀的流量系数的计算
一、前言
蝶阀不仅可以用于控制管路的通断,而且也可以用于流量的调节,在蝶板开度在15°~60°范围内,具有良好的线性调节特性。
由于蝶阀结构简单,所需安装空间小,操作便捷,可以实现快速启闭以及流阻损失小等优点,故广泛应用于工业及民用各个领域,近年来由于金属密封蝶阀在技术上日趋成熟,进一步扩大了蝶阀适用的压力和温度范围。
由于蝶阀具有流量调节的功能,因而不同开度下的流量系数是蝶阀的重要性能指标,它的数值大小反映蝶阀在不同开度下介质的流通能力。
对于水或其他不可压缩的流体,流量系数可以比较容易地通过试验测试来确定,许多企业、研究所和高等学校都有相应的试验装置,在专业手册中也已有比较完整的数据可供借鉴。
而对于空气、水蒸气等可压缩性流体,由于通过蝶阀后其压力、温度、容积等状态参数都将产生变化,所以相关的测试技术和试验装置比较复杂,蝶阀的制造企业大多不具备这样的试验条件,因而如何确定用于可压缩性流体时的蝶阀流量系数值,是一个设计、制造和使用单位都亟待解决的问题。
通过流体力学和热力学分析,提出一种用蝶阀的不可压缩流体的流量系数近似计算其可压缩流体流量系数的方法,可供用户参考应用。
二、确定流f系数的方法
1. 阀门的流量系数
流量系数是衡量阀门流通能力的指标,在数值上相当于流体流经阀门产生单位压力损失时流体的体积流量,如果蝶阀在1 lbf/in2 (1 lbf/in2= 6894.76Pa)的压降下能通过1 gal/min(1 gal/min = 0.68L/s)的水,它的流量系数C v=1.0。
由于单位的不同,流量系数有几种不同的代号和量值。
(1)A v值计算式
(1)
式中Av—流量系数;
Q—体积流量,单位为m3/s;
ρ—流体密度,单位为kg/m3;
Δp—阀门的压力损失,单位为Pa。
(2)K v值计算式
(2)
式中K v—流量系数;
Q—体积流量,单位为m3/h;
ρ—流体密度,单位为kg/m3;
Δp—阀门的压力损失,单位为Pa。
(3)C v值计算式
(3)
式中C v—流量系数;
Q—体积流量,单位为U Sga1/min;
G—水的相对密度,取G=1;
Δp—阀门的压力损失,单位为lbf/in2。
(4)流量系数A v、K v、C v间的关系
C v=1.17K v(4)
(5)
(6)
2. 阀门的流量系数与流阻系数的关系
阀门的流阻系数取决于阀门的尺寸、结构以及内腔形状等。
流体通过阀门时,对于紊流流态的液体阀门的压力损失△p(M Pa)为:
(7)
式中ζ—阀门的流阻系数;
u—流体在管道内的平均流速,单位为m/s;
ρ—流体密度,单位为kg/m3。
阀门流量系数K v与流阻系数ζ套的关系为:
(8)
式中d L—进口管道直径,单位为m。
ζ 的数值基本上不受温度、压力和流量变化的影响,从而使它在某种工况条件下取得的数据可以用于其他工况。
由于蝶板可以在0~90°范围内调节,因而需要适用于不同开度的一组系数ζ,其值可以查取有关手册或由试验所得。
二、可压缩流体通过蝶阁的流量系数的计算
1. 几个基本假设
为了简化实际流体流动的复杂性,对于可压缩性流体作如下假设。
1)流体在系统中作恒定流动。
2)流体通过蝶阀没有相态变化。
3)流体通过蝶板后,管道截面压力分布均匀。
4)流体通过一定开度的蝶板后,没有“惯性收缩”。
5)流体通过蝶阀是绝热过程。
2. 理论模型的建立
对不可压缩流体,蝶阀流量系数的一般表达式为:
(9)
式中C—流量系数;
Q—流体体积流量;
ρ—流体密度;
Δp—阀门的压力损失。
可压缩流体通过蝶阀时,由于产生压力降,从而使流体的密度发生变化,故引进一个压缩修正系数β(或称气体膨胀系数),于是可压缩流体通过蝶阀的流量系数C'为: C'=Cβ(10)
(11)
式中P1—阀前压力;
m—蝶阀的流通面积与管道断面面积之比,对蝶阀,
K—气体的绝热指数,,其值决定于气体分子结构。
单原子气体k
=1.66,双原子气体、包括空气k=1.4,多原子气体k=1.33
根据压缩流体流动的全能量方程,
(12)
相应的连续性方程
A1v1ρ1= A0v2ρ2 (13)
式中v1、v2—蝶阀前、后的流速;
ρ1、ρ2—蝶阀前、后流体的密度;
P2—阀后压力。
及绝热过程
(14)
经整理得
(15)
作为节流元件,蝶阀与孔板的原理相同,故蝶阀的压缩修正系数β也可以根据、
m,、k查取有关孔板压缩修正系数图表得其近似值。
3. 蝶阀压力损失△p的确定
在计算β过程中,用到△P=P1- P2,但是用户往往希望厂家直接算出阀门压力损失,而不用其提供的P2。
若不考虑热损失、边界摩擦、渗漏、外界作用等影响,阀门的压力损失简化(为方便计算,均采用法定计量单位)。
(16)
式中Q—流体体积流量,单位为m3/s。
若为流体质量流量q(kg/h),则
(17)
四、计算实例
DN900蝶阀参数:介质为水蒸气。
蝶阀全开流量328.5t/h,阀前压力874.8kPa,阀前温度350.9℃,阀前比容0.3241 m3/kg。
计算蝶阀开度分别为40℃, 50℃时的阀门流量系数。
查取有关手册得,蝶阀开度40℃, 50℃时的流阻系数分别为10.8、32.6。
300℃水蒸气,取k=1.285,计算结果如表1所示。
若采用图算法,其结果如表2所示。
与计算值相比,其误差均在5%以内(1.8%及3.6%),故图算法基本满足工程需要。