基于内存的分布式计算架构
- 格式:pptx
- 大小:577.86 KB
- 文档页数:26
HSF基础知识介绍HSF(Hadoop Streaming on Frameworks)是阿里巴巴基于Hadoop Streaming技术,开发的分布式计算框架。
HSF旨在简化开发者在海量数据处理时的工作,提供高性能的计算能力和简单易用的编程模型。
以下是对于HSF基础知识的介绍。
1.HSF架构HSF是一个分布式计算框架,主要由以下几个组件构成:Job Scheduler、Master、Worker、Task和Split。
Job Scheduler负责调度工作和资源管理,Master是Job Scheduler的主节点,Worker是Job Scheduler的工作节点。
Task是计算任务的基本单元,Split是数据的划分单元。
2.编程模型HSF提供了简单易用的编程模型,开发者可以通过编写Map和Reduce 函数来进行数据处理任务。
Map函数对输入的数据进行处理,将其转化为键值对形式的中间结果;Reduce函数之间对Map函数的输出结果进行合并和计算,生成最终的输出结果。
开发者只需关注Map和Reduce函数的实现,而无需考虑分布式计算和数据处理的细节。
3.数据划分和分布式计算HSF将输入数据划分为多个Split,每个Split由一个或多个文件组成。
Job Scheduler将Splits分配给不同的Worker,每个Worker上运行一个或多个Task。
Worker上的Task并行处理各自被分配到的Splits,Map函数负责将输入数据划分为键值对,Reduce函数负责对Map函数的输出结果进行合并和计算。
分布式计算的过程由Job Scheduler进行管理和协调,确保任务的高效执行。
4.高性能计算HSF采用了一系列优化策略来提高计算性能。
首先,HSF利用了数据本地性原理,将计算任务尽量分发到与数据所在位置相近的Worker节点上执行,减少了数据传输所带来的开销。
其次,HSF使用了基于内存的计算模型,将中间结果缓存在内存中,减少了磁盘IO的开销。
FusionInsightHD面试常考基础原理1.HDFS什么是HDFS?HDFS英语是(HadoopDistributionFileSystem)是给予Goole发布的GFS论文设计开发的,适合大文件存储于访问和流式数据访问,不合适大量小文件存储,随机写入,低延迟读取HDFS有什么组成的呢?HDFS架构包含三个部分:NameNode,DataNode,ClientNanmeNode:用户存储,生成文件系统的元数据。
DataNode:用户存储实际的数据,将自己管理的数据块上报给NameNode。
Client:支持业务访问HDFS,从NameNode,DataNode获取数据返回给业务HDFS读写流程怎样的呢?HDFS数据写入流程如下:1.业务应用调用HDFSClient提供的API,请求写入文件。
2.HDFSClient联系NameNode,NameNode在元数据中创建文件节点。
3.业务应用调用writeAPi写入文件。
4.HDFSClient收到业务数据后,从NameNode获取到数据块编号,位置信息后,联系DataNode,并将需要写入数据的DataNode建立起流水线,完成后,客户端在通过自有协议写入到DataNode1,在有DataNode1复制到DataNode2,DataNode3.5.写完的数据,将返回确定信息给HDFSClient。
6.所有数据确定完成后,将返回确定信息给HDFSClient。
7.业务调用Close,flush后HDFSClient联系NameNode,确认数据写完成后,NameNode持久化元数据。
HDFS数据读取流程如下:1.业务应用调用HDFSClient提供API打开文件。
2.HDFSClient联系NameNode,获取到文件信息(数据块,DataNode位置信息)。
3.业务应用调用readAPI读取文件。
4.HDFSClient根据从NameNode获取到的信息,联系DataNode,获取相应的数据块。
大数据的存储与处理随着信息技术的发展,大数据已经成为了当前社会和经济中的热门话题。
大数据的存储与处理技术变得愈发重要,因为大数据的有效存储和高效处理对于信息的挖掘和运用至关重要。
本文将重点探讨大数据的存储与处理技术,并分析其应用及发展前景。
一、大数据存储技术大数据的存储技术是指将海量数据保存在可靠、高效的存储系统中的方法和手段。
传统的存储方式已经无法满足大数据存储的需求,因此需要采用特殊的存储技术。
目前,常见的大数据存储技术包括分布式文件系统、列式数据库和NoSQL数据库。
1. 分布式文件系统分布式文件系统是一种将文件分布存储在多台机器上的系统,能够实现数据的高可靠性和高可扩展性。
典型的分布式文件系统有Hadoop 分布式文件系统(HDFS)和谷歌文件系统(GFS)。
这些系统通过将文件切分成多个块并分布存储在不同的节点上,提高了数据的读写速度和容错能力。
2. 列式数据库列式数据库是一种将数据按列存储的数据库系统,相比传统的行式数据库,列式数据库在数据读取和查询方面更加高效。
列式数据库将每一列的数据连续存储,减少了不必要的IO操作,提高了查询性能。
著名的列式数据库包括Google的Bigtable和Apache的HBase。
3. NoSQL数据库NoSQL(Not Only SQL)数据库是一种非关系型数据库,主要应用于大规模分布式数据的存储和处理。
NoSQL数据库放弃了传统关系型数据库的ACID特性,以牺牲一部分数据一致性为代价,实现了更高的性能和可扩展性。
常见的NoSQL数据库有MongoDB、Cassandra和Redis等。
二、大数据处理技术大数据的处理技术是指对大规模数据进行分析和计算的方法和工具。
大数据处理的关键是高效的分布式计算和并行处理能力。
目前,常用的大数据处理技术包括MapReduce、Spark和Storm等。
1. MapReduceMapReduce是一种分布式计算模型,由Google提出并应用于大规模数据处理。
大数据平台建设方案随着信息技术的不断发展和智能化时代的来临,大数据已经成为企业及各行业决策的重要依据。
为了更好地应对海量数据的处理和分析,企业需要建设一个完备的大数据平台。
本文将从整体架构、硬件设备、软件工具和安全保障等方面,提出一套完善的大数据平台建设方案。
一、整体架构大数据平台的整体架构决定了数据的处理效率和系统的可扩展性。
在构建大数据平台时,应采用分布式、集群化的架构模式,以满足高并发、高容量的需求。
建议采用以下架构:1. 数据采集层:负责从各种数据源收集数据,包括传感器、数据库、日志等。
可使用相关的数据采集工具进行数据的提取和转换,确保数据的准确性和完整性。
2. 数据存储层:用于存储海量的数据,包括结构化数据和非结构化数据。
建议采用分布式文件系统,如HDFS(Hadoop Distributed File System),保证数据的高可靠性和高可扩展性。
3. 数据处理层:负责对存储在数据存储层中的数据进行分析、挖掘和处理。
使用分布式计算框架,如Hadoop、Spark等,实现高效的数据处理和计算。
4. 数据展示层:提供数据可视化和报表功能,便于用户进行数据分析和决策。
可使用开源的数据可视化工具,如Echarts、Tableau等。
二、硬件设备大数据平台的硬件设备对系统性能和处理能力有着重要影响。
根据数据量和业务需求,建议选择高性能的服务器、存储设备和网络设备,以确保系统的稳定和高效运行。
1. 服务器:选择高性能的服务器,可根据实际需求配置多个节点组成集群,提高系统的并发处理能力。
2. 存储设备:采用高容量、高可靠性的存储设备,如分布式文件系统、网络存储等,以满足海量数据存储的需求。
3. 网络设备:建立高速的网络通信环境,提供数据传输和通信的带宽,确保数据的快速传输和实时处理。
三、软件工具在大数据平台建设中,选择适合的软件工具对于系统的性能和数据处理能力至关重要。
下面列举一些常用的大数据软件工具:1. Hadoop:分布式计算框架,提供高效的数据处理和分布式存储功能。
⼀⽂看懂分布式存储架构,这篇分析值得收藏【摘要】本⽂介绍了分布式存储的架构类型、分布式理论、不同的分布式⽂件系统和分布式键值系统等,较为系统详尽,可阅读收藏。
【作者】Rock,⽬前担任某国内著名餐饮连锁企业运维负责⼈,从事过数据库、⼤数据和容器集群的⼯作,对DevOps流程和⼯具⽅⾯有⽐较深刻的理解。
⼀、集中存储结构说到分布式存储,我们先来看⼀下传统的存储是怎么个样⼦。
传统的存储也称为集中式存储,从概念上可以看出来是具有集中性的,也就是整个存储是集中在⼀个系统中的,但集中式存储并不是⼀个单独的设备,是集中在⼀套系统当中的多个设备,⽐如下图中的 EMC 存储就需要⼏个机柜来存放。
在这个存储系统中包含很多组件,除了核⼼的机头(控制器)、磁盘阵列( JBOD )和交换机等设备外,还有管理设备等辅助设备。
结构中包含⼀个机头,这个是存储系统中最为核⼼的部件。
通常在机头中有包含两个控制器,互为备⽤,避免硬件故障导致整个存储系统的不可⽤。
机头中通常包含前端端⼝和后端端⼝,前端端⼝⽤户为服务器提供存储服务,⽽后端端⼝⽤于扩充存储系统的容量。
通过后端端⼝机头可以连接更多的存储设备,从⽽形成⼀个⾮常⼤的存储资源池。
在整个结构中,机头中是整个存储系统的核⼼部件,整个存储系统的⾼级功能都在其中实现。
控制器中的软件实现对磁盘的管理,将磁盘抽象化为存储资源池,然后划分为 LUN 提供给服务器使⽤。
这⾥的 LUN 其实就是在服务器上看到的磁盘。
当然,⼀些集中式存储本⾝也是⽂件服务器,可以提供共享⽂件服务。
⽆论如何,从上⾯我们可以看出集中式存储最⼤的特点是有⼀个统⼀的⼊⼝,所有数据都要经过这个⼊⼝,这个⼊⼝就是存储系统的机头。
这也就是集中式存储区别于分布式存储最显著的特点。
如下图所⽰:⼆、分布式存储分布式存储最早是由⾕歌提出的,其⽬的是通过廉价的服务器来提供使⽤与⼤规模,⾼并发场景下的 Web 访问问题。
它采⽤可扩展的系统结构,利⽤多台存储服务器分担存储负荷,利⽤位置服务器定位存储信息,它不但提⾼了系统的可靠性、可⽤性和存取效率,还易于扩展。
专利名称:基于共享内存和多进程的分布式数据库架构及其实现方法
专利类型:发明专利
发明人:王效忠,冀贤亮,何振兴,李英帅
申请号:CN202010772287.5
申请日:20200804
公开号:CN111949687A
公开日:
20201117
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于共享内存和多进程的分布式数据库架构及实现方法,属一种分布式数据库架构,其包括分布式数据库节点,分布式数据库内置系统共享内存单元与系统进程单元;系统共享内存单元包括任务堆栈信息模块与共享缓存模块;任务堆栈信息模块内置多个进程任务;进程任务为系统进程任务信息中的多种用途的系统信息,每个系统信息均对应一个进程任务;通过在分布式数据库节点使用系统共享内存单元,使得在该分布式数据库架构中用户的连接数不与进程或者线程存在对应关系,整个节点的进程或者线程数都不会因为用户连接数的增加而增加,从而有效避免因瞬时用户连接数过多而导致系统响应速度变慢,从而使系统性能不会因此而受到影响。
申请人:贵州易鲸捷信息技术有限公司
地址:550000 贵州省贵阳市贵阳综合保税区都拉营综保路349号海关大楼8楼801
国籍:CN
代理机构:成都中炬新汇知识产权代理有限公司
代理人:罗韬
更多信息请下载全文后查看。
大数据主要所学技术(简介)目录大数据主要所学技术简介:一:大数据技术生态体系二:各个技术栈简介一:大数据技术生态体系二:各个技术栈简介Hadoophadoop是一个用java实现的一个开源框架,是一种用于存储和分析大数据的软件平台,专为离线数据而设计的,不适用于提供实时计算。
对海量数据进行分布式计算。
Hadoop=HDFS(文件系统,数据存储相关技术)+ Mapreduce(数据处理)+ Yarn (运算资源调度系统)zookeeper对于大型分布式系统,它是一个可靠的协调系统。
提供功能:[本质是为客户保管数据,为客户提供数据监控服务]1. 统一命名服务:在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。
例如:一个域名下可能有多个服务器,服务器不同,但域名一样。
2. 统一配置管理:把集群统一配置文件交给zookeeper3. 统一集群管理:分布式环境中,实时掌握集群每个节点状态,zookeeper可以实现监控节点状态的变化。
4. 服务器动态上下线:客户端能实时洞察到服务器上下线变化。
5. 软负载均衡:在zookeeper中记录服务器访问数,让访问数最小的服务器去处理最新的客户端请求Hivehive是由facebook开源用于解决海量结构化日志的数据统计,是一个基于hadoop的数据库工具,可以将结构化数据映射成一张数据表,并提供类SQL的查询功能,本质是将SQL语句转化为MapReduce程序。
用hive的目的就是避免去写MapReduce,减少开发人员学习成本。
FlumeFlume是hadoop生态圈中的一个组件,主要应用于实时数据的流处理,是一个高可用,高可靠,分布式的海量日志采集,聚合和传输的系统。
支持多路径流量,多管道接入流量,多管道接出流量。
含有三个组件:•source 【收集】•channel 【聚集,一个通道,类似数据缓冲池】•sink 【输出】基础架构:Kafka分布式的基于发布/订阅模式的消息队列。
spark教学案例标题:Spark电影评分案例教学一、引言(100字)Spark是一种基于内存的分布式计算框架,广泛用于大规模数据处理和机器学习等领域。
本教学案例将介绍如何使用Spark进行电影评分分析,其中包括数据准备、分析与可视化等环节,旨在帮助学习者快速上手使用Spark。
二、数据准备(200字)1. 数据集选择:本案例使用的是Movielens数据集,包含了用户对电影的评分、电影信息和用户信息等数据。
三、电影评分分析(400字)1. 数据预处理:使用Spark的DataFrame或RDD API对数据进行预处理,如数据清洗、缺失值处理等。
同时,可以对数据进行特征提取和转换,以便后续分析使用。
2. 电影评分统计:使用Spark的分布式计算能力,对电影评分数据进行统计分析,计算每个电影的平均评分、评分人数等指标。
可以使用Spark的聚合操作和排序操作,快速得到需要的结果。
3. 用户评分分析:使用Spark对用户的评分行为进行分析,可以计算每个用户的平均评分、评分次数等指标,并进行可视化展示。
可以使用Spark的DataFrame和Spark SQL进行复杂查询和分析。
4. 电影推荐系统:使用Spark的机器学习库MLlib构建一个简单的电影推荐系统,根据用户的评分数据,预测用户对其他电影的评分,并进行推荐。
可以使用Spark的协同过滤算法或者基于内容的推荐算法进行模型训练和预测。
四、结果可视化(300字)1. Top N电影:使用Spark的数据分析和排序操作,得到评分最高的N部电影,并进行可视化展示。
可以使用matplotlib或者其他可视化库进行数据图表绘制。
2. 用户评分趋势:使用Spark的数据分析和可视化能力,对用户的评分行为进行趋势分析,并将结果进行可视化展示。
可以使用折线图或者柱状图展示用户评分随时间的变化。
3. 电影推荐结果:使用Spark的机器学习库MLlib得到的电影推荐结果,并进行可视化展示。
企业大数据管理与数据基础●大数据基础●第一章大数据概述●大数据计算模式●批处理计算:针对大规模数据的批量处理●MapReduce●从数据源产生的数据开始经过处理最终流出到稳定的文件系统中如hdfs●spark●采用内存代替hdfs或者本地磁盘来存储中间数据●流计算●流数据:在时间和数量分布上无限的数据的集合,数据的价值随着时间的流逝而减低。
因此计算必须给出实时响应。
●图计算●查询分析计算●大规模数据进行实时或准实时查询的能力。
●内存计算●迭代计算●大数据关键技术●数据采集●数据存储与管理●数据处理与分析●数据隐私与安全●大数据与云计算、物联网的关系●云计算的概念与关键技术●性质:分布式计算●关键技术●虚拟化:基础,将一台计算机虚拟为多台逻辑上的计算机。
每台互不影响,从而提高计算机的工作效率●分布式计算:并行编程模型MapReduce●分布式存储:hbase分布式数据管理系统●多租户:使大量用户共享同一堆栈的软硬件资源●物联网的概念与关键技术●概念:通过局部网和互联网,将c、p、c、c、连接起来从而实现信息化、远程控制●关键技术●识别和感知●网络和通信●数据挖掘与融合●大数据、物联网、云计算相辅相成。
●密不可分、千差万别●区别:侧重点不同●物联网:目标实现物物相连●云计算:整合优化各种IT资源,通过网络以服务的方式廉价的提供给用户●大数据:侧重对海量数据的存储、分析、处理,从海量数据中发现价值、服务与生产和生活。
●联系●整体上相辅相成●物联网的传感器源源不断的产生提供数据,借助云计算、大数据实现分析存储●大数据根植于云计算,云计算提供的对大数据的存储管理,大数据的分析才得以进行●第三章大数据处理架构hadoop●hadoop生态圈●hdfs:分布式文件系统●MapReduce:分布式编程框架●hive:基于hadoop的数据仓库。
●pig:数据流语言和运行环境●大数据存储与管理●第四章分布式文件系统hdfs(数据块、文件块、存储位置、映射关系、)●体系结构●数据结点●数据结点:存储读取数据●数据结点要根据名称结点的指令删除、创建、复制、数据块。
cdh名词解释CDH是Cloudera企业级大数据平台的简称,是一种基于Hadoop框架的分布式计算系统,可承载大规模数据存储和处理任务。
该平台提供了包括数据存储、数据处理、数据管理、数据安全等一系列功能,为企业提供了完整的大数据解决方案。
CDH是由Cloudera公司开发和维护的一个大数据平台,其核心是基于Apache Hadoop构建的分布式计算框架。
CDH支持多种数据处理引擎,包括Hadoop、Spark、Impala、HBase等,并且提供了高可靠性、高可扩展性、高安全性等特性。
CDH的设计目标是帮助企业快速构建安全、高效、可靠的大数据处理平台,从而获取更多的商业价值。
CDH平台包含以下组件:1. HDFS(Hadoop Distributed File System):基于Hadoop的分布式文件系统,用于存储大型数据集。
2. YARN(Yet Another Resource Negotiator):负责协调集群中的资源分配和任务调度。
3. MapReduce:基于Hadoop的分布式计算框架,用于处理海量数据。
4. Spark:基于内存的分布式计算框架,支持SQL、图形处理、机器学习等多种应用场景。
5. Impala:基于内存的SQL分析引擎,具有更快的查询速度,并且支持Hadoop存储数据。
6. HBase:分布式的NoSQL数据库,用于存储半结构化数据,并且支持高并发读写。
7. ZooKeeper:用于分布式协调服务,可以有效地管理集群的元数据。
8. Kudu:分布式列存储数据库,用于快速更新、插入和查询数据。
CDH平台的使用可以帮助企业快速处理数据,进行数据挖掘、数据分析、数据可视化等工作,从而迅速获取业务价值,并优化业务流程。
同时,CDH平台提供了完善的安全机制,包括身份验证、数据加密、访问控制等多种措施,确保数据的安全性。
总之,CDH是一个完整的大数据平台,可以支持企业在存储、处理、管理和安全等各方面得到问题。