14第五章同位素地球化学4解析
- 格式:ppt
- 大小:270.50 KB
- 文档页数:31
同位素地球化学与大气环境化学同位素地球化学与大气环境化学,说到这两个词,很多人可能会觉得有点高深,甚至有点头大。
别急,我们慢慢聊。
这其实是两个跟我们日常生活息息相关的话题,虽然它们听起来像是科幻小说里的术语,但实际上,它们就在我们的周围。
让我们从“同位素地球化学”说起。
你知道我们周围的空气、水、土壤,甚至是人类和动植物,几乎都是由各种元素组成的吗?这些元素有很多种形式,我们叫它们“同位素”。
简单来说,同位素就是同一个元素的不同版本,可能是个体差异大一点,质量也有些区别,就像我们人类有不同的发型、身高和体重一样。
好啦,听着是不是就不那么复杂了?这些同位素对于地球化学有着非常重要的作用。
比如,我们通过分析某种元素的同位素比率,可以知道它是从哪里来的、经历了什么样的变化。
比方说,科学家通过分析海水中的氧同位素比率,就能推测出古代气候的温度,想想看,那些遥远年代的气候就这样被“翻译”出来,挺神奇的吧?然后,我们来说说“大气环境化学”。
大气环境,听着有点抽象,但其实它就是我们每天呼吸的空气。
这空气里面包含了各种各样的化学物质,不单单是氧气、氮气之类的常见成分,还有二氧化碳、甲烷、臭氧、颗粒物等等。
这些物质看似都挺不起眼,但它们的变化能直接影响我们的生活。
说白了,空气中的成分变化就是我们大气环境化学的核心。
举个例子,假如你每天都在雾霾中呆着,空气里的颗粒物和有害气体就会逐渐堆积,最后可能带来健康问题。
所以大气环境化学的研究,不仅仅是为了搞清楚大气里都有哪些东西,更重要的是弄明白它们是怎么变来的,变成什么样,最后又会对我们的健康和环境造成什么影响。
嗯,听着是不是有点小紧张,仿佛空气变得“危险”了?别担心!其实大气环境化学这门学问,也有它“暖心”的一面。
比如,它能帮我们预测气候变化,指导相关部门做出应对措施。
你知道吗,现在我们常听到的“全球变暖”这个话题,就是通过大气环境化学的研究,弄明白了二氧化碳这种温室气体是怎么影响地球温度的。
地球化学中的同位素分析技术与应用地球化学是一门涉及地球上化学元素存在及其变化的学科。
它涵盖了从大气、海洋、陆地到生物体内的各种化学元素分布及其分异规律。
同位素分析技术是地球化学研究中的重要分析手段之一。
同位素是同一元素在原子核结构上相同,但质量不同的不同种型态的元素。
同位素分析指的是通过测定地质、生物、环境样品中同位素的相对丰度及其分馏效应,通过同位素地球化学模型的分析,揭示地球物质系统的演化规律和探测自然过程的机制。
同位素分析技术在地球化学研究中的应用十分广泛,例如:地球物质的起源和演化,地球和生物圈中各种元素的循环,环境污染监测与评价,矿床成因及矿物勘探,气候变化及构造变形等方面。
下面分别介绍同位素分析技术在这些领域中的应用。
1. 地球物质的起源和演化同位素地球化学研究的源头可以追溯到20世纪50年代,美国科学家克劳索和因格兰首次把“同位素地球化学”从行星地球上解释到“星际空间”上,即从揭示地球元素组成及其演化历史的角度开始探索整个宇宙元素演化的规律。
他们利用气体中稀有同位素的分馏,揭示了太阳燃烧出氢-氦核合成所需的温度和压力条件,确立了太阳核合成模型,初步推断了太阳气体来自于行星际物质的良好证据。
同位素分析技术也被广泛地应用于探索地球内部物质的演化历史,例如岩石的年代测定、地壳-地幔对流模式、深部地幔和核的物质组成等研究领域。
2. 地球和生物圈中各种元素循环地球是一个自然系统,其中包含气候、水文、生态、地质等多个子系统,而这些子系统之间通过物质与能量的交流得以相互作用。
同位素分析技术应用于各元素的循环研究中,可以揭示出这些过程的动力学过程及其模式,从而更加深入地了解地球子系统之间的关联性。
例如氧同位素分析技术,在全球范围内广泛应用于大气水文学、地表水文学、地下水文学等领域的研究,从而精细地了解各种水在自然界中的循环、水文循环和大气水分平衡的关系。
稳定硫同位素、碳同位素技术在生态学研究领域中的应用也非常广泛,可揭示生态系统中各种生物类群之间、生物与环境之间的物质循环途径及过程,并进一步推断其生态学和环境学意义。
同位素地球化学
同位素地球化学是以同位素的分布特征为研究对象,研究地球内部和表面形成过程和变化的一门重要的地学分支。
它利用稳定同位素的比值来研究地球的演化及其在时空尺度上的变化。
同位素地球化学既是一门独立的学科,也是地球科学中的多学科交叉学科。
它将地球科学、核物理学、化学和生物学等多学科有机地结合在一起,研究地球中某种物质的原始成分,以及它们在地球内部、大气中等不同环境中的运动、改变和转化过程,以及由此引起的地球演化过程。
同位素地球化学的研究方法有多种,其中最重要的是测量和分析地球表面、地壳、地幔和地球内部的同位素比例。
它的研究重点是地球作为一个整体的演化过程,以及地球内部物质的原始成分、流动性和转化过程,以及它们如何影响地球表面和大气环境的演变。
一般而言,同位素地球化学的研究不仅要研究地球表面和内部的同位素含量,还要研究其分布特征。
通常情况下,同位素的分布特征受到地壳、地幔和地球内核的影响,它们的分布特征各不相同。
在同位素地球化学的研究中,要根据地球的特定环境对同位素的分布特征进行分
析,可以深入地理解地球的演化过程、结构特征以及其影响因素。
在实际应用中,同位素地球化学已经成为地质勘查、矿物开采、矿产评价以及环境保护等领域的重要手段之一。
人们可以利用同位素地球化学的结果,对潜在的矿产资源进行定量评估,进而提高地质勘查的准确性和效率。
此外,同位素地球化学还可以用来研究地表微生物的活动、空气污染的源头和扩散趋势,以及地表水的污染特征等。
总之,同位素地球化学是地球科学研究的一个重要分支,它结合了多学科的知识,为地质勘查、矿产开发、环境保护和其他领域的实践活动提供了有效的技术支持。