高三数学模拟测试题含答案
- 格式:docx
- 大小:482.74 KB
- 文档页数:12
高三数学试题(文 )一、选择题1.已知集合{}{}N M x x g y x N x y y M x 则,)2(1,0,22-==>==为 ( )A .(1,2)B .),1(+∞C .),2[+∞D .),1[+∞2.若函数b ax x f +=)(的零点为2,那么函数ax bx x g -=2)(的零点是 ( )A .0,2B .0,21C .0,21-D .21,2 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,若==84,1S S 则 ( )A .17B .171 C .5 D .51 4.若连续抛掷两次骰子得到的点数分别为n m ,,则点),(n m P 在直线4=+y x 上的概率是( )A .31 B .41 C .61 D .121 5.已知一个几何体是由上下两部分构成的组合体,其三视图如右图,若图中圆的半径为1,等腰三 角形的腰长为5,则该几何体的体积为( )A .32πB .34π C .π2D .π46.已知复数z 满足i izi z 431+=-+⋅(i 是虚数单位), 则=z ( ) A .i +3 B .i -3 C .i 32-D .i 34-7.已知O 是ABC ∆内部一点,0=++OC OB OA 2=⋅AC AB ,且,60︒=∠BAC 则OBC ∆的面积为( )A .21 B .33 C .23 D .32 8.已知等差数列{}n a 的前n 项和为n S ,若01,1211=--+>+-m m m a a a m 且,3912=-m S ,则m 等于( )A .39B .20C .19D .10 9.设函数='=≠+=003),(3)3(),0(31)(x x f f a bx ax x f 则若 ( )A .1±B .2C .3±D .21 2 2 3 4 34 7 7 45 11 14 11 56 16 25 25 16 6 … … … … … … …10.一个算法的程序框图如图所示,若该程序输出的结果为20102009,则判断框内应填入的条件是 ( ) A .?2008=i B .?2009>i C .?2010>iD .?2012=i11.过抛物线x y 22=的焦点作一条直线与抛物线交于A ,B两点,它们的横坐标之和等于2,则这样的直线( ) A .有且只有一条 B .有且只有两条C .有且只有三条D .有且只有四条12.定义在R 上的函数)(x f y = 是增函数,且为奇函数,若实数t s ,满足不等式s t s t t f s s f +≤≤--≥-3,41),2()2(22时则当的取值范围是( )A .]10,2[-B .]16,2[-C .]10,4[D . [4,16] 二、填空题13.已知双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线的方程为x y 2=,则双曲线C 的离心率为 。
嘉兴市2024届高三第一模拟测试数学试卷(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知复数220231i i i z =++++ ,则z =()A.0B.1C.D.【答案】A 【解析】【分析】化简复数z ,继而求模即可.【详解】220231i i i z =++++ ()()23420172018201920202021202220231i+i i +i i i +i i +i i +i =+++⋅⋅⋅++++15050i 1i 0=+⨯+--=则0z =,故选:A .2.已知集合πsin ,044k A k k ⎧⎫=∈≤≤⎨⎬⎩⎭N 且,则集合A 的元素个数为()A.3 B.2C.4D.5【答案】A 【解析】【分析】将k 的所有可能取值逐个代入计算即可得出集合A ,即可得集合A 的元素个数.【详解】当0k =时,πsin sin004k ==,当1k =时,ππsinsin 442k ==,当2k =时,π2ππsin sin sin 1442k ===,当3k =时,π3πsin sin 442k ==,当4k =时,π4πsinsin sinπ044k ===,故0,,12A ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭,共三个元素.故选:A.3.已知向量()2,0a =,()0,3b = ,若实数λ满足()()b a a b λ-⊥+ ,则λ=()A.49B.94C.1- D.1【答案】A 【解析】【分析】先表示出,b a a b λ-+的坐标,然后根据垂直关系得到λ的方程,由此求解出结果.【详解】因为()()2,3,2,3b a a b λλ-=-+=,且()()b a a b λ-⊥+ ,所以22330λ-⨯+⨯=,所以49λ=,故选:A.4.已知1a x x=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c >B.[1,1]x ∃∈-,b c >C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<【答案】D 【解析】【分析】举例即可判断ABC ;再根据基本不等式及三角函数的性质即可判断D.【详解】对于A ,当π6x =时,π63626π64a =+>+=,13222c =+=,此时a c >,所以[1,1]x ∃∈-,a c >,故A 正确;对于B ,当0x =时,2b =,c =b c >,所以[1,1]x ∃∈-,b c >,故B 正确;对于C ,当π6x =-时,π606πa =--<,13122c =-+=,此时a c <,所以[1,1]x ∃∈-,a c <,故C 正确;对于D ,当[]1,1x ∈-时,2e e x x b -=≥=+,当且仅当e e x x-=,即0x =时取等号,πsin 2sin 3c x x x ⎛⎫=+=+ ⎪⎝⎭,由[]1,1x ∈-,得πππ1,1333x ⎡⎤+∈-++⎢⎥⎣⎦,而ππππ1π,012332<+<<-+<,所以当π3x +,即π6x =时,πsin 2sin 23c x x x ⎛⎫=+=+= ⎪⎝⎭,所以2≤c ,当且仅当π6x =时取等号,而π06≠,所以[1,1]x ∀∈-,b c >,故D 错误.故选:D.5.已知某物种t 年后的种群数量y 近似满足函数模型: 1.4e 0.1250ety k -=⋅(00k >,当0=t 时表示2023年初的种群数量).自2023年初起,经过n 年后(N)n ∈,当该物种的种群数量不足2023年初的10%时,n 的最小值为(参考数据:ln10 2.3026≈)()A.16B.17C.18D.19【答案】D 【解析】【分析】确定2023年初的种群数量为0=t 时的函数值,根据题意可列不等式 1.4e 0.125 1.4e 00e 10%e tk k -⋅<⋅⋅,结合对数运算即可求得答案.【详解】由题意可知2023年初的种群数量为0=t 时的函数值 1.4e0e k ⋅,故令 1.4e 0.125 1.4e 00e10%e ty k k -=⋅<⋅⋅,即0.1251e 10t -<,则0.125ln10t >,ln108ln108 2.302618.42080.125t ∴>=≈⨯=,由于*n ∈N ,故n 的最小值为19,故选:D6.已知数列{}n a 满足10a =,231a a ==,令()*12N n n n n b a a a n ++=++∈.若数列{}nb 是公比为2的等比数列,则2024a =()A.2024247- B.2024237+ C.2024247+ D.2024267+【答案】B 【解析】【分析】数列{}n b 是公比为2的等比数列,可得2nn b =,则有32nn n a a +-=,累加法结合等比数列求和公式,计算2024a .【详解】11230112b a a a =++=++=,数列{}n b 是公比为2的等比数列,则2nn b =,即()13123121222n n n n n n n n n n n n n a a a a a a a a b b ++++++++-=++-++=-=-=,()()()()2024202420212021201820182015522a a a a a a a a a a =-+-+-++-+ ()67423202420242021201820152212242322221111877⎡⎤--+⎢⎥⎣⎦=+++++=+=+=- .故选:B【点睛】关键点睛:本题关键点是利用数列{}n b 的通项得到32nn n a a +-=,用累加法即可计算2024a .7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A.2B.94 C.3D.52【答案】C 【解析】【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以223332BG BE ==⨯⨯=,所以AG ==r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,2348OM ON ⎛⋅=-=- ⎪⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+ ()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,PO的最大值为44=,所以PM PN ⋅的最大值为23348⎛-= ⎝⎭.故选:C8.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上不与左右顶点重合的任意一点,I ,G 分别为12PF F ∆的内心和重心,当IG x ⊥轴时,椭圆的离心率为A.13B.12C.2D.63【答案】A 【解析】【分析】结合图像,利用P 点坐标以及重心性质,得到G 点坐标,再由题目条件GI x ⊥轴,得到I 点横坐标,然后两次运用角平分线的相关性质得到MN ME的比值,再结合MIN ∆与MPE ∆相似,即可求得I 点纵坐标,也就是内切圆半径,再利用等面积法建立关于,,a b c 的关系式,从而求得椭圆离心率.【详解】如图,令P 点在第一象限(由椭圆对称性,其他位置同理),连接PO ,显然G 点在PO 上,连接PI 并延长交x 轴于点M ,连接G I 并延长交x 轴于点N ,GI x ⊥轴,过点P 作PE 垂直于x 轴于点E,设点00(,)P x y ,12(,0),(,0)F c F c -,则00,OE x PE y ==,因为G 为12PF F ∆的重心,所以00(,)33x y G ,因为IG x ⊥轴,所以I 点横坐标也为03x ,03xON =,因为PM 为12F PF ∠的角平分线,则有01212122()()23x PF PF F N NF F O ON OF ON ON -=-=+--==,又因为12+2PF PF a =,所以可得0012,33x xPF a PF a =+=-,又由角平分线的性质可得,011223=3x a F M PF x F M PF a +=-,而12=F M c OM F M c OM +-所以得03cxOM a=,所以0()3a c x MN ON OM a -=-=,0(3)3a c x ME OE OM a-=-=,所以3IN MN a c PEMEa c -==-,即0()3a c y IN a c-=-,因为1212121211()22PF F S PF PF F F IN F F PE ∆=++=即00()11(22)(2)232a c y a c c y a c -+=-,解得13c a =,所以答案为A.【点睛】本题主要考查离心率求解,关键是利用等面积法建立关于,,a b c 的关系式,同时也考查了重心坐标公式,以及内心的性质应用,属于难题.椭圆离心率求解方法主要有:(1)根据题目条件求出,a c ,利用离心率公式直接求解.(2)建立,,a b c 的齐次等式,转化为关于e 的方程求解,同时注意数形结合.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.正切函数是周期函数,最小正周期为πB.正切函数的图象是不连续的C.直线()ππZ 2x k k =+∈是正切曲线的渐近线D.把ππtan ,,)2(2y x x =∈-的图象向左、右平行移动πk 个单位,就得到tan y x =π(R,π)2x x k ∈≠+的图象【答案】ABC 【解析】【分析】根据正切函数的性质,以及它的的图象的特点,即可判断A ,B 。
2024~2025学年第一学期高三期中模拟测试卷(1)姓名:___________ 班级:___________一、单选题1.若,则()A.B.C.D.2.已知全集,集合,,则如图所示的图中阴影部分表示的集合为()A.B.C.D.3.若等比数列{an}的前n项和为S n,且S5=10,S10=30,则S20=()A.80B.120C.150D.1804.命题“”为真命题的一个充分不必要条件是()A.B.C.D.5.记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.C.D.36.在△ABC中,,为上一点,且,若,则的值为()A.B.C.D.7.已知,,且,则的最小值为().A.4B.6C.8D.128.设,则()A.B.C.D.二、多选题9.将函数的图象向左平移个单位得到函数,则下列说法正确的是()A.的周期为B.的一条对称轴为C.是奇函数D.在区间上单调递增10.已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线11.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A.动点B.三棱锥体积的最小值为C.与不可能垂直D.当三棱锥的体积最大时,其外接球的表面积为三、填空题12.已知为第一象限角,为第三象限角,,,则.13.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.14.若曲线在点处的切线也是曲线的切线,则.四、解答题15.已知函数的定义域为,对任意且,都满足.(1)求;(2)判断的奇偶性;(3)若当时,,且,求不等式的解集.1i1zz=+-z=1i--1i-+1i-1i+RU={}2560A x x x=--≤3lg3xB x yx-⎧⎫==⎨⎬+⎩⎭Venn(]3,1--(]1,3-(]1,3[]3,6[]21,2,0x x a∀∈-≤4a≤4a≥5a≤5a≥()y f x=3252π,23BAC AD DB∠==P CD12AP mAC AB=+||3,||4AC AB==AP CD⋅76-761312-1312x>0y>26xy x y++=2x y+0.110.1e,ln0.99a b c===-,a b c<<c b a<<c a b<<a c b<<()sin26f x xπ⎛⎫=-⎪⎝⎭6π()g x()g xπ()g x3xπ=()g x()g x,36ππ⎡⎤-⎢⎣⎦3()1f x x x=-+()f x()f x(0,1)()y f x=2y x=()y f x=1111ABCD A B C D-E1DD F11C CDD1//B F1A BEF11B D EF-131B F1A B11B D DF-25π2αβtan tan4αβ+=tan tan1αβ+sin()αβ+=e xy x=+()0,1ln(1)y x a=++a=()f x(,0)(0,)-∞+∞,x y∈R||||x y≠()22()()f x y f x y f x y++-=-(1),(1)f f-()f x1x>()0f x>(2)1f=(2)(1)2f x f x+--<16.如图,三棱锥中,,,,E 为BC 的中点.(1)证明:;(2)点F 满足,求二面角的正弦值.17.已知函数.(1)讨论的单调性;(2)证明:当时,.18.已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.19.记△ABC 的内角的对边分别为,已知.(1)求; (2)若,求△ABC 面积.参考答案:题号12345678910答案C D C D A D A CAD AC 题号11 答案ABD12.A BCD -DA DB DC ==BD CD ⊥60ADB ADC ∠=∠= BC DA ⊥EF DA =D AB F --()()e xf x a a x =+-()f x 0a >()32ln 2f x a >+{}n a 11a =11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a ,,A B C ,,a b c 2222cos b c a A+-=bc cos cos 1cos cos a B b A ba Bb A c--=+()tan tan tan 1tan tan αβαβαβ++==--因为,,则,,又因为,则,,则,则,解得法二:因为为第一象限角,为第三象限角,则,则13.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.14.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:15.【详解】(1)因为对任意且,都满足,令,得,,令,得,.(2)对任意非零实数,,令,可得.在上式中,令,得,即对任意非零实数,都有,是偶函数.(3)对任意且,有,由(2)知,在区间上单调递增.,,是定义域为的偶函数,且在区间上单调递增,原不等式转化为,解得或或,原不等式的解集为.16.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而所以二面角17.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;π3π2π,2π,2ππ,2π22k k m mαβ⎛⎫⎛⎫∈+∈++⎪ ⎪⎝⎭⎝⎭,Zk m∈()()()22ππ,22π2πm k m kαβ+∈++++,Zk m∈()tan0αβ+=-<()()3π22π,22π2π2m k m kαβ⎛⎫+∈++++⎪⎝⎭,Zk m∈()sin0αβ+<()()sincosαβαβ+=-+()()22sin cos1αβαβ+++=()sinαβ+=αβcos0,cos0αβ><cosα==cosβ==sin()sin cos cos sin cos cos(tan tan)αβαβαβαβαβ+=+=+4cos cosαβ====282142=36()1446323⨯⨯⨯=()122343⨯⨯⨯=32428-=(13164283⨯⨯+=28ln2e xy x=+e1xy'=+0|e12xy='=+=e xy x=+()0,121y x=+()ln1y x a=++11yx'=+()ln1y x a=++()()00,ln1x x a++121yx'==+012x=-11,ln22a⎛⎫-+⎪⎝⎭112ln21ln222y x a x a⎛⎫=+++=++-⎪⎝⎭ln20a-=ln2a=ln2,x y∈R||||x y≠()22()()f x y f x y f x y++-=-1,0x y==(1)(1)(1)f f f+=(1)0f∴=1,0x y=-=(1)(1)(1)0f f f-+-==(1)0f∴-=a b,22a b a bx y+-==()()()f a f b f ab+=1b=-()(1)()f a f f a+-=-a()()f a f a=-()f x∴12,(0,)x x∈+∞12x x<22111,0x xfx x⎛⎫>∴>⎪⎝⎭()()()22211111x xf x f x f f x f xx x⎛⎫⎛⎫=⨯=+>⎪ ⎪⎝⎭⎝⎭()f x∴(0,)+∞(2)1,211(2)(2)(4)f f f f=∴=+=+=(2)(1)2f x f x+--<(2)(1)2(1)(4)(44),f x f x f x f f x∴+<-+=-+=-()f x(,0)(0,)-∞+∞(0,)+∞∴0|2||44|x x<+<-2x<-225x-<<2x>∴2(,2)2,(2,)5∞∞⎛⎫--⋃-⋃+⎪⎝⎭,AE DE DB DC=DE BC⊥DA DB DC==60ADB ADC∠=∠= ACDABD△AC AB∴=AE BC⊥AE DE E=,AE DE⊂ADE⊥BC ADE AD⊂ADE BC DA⊥2DA DB DC===BD CD⊥BC DE AE∴==2224AE DE AD∴+==AE DE∴⊥,AE BC DE BC E⊥=,DE BC⊂BCD AE∴⊥BCD E,,ED EB EA,,x y z(0,0,0)D A B EDAB ABF()()11112222,,,,,n x y z n x y z==D AB F--θ(AB=(EF DA==(F()AF=1111⎧=⎪∴=11x=1(1,1,1)n=222==⎪⎩21y=2(0,1,1)n=cos=sinθ==D AB F--()()e xf x a a x=+-R()e1xf x a=-'a≤e0x>e0xa≤()e10xf x a=-<'()f x R当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,令,则令,则,则所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则,则在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.【详解】解:(1)[方法一]【最优解】:显然为偶数,则,所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.0a >()e 10xf x a =-='ln x a =-ln x a <-()0f x '<()f x (),ln a -∞-ln x a >-()0f x '>()f x ()ln ,a -+∞0a ≤()f x R 0a >()f x (),ln a -∞-()f x ()ln ,a -+∞()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=3()2ln 2f x a >+2312ln 2ln a a a ++>+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min102g a g ==--=>()0g a >0a >3()2ln 2f x a >+()e 1xh x x =--()e 1x h x '=-e x y =R ()e 1x h x '=-R ()00e 10h =-='0x <()0h x '<0x >()0h x '>()h x (),0-∞()0,∞+()()00h x h ≥=e 1x x ≥+0x =()2ln 22()e e eln 1xxx af x a a x a a x a x x a a x +=+-=+-=+-≥+++-ln 0x a +=ln x a =-3()2ln 2f x a >+23ln 12ln 2x a a x a +++->+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min 102g a g ==--=>()0g a >0a >3()2ln 2f x a >+2n 21222212,1n n n n a a a a +++=+=+2223n n a a +=+13n n b b +=+121+12b a a ==={}n b 122,5,31n b b b n ===-1231,2,4a a a ===122432,15b a b a a ====+=11n n a a +-=n 12n n a a +-=n n n *23()n n a a n N +-=∈()11331n b b n n =+-⨯=-{}n a *113(1)1,()22nn n a a a n +-==++∈N 11213(1)11222b a a -==++=+=322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++ 12(1)131n n n =+-+=-⨯122,5b b =={}n b 31n b n =-20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-={}n a 12212121,1,2n n n n a a a a a -+==+=+2122123n n n a a a +-=+=+{}n a 2221213n n n a a a ++=+=+{}n a从而数列的前20项和为:.19.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以故的面积为.{}n a 201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC V 11sin 122ABC S bc A ==⨯△。
2024年HGT 第一次模拟测试数学本试卷共4页,22小题,满分150分.考试时间120分钟一、单项选择题:共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}2R 240,N 10A x x x B x x +=∈--<=∈<∣∣,则A B = ()A.{}1 B.{}1,2 C.{}1,2,3 D.{}1,2,3,42.已知复数z 满足2i i 4z z -=+,则z =()A.3B.C.4D.103.已知等差数列{}n a 的前n 项和为n S ,若3612,33a a ==,则17S =()A.51B.34C.17D.14.已知()21:ln 10,:0,x p a q x a x+->∃>≤,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知抛物线2:4C x y =的焦点为,F A 是抛物线C 在第一象限部分上一点,若4AF =,则抛物线C 在点A 处的切线方程为()A.30y --= B.210x y --=C.10x y --= D.20y --=6.已知1225log 5,log 2,e a b c ===,则()A.c a b <<B.a c b <<C.a b c<< D.b c a<<7.已知函数()][1sin ,2,11,2f x x x x ⎛⎫⎡⎤=-∈--⋃ ⎪⎣⎦⎝⎭,则下列结论中错误的是()A.()f x 是奇函数B.max ()1f x =C.()f x 在[]2,1--上递增D.()f x 在[]1,2上递增8.木桶效应,也可称为短板效应,是说一只水桶能装多少水取决于它最短的那块木板.如果一只桶的木板中有一块不齐或者某块木板有破洞,这只桶就无法盛满水,此时我们可以倾斜木桶,设法让桶装水更多.如图,棱长为2的正方体容器,在顶点1C 和棱1AA 的中点M 处各有一个小洞(小洞面积忽略不计),为了保持平衡,以BD 为轴转动正方体,则用此容器装水,最多能装水的体积V =()A.4B.163C.6D.203二、多项选择题:共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是()A.若m,n m α⊂,则n αB.若α ,m βα⊂,则m βC .若,m n ββ⊥⊂,则m n⊥D .若,n αββ⊥⊂,则n α⊥10.已知圆22:4O x y +=与直线:l x my =+交于,A B 两点,设OAB 的面积为()S m ,则下列说法正确的是()A.()S m 有最大值2B.()S m 无最小值C.若12m m ≠,则()()12S m S m ≠D.若()()12S m S m ≠,则12m m ≠11.某环保局对辖区内甲、乙两个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:3μg/m )不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.已知甲乙两地区连续10天检查所得数据特征是:甲地区平均数为80,方差为40,乙地区平均数为70,方差为90.则下列推断一定正确的是()A.甲乙两地区这10天检查所得共20个数据的平均数是75B.甲乙两地区这10天检查所得共20个数据的方差是65C.甲地区环境治理达标D.乙地区环境治理达标12.已知直线1l 是曲线()ln f x x =上任一点()11,A x y 处的切线,直线2l 是曲线()e xg x =上点()11,B y x 处的切线,则下列结论中正确的是()A.当111+=x y 时,1l 2lB.存在1x ,使得12l l ⊥C.若1l 与2l 交于点C 时,且三角形ABC 为等边三角形,则12x =+D.若1l 与曲线()g x 相切,切点为()22,C x y ,则121x y =三、填空题:共4小题,每小题5分,共20分.13.已知向量,a b 满足(2,1,a b == ,且1a b ⋅=- ,则向量,a b 夹角的余弦值为__________.14.()6(2)1x y x --的展开式中43x y 的系数是__________.15.“南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.16.用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点P 且与两个球都相切,切点分别记为12,F F .这个平面截圆锥面得到交线,C M 是C 上任意一点,过点M 的母线与两个球分别相切于点,G H ,因此有12MF MF MG MH GH +=+=,而GH 是图中两个圆锥母线长的差,是一个定值,因此曲线C 是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为43,球的半径为4,平面α与圆锥的轴平行,且与这两个球相切于,A B 两点,记平面α与圆锥侧面相交所得曲线为C ,则曲线C 的离心率为__________.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.18.对于各项均不为零的数列{}n c ,我们定义:数列n k n c c +⎧⎫⎨⎬⎩⎭为数列{}n c 的“k -比分数列”.已知数列{}{},n n a b 满足111a b ==,且{}n a 的“1-比分数列”与{}n b 的“2-比分数列”是同一个数列.(1)若{}n b 是公比为2的等比数列,求数列{}n a 的前n 项和n S ;(2)若{}n b 是公差为2的等差数列,求n a .19.如图,两块直角三角形模具,斜边靠在一起,其中公共斜边10AC =,ππ,34BAC DAC ∠∠==,BD 交AC 于点E.(1)求2BD ;(2)求AE .20.甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有25%的收益率,若投资期间经济形势不好,投资有10%的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是40%,经济形势不好的概率是60%.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.21.如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,π3ABC ∠=,已知E 为棱AD 的中点,P 在底面的投影H 为线段EC 的中点,M 是棱PC 上一点.(1)若2CM MP =,求证://PE 平面MBD ;(2)若,PB EM PC EC ⊥=,确定点M 的位置,并求二面角B EM C --的余弦值.22.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,左右两顶点分别为12,A A ,过点()1,0C 作斜率为()110k k ≠的动直线与椭圆E 相交于,M N 两点.当11k =时,点1A 到直线MN 的距离为322.(1)求椭圆E 的标准方程;(2)设点M 关于原点的对称点为P ,设直线1A P 与直线2A N 相交于点Q ,设直线OQ 的斜率为2k ,试探究21k k 是否为定值,若为定值,求出定值并说明理由.2024年HGT 第一次模拟测试数学本试卷共4页,22小题,满分150分.考试时间120分钟一、单项选择题:共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}2R 240,N 10A x x x B x x +=∈--<=∈<∣∣,则A B = ()A.{}1 B.{}1,2 C.{}1,2,3 D.{}1,2,3,4【答案】C 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】因为2240x x --<,所以11x -<<+所以{{}R11,1,2,3,4,5,6,7,8,9A x x B =∈-<<+=∣,所以A B = {}1,2,3.故选:C .2.已知复数z 满足2i i 4z z -=+,则z =()A.3 B.C.4D.10【答案】B 【解析】【分析】先由复数的乘法和除法运算化简复数,再由复数的模长公式求解即可.【详解】由2i i 4z z -=+可得:i 2i 4z z -=+,所以()()()()()()22i 41i 2i 21i 2i 4i i 22i 3i 11i 1i 1i 2z +++++====+++=+--+,所以z ==故选:B .3.已知等差数列{}n a 的前n 项和为n S ,若3612,33a a ==,则17S =()A.51B.34C.17D.1【答案】C 【解析】【分析】由题意列方程组可求出1a ,d ,再由等差数列的前n 项和公式求解即可.【详解】设等差数列{}n a 的首项为1a ,公差为d ,所以由3612,33a a ==可得:11123253a d a d ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:11919a d ⎧=⎪⎪⎨⎪=⎪⎩,所以17117161171611717172929S a d ⨯⨯=+=⨯+⨯=.故选:C .4.已知()21:ln 10,:0,x p a q x a x+->∃>≤,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义,结合对数函数定义域和基本不等式求最值,利用集合包含关系可得.【详解】由()ln 10a ->,得10211a a a ->⎧⇒>⎨->⎩,设(){}{}:ln 102p A a a a a =->=>,由210,x x a x +∃>≤的否定为210,x x a x+∀>>,令()2112x f x x x x +==+≥,当且仅当1x x =时,又0x >,即1x =等号成立,若210,x x a x+∀>>,则2a <,若210,x x a x+∃>≤,则2a ≥,设{}:2q B a =≥,因为{}{}22a a a ≥⊇>,所以p q ⇒且q p ⇒/,所以p 是q 的充分不必要条件故选:A5.已知抛物线2:4C x y =的焦点为,F A 是抛物线C 在第一象限部分上一点,若4AF =,则抛物线C 在点A 处的切线方程为()A.30y --= B.210x y --=C.10x y --=D.20y --=【答案】A 【解析】【分析】设()11,A x y ,根据抛物线的定义求得1x =,13y =,再根据导函数的几何意义求出切线斜率,由点斜式写出方程即可【详解】设()11,A x y ,由24x y =,得2p =,所以抛物线的准线方程1y =-,由抛物线的定义可得114AF y =+=,得13y =代入24x y =,得1x =±又A 是抛物线C 在第一象限部分上一点,所以1x =由24x y =,得214y x =,所以12y x '=,所以抛物线C 在点A 处的切线方程斜率为112x x y ===⨯'=所以抛物线C 在点A 处的切线方程为3y x -=-30y --=,故选:A6.已知1225log 5,log 2,e a b c ===,则()A.c a b <<B.a c b <<C.a b c <<D.b c a<<【答案】D 【解析】【分析】由对数函数和指数函数的性质可得2,1,a b ><12c <<,即可得出答案.【详解】因为2255log 5log 42,log 2log 51,a b =>==<=121e 2c <==<=,所以b c a <<.故选:D .7.已知函数()][1sin ,2,11,2f x x x x ⎛⎫⎡⎤=-∈--⋃ ⎪⎣⎦⎝⎭,则下列结论中错误的是()A.()f x 是奇函数B.max ()1f x =C.()f x 在[]2,1--上递增 D.()f x 在[]1,2上递增【答案】B 【解析】【分析】根据奇函数的定义可判A ;根据复合函数的单调性并求出最值判断B 、C 、D 【详解】因为][2,11,2x ⎡⎤∈--⋃⎣⎦,所以定义域关于原点对称,且()()111sin sin sin f x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=--=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 是奇函数;故A 对;令[]1,1,2u x x x=-∈,所以()h x 在[]1,2单调递增,所以13π022x x ≤-≤≤,即3π022u ≤≤≤,又sin y u =在π0,2⎡⎤⎢⎥⎣⎦单调递增,所以()1sin f x x x ⎛⎫=-⎪⎝⎭在[]1,2单调递增,故D 对;因为()f x 是奇函数,所以()f x 在[]2,1--上递增,故C 对,综上,()()110f f -=-=,则()max 13()2sin 2sin 122f x f ⎛⎫==-=≠ ⎪⎝⎭,故B 错;故选:B8.木桶效应,也可称为短板效应,是说一只水桶能装多少水取决于它最短的那块木板.如果一只桶的木板中有一块不齐或者某块木板有破洞,这只桶就无法盛满水,此时我们可以倾斜木桶,设法让桶装水更多.如图,棱长为2的正方体容器,在顶点1C 和棱1AA 的中点M 处各有一个小洞(小洞面积忽略不计),为了保持平衡,以BD 为轴转动正方体,则用此容器装水,最多能装水的体积V =()A.4B.163C.6D.203【答案】C 【解析】【分析】作出辅助线,得到1PMQC 为菱形,从而得到多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,结合正方体的体积求出答案.【详解】棱长为2的正方体的体积为328=,在11,BB DD 上分别取,P Q ,使得1112B P D Q ==,又M 为棱1AA 的中点,故由勾股定理得112C P MQ MP C Q =====,故四边形1PMQC 为菱形,故1,,,P M Q C 四点共面,取111,,BB CC DD 的中点,,T R X ,连接,,,MT TR RX XM ,则平面1PMQC 将长方体1111MTRX A B C D -的体积平分,故以BD 为轴转动正方体,则用此容器装水,则最多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,故最多能装水的体积1111633844ABCD A B C D V V -==⨯=.故选:C二、多项选择题:共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是()A.若m,n m α⊂,则n αB.若α ,m βα⊂,则m βC.若,m n ββ⊥⊂,则m n ⊥D.若,n αββ⊥⊂,则n α⊥【答案】BC 【解析】【分析】根据线面平行的判定判断选项A ;根据面面平行的性质以及线面平行的定义判断选项B ;根据线面垂直的定义判断选项C ;根据面面垂直性质判断选项D 【详解】若m,n m α⊂,则n α或n ⊂α,故A 错;若α ,m βα⊂,则m 与平面β无交点,故m β,故B 对;若,m n ββ⊥⊂,则m 垂直于β内的任一条直线,所以m n ⊥,故C 对;若,n αββ⊥⊂,则n 与α可能平行或相交或在α内,故D 错;故选:BC10.已知圆22:4O x y +=与直线:l x my =+交于,A B 两点,设OAB 的面积为()S m ,则下列说法正确的是()A.()S m 有最大值2B.()S m 无最小值C.若12m m ≠,则()()12S m S m ≠D.若()()12S m S m ≠,则12m m ≠【答案】ABD 【解析】【分析】设出点线距离,求出面积取值范围判断AB ,利用圆的对称性判断C ,将D 转化为逆否命题再判断即可.【详解】由题意得:l x my =+)P ,如图,取AB 中点为D ,故()12OAB S S m AB OD OD ==⨯⨯== ,设OD 为d ,故OAB S == ,易知OD OP ≤,即0d <≤,故203d <≤,令(]20,3t d =∈,而OAB S =由二次函数性质得当2t =时,OAB S 取得最大值,此时()2OAB S m S == ,故A 正确,由二次函数性质得,()S m 在(]0,2单调递增,在(]2,3单调递减,易知当3t =时,()S m =,当0t →时,()0S m →,故()(]0,2S m ∈,则B 正确对于C ,作A 关于x 轴的对称点A ',B 关于x 轴的对称点B ',连接OA ',OB ',由圆的对称性知OAB OA B S S ''= ,故不论m 取何值,必有()()12S m S m =,故C 错误,易知D 的逆否命题为若12m m =,则()()12S m S m =,故欲判断D 的真假性,判断其逆否命题真假性即可,显然当12m m =时,则()()12S m S m =,故D 正确,故选:ABD11.某环保局对辖区内甲、乙两个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:3μg/m )不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.已知甲乙两地区连续10天检查所得数据特征是:甲地区平均数为80,方差为40,乙地区平均数为70,方差为90.则下列推断一定正确的是()A.甲乙两地区这10天检查所得共20个数据的平均数是75B.甲乙两地区这10天检查所得共20个数据的方差是65C.甲地区环境治理达标D.乙地区环境治理达标【答案】ACD 【解析】【分析】根据条件分别求出平均数和方差判断选项A 、B ;根据条件判断甲乙地区的每天空气质量指数判断选项C 、D【详解】甲地区平均数为80,乙地区平均数为70,则甲乙两地区这10天检查所得共20个数据的平均数是801070107520⨯+⨯=,故A 对;设甲乙两地区连续10天检查所得数据分别为,1,2,3,,10i x i = 和,1,2,3,,10i y i = ,所以()102211804010i i S x ==-=∑甲,得()102180400ii x =-=∑,()102211709010i i S x ==-=∑乙,得()102170900i i x =-=∑,由()1010111111180,10801010800108001080002020202020i i i i x x x ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,由()1010111111170,10701010700107001070002020202020i i i i y y y ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,甲乙两地区这10天检查所得共20个数据的方差是()()102211758020i i i S x y =⎡⎤=-+-⎣⎦∑()()101022111175752020i i i i x y ===-+-∑∑()()10102211118057052020i i i i x y ===-++--∑∑()()()()101022111180108025701070252020i i i i i i x x y y ==⎡⎤⎡⎤=-+-++---+⎣⎦⎣⎦∑∑()()()()1010101022111111111180108010257010701025202020202020i i i i i i i i x x y y =====-+-+⨯⨯+---+⨯⨯⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑∑1140090025902020=⨯+⨯+=,甲地区平均数为80,方差为40,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100804010⨯-=,所以能确定甲地区连续10天,每天空气质量指数不超过100,所以甲地区环境治理达标,故C 对;乙地区平均数为70,方差为90,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100709010⨯-=,所以能确定乙地区连续10天,每天空气质量指数不超过100,所以乙地区环境治理达标,故选:ACD12.已知直线1l 是曲线()ln f x x =上任一点()11,A x y 处的切线,直线2l 是曲线()e xg x =上点()11,B y x 处的切线,则下列结论中正确的是()A.当111+=x y 时,1l 2lB.存在1x ,使得12l l ⊥C.若1l 与2l 交于点C 时,且三角形ABC 为等边三角形,则123x =+D.若1l 与曲线()g x 相切,切点为()22,C x y ,则121x y =【答案】ACD 【解析】【分析】根据导数求出两直线斜率可判断选项A 、B ;根据斜率与倾斜角的关系及和差角公式求出123x =+,判断选项C ;利用导数的几何意义求出斜率判断选项D 【详解】由题意得11ln y x =,由111+=x y ,得11ln 1x x +=,如图,可知ln y x x =+与1y =交点是()1,1可得11x =,11ln ln10y x ===,由()ln f x x =,得()1f x x'=,所以直线1l 的斜率为()()111f x f ==',由()e xg x =,得()e xg x '=,所以直线2l 的斜率为()()()0110e 1g y g f x '==='=,即直线1l 的斜率等于直线2l 的斜率,所以12l l ∥,故A 对;因为()()1112ln 111111111e e 11y x l l k kf xg y x x x x ''⋅=⋅=⋅=⋅=⋅=≠-,所以不存在1x ,使得12l l ⊥,故B错;如图,设21,l l 的倾斜角分别为,αβ,因为三角形ABC 为等边三角形,所以π3βα=+,又()()11ln 11111tan ,tan e e y x f x g y x x αβ======'',所以1111πtan 3tan tan 131tan 1x x x αβαα++⎛⎫=+=== ⎪-⎝⎭-,整理得21110x --=,所以12x =±,因为()11,A x y 在曲线()ln f x x =上,所以1>0x,所以12x =+,故C 对;若1l 与曲线()g x 相切,切点为()22,C x y ,则()()211211e x l kf xg x x '==='=,即211e x x =,又()22,C x y 在()e x g x =上,所以22e x y =,所以211y x =,即121x y =,故D 对;故选:ACD【点睛】关键点点睛:根据导数的几何意义求出直线斜率,结合两直线平行和垂直的斜率关系进行判断各项.三、填空题:共4小题,每小题5分,共20分.13.已知向量,a b满足(2,1,a b == ,且1a b ⋅=- ,则向量,a b 夹角的余弦值为__________.【答案】16-【解析】【分析】由向量的夹角和模长公式求解即可.【详解】因为(1,b = ,所以3b == ,所以向量,a b 夹角的余弦值为:11cos 236a b a b a b ⋅-⋅===-⨯⋅.故答案为:16-.14.()6(2)1x y x --的展开式中43x y 的系数是__________.【答案】160【解析】【分析】根据二项式展开6(2)x y -,然后在与()1x -相乘,找到43x y 这一项即可.【详解】由于题目要求43x y 的系数,所以对于6(2)x y -的展开项中,没有43x y 这一项.所以只需要求出6(2)x y -的33x y 项在与()1x -相乘即可.()()333436C 2160x y x x y -⋅-=,故系数为160.故答案为:160.15.“南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.【答案】⎡⎣【解析】【分析】由已知设甲乙两人坐上摩天轮的时间分别为t ,10t +,得到甲乙两人坐上摩天轮转过的角度,分别列出甲乙离地面的高度1π8080cos15h t =-,2π2π8080cos 153h t ⎛⎫=-+ ⎪⎝⎭,然后得到12ππ153h h t ⎛⎫-=+ ⎪⎝⎭,由t 的取值范围即可求解.【详解】设甲乙两人坐上摩天轮的时间分别为t ,10t +,则甲乙两人坐上摩天轮转过的角度分别为2ππ3015t t =,()2ππ2π1030153t t +=+,则甲距离地面的高度为1π8080cos 15h t =-,乙距离地面的高度为2π2π8080cos 153h t ⎛⎫=-+⎪⎝⎭,则12ππ2π8080cos8080cos 15153h h t t ⎛⎫-=--++ ⎪⎝⎭π2πππ2ππ2ππ80cos 80cos 80cos cos sin sin cos 1531515315315t t t t ⎛⎫=+-=- ⎪⎝⎭3π3ππ1πππ80cos sin sin 21521515215153t t t t t ⎛⎫=--=+=+ ⎪⎝⎭因为030t ≤≤,所以ππ7π01533t ≤+≤,所以ππ0sin 1153t ⎛⎫≤+≤ ⎪⎝⎭,即12h h ⎡-∈⎣.故答案为:⎡⎣.16.用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点P 且与两个球都相切,切点分别记为12,F F .这个平面截圆锥面得到交线,C M 是C 上任意一点,过点M 的母线与两个球分别相切于点,G H ,因此有12MF MF MG MH GH +=+=,而GH 是图中两个圆锥母线长的差,是一个定值,因此曲线C 是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为43,球的半径为4,平面α与圆锥的轴平行,且与这两个球相切于,A B 两点,记平面α与圆锥侧面相交所得曲线为C ,则曲线C 的离心率为__________.【答案】53##213【解析】【分析】根据矩形的性质求出1212O O F F =,由题意求出2110O O =,根据旦德林双球模型和双曲线定义可得126PF PF -=,求出a 、c 即可【详解】如图,,M N 是圆锥与球的切点,12,O O 是球心,P 是截口上任一点,连接12O O ,12,,O A O B 则12,O A AB O B AB ⊥⊥,所以124O A O B ==,12O A O B ,所以12O ABO 是矩形,12O O AB=连接112,O M O N ,则12,O M MN O N MN ⊥⊥,因为圆锥的母线与轴夹角的正切值为43,即14tan 3MOO ∠=,所以1144tan 33O M AOO OM OMOM ∠===⇒=,根据对称性得3ON =,所以6MN =,故两圆的公切线长为6连接PB ,PA ,OP ,设OP 与球1O 的切线交于K ,与球2O 的切线交于H ,则,PH PB PK PA ==,所以26PA PB HK MN a -====,得3a =,在1OO A △中,15OO ===,所以1212210O O F F c ===,得5c =曲线C 的离心率为53c a =故答案为:53四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.【答案】(1)()2e,∞+;(2)2e .【解析】【分析】(1)求导得()2elnf x x=',令()0f x '<可求()f x 的单调递减区间;(2)由(1)易判断()f x 在()0,2e x ∈时单增,()f x 在()2e,x ∞∈+时单减,进而求出()max f x .【小问1详解】()2e 1ln2ln lnf x x x =+-=',令()0f x '<,得2e01x<<,即2e x >,所以()f x 的单调递减区间为()2e,∞+;【小问2详解】当()0,2e x ∈时,()()0,f x f x '>单调递增;当()2e,x ∞∈+时,()()0,f x f x '<单调递减,所以()()()2e 2ln22e 2eln2e 2e f x f ≤=+-=,即()f x 的最大值为2e .18.对于各项均不为零的数列{}n c ,我们定义:数列n k n c c +⎧⎫⎨⎬⎩⎭为数列{}n c 的“k -比分数列”.已知数列{}{},n n a b 满足111a b ==,且{}n a 的“1-比分数列”与{}n b 的“2-比分数列”是同一个数列.(1)若{}n b 是公比为2的等比数列,求数列{}n a 的前n 项和n S ;(2)若{}n b 是公差为2的等差数列,求n a .【答案】(1)()1413n n S =⨯-;(2)()21413n a n =⨯-.【解析】【分析】(1)利用已知求出通项公式,再求前n 项和即可.(2)利用累乘法求通项公式即可.【小问1详解】由题意知12n n n na b a b ++=,因为11b =,且{}n b 是公比为2的等比数列,所以14n na a +=,因为11a =,所以数列{}n a 首项为1,公比为4的等比数列,所以()()114141143nnnS ⨯-==⨯--;【小问2详解】因为11b =,且{}n b 是公差为2的等差数列,所以21n b n =-,所以122321n n n n a b n a b n +++==-,所以1212121215,,,23251n n n n a a a n n a n a n a ---+-===-- ,所以()()1212131n n n a a +-=⨯,因为11a =,所以()21413n a n =⨯-.19.如图,两块直角三角形模具,斜边靠在一起,其中公共斜边10AC =,ππ,34BAC DAC ∠∠==,BD 交AC 于点E.(1)求2BD ;(2)求AE .【答案】(1)50+;(2)5.【解析】【分析】(1)由锐角三角函数求出AB 、AD ,又ππ34BAD ∠=+,利用两角和的余弦公式求出cos BAD ∠,最后由余弦定理计算可得;(2)解法1:首先求出sin BAD ∠,再由ABD ABE ADE S S S =+ ,利用面积公式计算可得;解法2:首先得到33ABD BCD S AE EC S == ,再由10AE EC +=计算可得.【小问1详解】由已知,1cos 1052AB AC BAC ∠=⋅=⨯=,2cos 102AD AC DAC ∠=⋅=⨯=因为ππ34BAD BAC DAC BAC ∠=∠+∠=∠=+,所以ππππππcos cos cos cos sin sin 343434BAD ∠⎛⎫=+=- ⎪⎝⎭12322622224=⨯-=,所以在ABD △中由余弦定理可得2222cos BD AB AD AB AD BAD=+-⋅⋅∠2550254=+-⨯⨯50=+.【小问2详解】解法1:因为ππππππ62sin sin sin cos cos sin3434344BAD∠+⎛⎫=+=+=⎪⎝⎭,又因为ABD ABE ADES S S=+,所以111sin sin sin222AB AD BAD AB AE BAE AE AD EAD∠∠∠⋅⋅⋅=⋅⋅⋅+⋅⋅⋅,即162131255242222AE AE⨯⨯=⨯⨯⨯+⨯⨯,解得5AE=.解法2:因为πBAD BCD∠+∠=,所以()sin sinπsinBAD BCD BCD∠=-∠=∠,又AD CD==BC=所以11sin5322113sin22ABDBCDAB AD BAD BADSAEEC S BC CD BCD BCD∠∠∠∠⨯⋅⋅⨯⨯====⨯⋅⋅⨯,又因为10AC=,所以10AE EC+=,则10AE+=,所以5AE=.20.甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有25%的收益率,若投资期间经济形势不好,投资有10%的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是40%,经济形势不好的概率是60%.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.【答案】(1)0.5;(2)甲公司应该选择方案二,理由见解析【解析】【分析】(1)由全概率公式即可得解;(2)方案一服从两点分布,由此求出对应的概率可得期望;方案二有三种情况,分别算出相应的概率,结合期望公式算出期望,比较两个期望的大小即可得解.【小问1详解】记投资期间经济形势好为事件1B ,投资期间经济形势不好为事件2B ,投资咨询公司预测投资期间经济形势好为事件A ,则()()120.4,0.6P B P B ==,因此()()120.40.80.60.30.5P A P B A B A =+=⨯+⨯=;【小问2详解】若采取方案一,则该公司获得的利润值X 万元的分布列是X5020-P 0.40.6()500.4200.68E X =⨯-⨯=万元;若采取方案二:设该公司获得的利润值为Y 万元,有以下情况,投资期间经济形势好,咨询公司乙预测经济形势为好,49.5Y =,其发生的概率为:()10.40.80.32P B A =⨯=,投资期间经济形势好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()10.40.20.08P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为好,20.5Y =-,其发生的概率为:()20.60.30.18P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()20.60.70.42P B A =⨯=,因此,随机变量Y 的分布列为:Y 20.5- 1.5-49.5P 0.180.50.32因此,()20.50.18 1.50.549.50.32 3.690.7515.8411.4E Y =-⨯-⨯+⨯=--+=万元,因为()()E X E Y <,所以甲公司应该选择方案二.21.如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,π3ABC ∠=,已知E 为棱AD 的中点,P 在底面的投影H 为线段EC 的中点,M 是棱PC 上一点.(1)若2CM MP =,求证://PE 平面MBD ;(2)若,PB EM PC EC ⊥=,确定点M 的位置,并求二面角B EM C --的余弦值.【答案】(1)证明见解析(2)M 为PC 中点,19.【解析】【分析】(1)根据角平分线性质定理得2CD CN DE NE==,由平行线分线段成比例定理得MN PE ,再由线面平行的判定可证;(2)利用线面垂直可得PH BC ⊥,进而得BC ⊥平面PEC ,由线面垂直得EM PC ⊥,然后根据等边三角形三线重合即得M 为PC 中点,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z 轴建立空间直角坐标系,求出两个平面的法向量,利用公式cos ,n CB n CB n CB⋅=⋅ 求解即可【小问1详解】设BD CE N ⋂=,因为底面ABCD 是边长为2的菱形,所以CD AB =,对角线BD 平分ADC ∠,又E 为棱AD 的中点,所以2CD AB DE ==,在ADC △中,根据角平分线性质定理得2CN CD NE DE==,又2CM MP =,所以2CM MP =,所以2CN CM NE MP==,//MN ∴PE ,PE ⊄平面MBD ,且MN ⊂平面,//MBD PE ∴平面MBD .【小问2详解】PH ⊥Q 平面ABCD ,且BC ⊂平面ABCD ,PH BC ∴⊥,因为π3ABC ∠=,所以2π3BCD ∠=,在ACD 中,CD AB =,π3ABC ∠=,所以ACD 是等边三角形,又E 为棱AD 的中点,所以BC CE ⊥,PH ⊥Q 平面ABCD ,PH ⊂平面PCE ,所以平面PCE ⊥平面ABCD ,又平面PCE ⋂平面ABCD =CE ,BC ⊂平面ABCD ,BC ∴⊥平面PEC ,又EM ⊂平面PEC ,BC EM ∴⊥,又PB EM ⊥ ,,,PB BC B PB BC ⋂=⊂平面PBC ,EM ∴⊥平面PBC ,且PC ⊂平面PBC ,EM PC ∴⊥.因为P 在底面的投影H 为线段EC 的中点,所以PC PE =,又PC CE=所以PCE 为等边三角形,故M 为PC 中点,所以M 在底面ABCD 上的投影为CH 的中点.在CDE中,CE ===3,22CE AD PH CE ⊥== ,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z轴建立空间直角坐标系,所以()()()30,0,0,2,0,0,,0,,44C B E M ⎛⎫ ⎪ ⎪⎝⎭,()3332,,0,44EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭ ,设(),,n x y z = 是平面EBM的一个法向量,则020*******n EB x n ME y z ⎧⋅=⇒-=⎪⎨⋅=⇒-=⎪⎩,令2y =,则x z ==,即2,n = ,BC ⊥ 平面PEC ,()2,0,0CB ∴= 是平面PEC的一个法向量,57cos ,19n CB n CB n CB ⋅∴==⋅ ,因为二面角B EM C --是一个锐角,所以二面角B EM C --的余弦值为19.【点睛】方法点睛:向量法求二面角的方法:首先设两个平面的法向量坐标,利用线面垂直得到线线垂直即向量的数量积为零列出方程组求出法向量坐标,把二面角转化为向量的夹角,利用公式cos ,n CB n CB n CB⋅=⋅ ,结合图形写出夹角或补角.22.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为2,左右两顶点分别为12,A A ,过点()1,0C 作斜率为()110k k ≠的动直线与椭圆E 相交于,M N 两点.当11k =时,点1A 到直线MN的距离为2.(1)求椭圆E 的标准方程;(2)设点M 关于原点的对称点为P ,设直线1A P 与直线2A N 相交于点Q ,设直线OQ 的斜率为2k ,试探究21k k 是否为定值,若为定值,求出定值并说明理由.【答案】(1)2214x y +=(2)是定值32,理由见解析【解析】【分析】(1)由题意可得2c a =322=,解方程求出,a c ,再结合b =,即可得出答案.(2)设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+,联立直线和椭圆方程,利用根与系数的关系、斜率公式即可求得21k k 为定值.【小问1详解】依题意可知32c e a ==,由于11k =,则直线MN 的方程为10x y --=,因为点1A 到直线MN 的距离为322.322=,解得2a =,所以c =1b ==,所以椭圆E 的标准方程2214x y +=.【小问2详解】设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+.此时11k m =.联立直线与椭圆方程22144x my x y =+⎧⎨+=⎩消去x 得()224230m y my ++-=,则有12122223,44m y y y y m m --+==++不妨设()00,Q x y ,因为2,,A N Q 三点共线,则22A N A Q k k =,所以则有020222y y x x =--,因为1,,A P Q 三点共线,则11A P A Q k k =则有010122y y x x =+-,所以0022110222011122212111,x x x my x my m m y y y y y y y y -+----===-===-20012222114422334mx m m m m y y y m -⎛⎫+=-+=-= ⎪-⎝⎭+,所以0032y x m =,所以232k m=,所以2132k k =,所以2132k k =.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
高三数学模拟试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)。
1、设全集U=R,A={x |x <-3或x ≥2},B={x |-1<x <5},则集合|x |-1<x <2|是( )A .(UA )∪(UB ) B .U(A ∪B )C .(UA )∩BD .A ∩B2、复数(1+i )3的虚部是()A .2B .-2C .2iD .-2i3、已知2cos ,2524)sin(,θθπθ则为第二象限角=-的值为( )A .53B .54 C .±53 D .±54 4、若nx x ⎪⎭⎫ ⎝⎛-32213的展开式中含有常数项(非零),则正整数n 的可能值是( ) A .3 B .4 C .5 D .65、下列各组命题中,命题M 是命题N 成立的充要条件的一组命题是( ) A .M :a >b ;N :ac 2>bc 2B .M :a >b ,c >d ;N :a -d >b -cC .M :a >b >0,c >d >0;N :ac >bcD .M :|a -b |=|a |+|b |;N :ab ≤06、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )A .15B .30C .31D .647、函数)0(2>=x y x的反函数是( )A .)0(log 2>=x x yB .)1(log 2>=x x yC .)0(log 21>=x x yD .)1(log 21>=x x y8、已知四个命题:①若直线l ∥平面α,则直线l 的垂线必平行于平面α;②若直线l 与平面α相交,则有且只有一个平面经过l 与平面α垂直;③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥; ④若四棱住的任意两条对角线都相交且互相平分,则这个四棱柱为平行六面体.其中正确的命题是( ) A .① B .② C .③ D .④ 9、右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( )A .c x >B .x c >C .c b >D .b c >10、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11、若P (2,– 1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是____________12、已知实数x ,y 满足不等式组⎪⎩⎪⎨⎧≥≤+≤.y y x x ,y 0,2,那么目标函数z =x +3y 的最大值是_______.13、若向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b=-2,则x= 14、在计算―1223(1)n n ⨯+⨯+⋅⋅⋅++‖时,某同学学到了如下一种方法:先改写第k 项:1(1)[(1)(2)(1)(1)],3k k k k k k k k +=++--+由此得112(123012),3⨯=⨯⨯-⨯⨯ 123(234123),3⨯=⨯⨯-⨯⨯俯视图 正(主)视图 侧(左)视图 (1)(1)[(1)(2)(1)(1)].3n n n n n n n n +=++--+ 相加,得11223(1)(1)(2).3n n n n n ⨯+⨯+⋅⋅⋅++=++ 类比上述方法,请你计算―123234(1)(2)n n n ⨯⨯+⨯⨯+⋅⋅⋅+++‖,其结果为15、①(坐标系与参数方程选做题)在极坐标系中,曲线ρ=4cos )3(πθ-上任意两点间的距离的最大值为__________。
北京海淀区北京一零一中学2025届高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.1023112x x ⎛⎫- ⎪⎝⎭的展开式中有理项有( ) A .3项B .4项C .5项D .7项2.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅的最小值为( ) A .-14B .-12C .-lD .13.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .64.集合{2,0,1,9}的真子集的个数是( ) A .13B .14C .15D .165.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( ) A .()1,+∞B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞⎪⎝⎭6.已知a >0,b >0,a +b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( ) A .3B .4C .5D .67.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .88.“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==,120BAC ∠=︒,则||EB =( )A B C D 10.在等差数列{}n a 中,25a =-,5679a a a ++=,若3n nb a =(n *∈N ),则数列{}n b 的最大值是( ) A .3- B .13- C .1 D .311.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,22x x >,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝二、填空题:本题共4小题,每小题5分,共20分。
2025届上海市12校联考高三第一次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0a f x x a =>且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是( )A .(625,)+∞B .(4,64)C .(9,625)D .(9,64)2.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( )A .1eB .1eC .12eD .21e 3.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定4.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 5.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)6. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A .75B .65C .55D .457.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( ) A .12B .22C .32D .2238.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-9.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .10.已知复数,则的共轭复数在复平面对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是( )A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行 C .过点D 只能作唯一平面与BC 垂直 D .过AD 一定能作一平面与BC 垂直12.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则UM N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞二、填空题:本题共4小题,每小题5分,共20分。
【新结构】(南昌二模)江西省南昌市2024届高三第二次模拟测试数学试题❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知向量,,则()A.2B.4C.6D.82.设复数z满足,则()A. B. C.1 D.3.已知集合,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知,则不等式的解集是()A. B. C. D.5.在三棱锥中,平面BCD,,,E,F分别为AC,CD的中点,则下列结论正确的是()A.AF,BE是异面直线,B.AF,BE是相交直线,C.AF,BE是异面直线,AF与BE不垂直D.AF,BE是相交直线,AF与BE不垂直6.已知,则()A. B. C. D.7.已知双曲线的左、右焦点分别为,,双曲线的右支上有一点A,与双曲线的左支交于B,线段的中点为M,且满足,若,则双曲线C的离心率为()A. B. C. D.8.校足球社团为学校足球比赛设计了一个奖杯,如图,奖杯的设计思路是将侧棱长为6的正三棱锥的三个侧面沿AB,BC,AC展开得到面,,,使得平面,,均与平面ABC垂直,再将球O放到上面使得,,三个点在球O的表面上,若奖杯的总高度为,且,则球O 的表面积为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.为了解中学生喜爱足球运动与性别是否有关,甲、乙两校的课题组分别随机抽取了本校部分学生进行调查,得到如下两个表格:喜爱足球运动不喜爱足球运动合计男性15520女性81220合计231740甲校样本喜爱足球运动不喜爱足球运动合计男性7030100女性4555100合计11585200乙校样本参考公式及数据:,则下列判断中正确的是()A.样本中,甲校男学生喜爱足球运动的比例高于乙校男学生喜爱足球运动的比例B.样本中,甲校女学生喜爱足球运动的比例高于乙校女学生喜爱足球运动的比例C.根据甲校样本有的把握认为中学生喜爱足球运动与性别有关D.根据乙校样本有的把握认为中学生喜爱足球运动与性别有关10.已知,则下列说法中正确的是()A.在R 上可能单调递减B.若在R 上单调递增,则C.是的一个对称中心D.所有的对称中心在同一条直线上11.已知,M 为AB 上一点,且满足动点C 满足,D 为线段BC 上一点,满足,则下列说法中正确的是()A.若,则D 为线段BC 的中点B.当时,的面积为C.点D 到A ,B 距离之和的最大值为5D.的正切值的最大值为三、填空题:本题共3小题,每小题5分,共15分。
南通市2023届高三第三次调研测试数学参考答案与评分建议 一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知U R ,2{|430}A x x x ≤,{||3|1}B x x ,则U A B A .{|14}x x ≤≤ B .{|23}x x ≤≤C .{|12}x x ≤D .{|23}x x ≤【答案】A2. 已知,a b 是两个单位向量,则“⊥a b ”是“|2||2| a b a b ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】C3. 某人将斐波那契数列的前6项 “112358,,,,,”进行排列设置数字密码,其中两个“1”必须相邻,则可以设置的不同数字密码有 A .120种 B .240种 C .360种 D .480种【答案】A4.星载激光束与潜艇通信传输中会发生信号能量衰减.已知一星载激光通信系统在近海水下某深度的能量估算公式为7310r P E E S ,其中P E 是激光器输出的单脉冲能量,r E 是水下潜艇接收到的光脉冲能量,S 为光脉冲在潜艇接收平面的光斑面积(单位:2km ,光斑面积与卫星高度有关).若水下潜艇光学天线接收到信号能量衰减Γ满足10lgrPE E Γ (单位:dB ).当卫星达到一定高度时,该激光器光脉冲在潜艇接收平面的光斑面积为275km ,则此时Γ大小约为(参考数据:lg20.301 )A .76.02B .83.98C .93.01D .96.02【答案】B5. 已知底面半径为r 的圆锥SO ,其轴截面是正三角形,它的一个内接圆柱的底面半径为3r ,则此圆柱与圆锥的侧面积的比值为A .29BC .23D【答案】D6. 已知F 为椭圆2214x C y :的右焦点,P 为C 上一点,Q 为圆22(3)1M x y :上一点,则PQ PF 的最大值为 A .5 B .6C .4D .5【答案】D7. 已知cos(40)cos(40)cos(80)0θθθ ,则tan θA .B .C D【答案】A8. 已知23log log a b ,23log log (1)b c b ,则 A .1222a b cB .1222b a cC .5542log log log b a cD .5452log log log b a c【答案】C二、选择题:本题共4小题,每小题5分,共20分。
南宁市2025届普通高中毕业班摸底测试参考答案(含评分细则)(数 学)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个二选择题:本大题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分。
有两个正确选项的仅选其中一个给3分;有三个正确选项的仅选其中一个给2分,仅选其中两个给4分。
1.D i(17i)7i z =-=+,则7i z =-,故选D .2.B 当1x =时32x x =,所以p 为真命题;当0x =时40x =,所以q 为假命题,则q ⌝是真命题,故选B .3.A 由222-=-=a b a b 得2222444,444-=-=a a b +b a a b +b ,两式相减得,1==a b ,所以1444-=a b +,则14=a b ,故选A . 4.D 成绩在[70,80)上频率为110(0.010.020.020.03)0.2-⨯+++=,所以成绩在[70,80)上有0.25010⨯=人,成绩在[50,60),[60,70),[80,90),[90,100]的人数分别为5,10,15,10人,所以成绩在[80,90)上的人数最多,A 正确;成绩不低于70分的学生所占比例为110(0.010.02)0.7-+=,B 正确;50名学生成绩的平均分为550.1650.2750.2850.3950.278x =⨯+⨯+⨯+⨯+⨯=,成绩的中位数为80分,所以50名学生成绩的平均分小于其成绩的中位数,C 正确;50名学生成绩的极差在[30,50]上,不一定为50,D 错误,故选D .5.B 设(,)(0)M x y y >,则,,11AM BM y y k k x x ==+-由.2,11AM BM y y k k x x ==+-整理得221(0)2y x y -=>,故选B .6.C 由题可'''11()1.,(0,1)()0;(1,)()0,x f x m x f x x f x mx x-=-=∈<∈+∞>当时,当时, 所以f (x)在(0,1)上递减,在(1,)上递增,则min ()f x =f(1)=1-lnm ≥0,所以m ≤e ,又x ∀>0,mx >0,即m >0.则0<m ≤e,故选C.7.A 由正三棱台111ABC A B C -的侧面积为6得,等腰梯形11ABB A 的面积为2, 由211111()2()222AB A B AB A B -+⨯-=得,2111121A B A B -=,解得111A B =,则1133AB A B ==,将正三棱台111ABC A B C -补成正三棱锥P ABC -,如图所示,则11132PA PA =+.所以122PA =,则322PA =,过P 作PO ⊥平面ABC ,则O 为△ABC 的中心,所以3223sin 60AO ==︒,则3AO =,易知PAO ∠为1AA 与平面ABC 所成的角,在Rt △PAO 中,36cos 3322AO PAO PA ∠===,故选A . 8.C 因为222222(2)244()(2)222(2)2(2)222x x x x g x g x x x x x x x --++-=+==-+---+-+,所以()y g x =关于点(1,1)对称.要使AB BC =,则(1,1)B ,所以将(1,1)B 代入()f x ax =得1a =,当1a =时()f x x =关于点(1,1)对称,显然AB BC =,故选C .9.AD sin ,[2π,2π]π()sin ,(),()sin(2)cos 2sin ,[2ππ,2π]2x x k k f x x k g x x x x x k k π∈+⎧==∈=+=⎨-∈-⎩Z ,在同一坐标系中作出()f x 与()g x 的图象,如图所示,+∞由图知,0x =是()f x 与()g x 的图象相同的对称轴,A 正确;()f x 的值域为[0,1],()g x 的值域为[1,1]-,所以()f x 与()g x 的值域不同,B 错误;()f x 与()g x 没有相同的零点,C 错误;()f x 与()g x 的最小正周期均为π,D 正确,故选AD . 10 .BC 易知(1,0),F 准线l 的方程为1x =,则直线10x y --=经过焦点F .由24,10,y x x y ⎧=⎨--=⎩整理得2610x x -+=,设1122(,),(,)A x y B x y , 则126x x +=,根据抛物线的定义可知,1228AB x x =++=,A 错误;如图,过,AB 作,AA l BB l ''⊥⊥,垂足为,A B '',则2KF =,又45KFD ∠=︒,所以|BF|=|BB 1|,所以'||2||2||BD BB BF ==,B 正确;以AF 为直径的圆的半径为2AF r =,易知四边形AFOA ''为直角梯形,其中位线长为2OF AA ''+=122AA AF ''+=,所以以AF 为直径的圆与y 相切,C 正确;当△AEF 为等边三角形时,AF AE =,由抛物线的定义可知AE l ⊥,所以45EAF ∠=︒,这与△AEF 为等边三角形矛盾,所以l 上不存在点E ,使得△AEF 为等边三角形,D 错误,故选BC .11.BCD 当1a =时,2()32f x x x '=-++,令()0f x '=,解得1221,3x x ==-, 当2(,)(1,)3x ∈-∞-+∞时()0f x '<,当2(,1)3x ∈-时()0f x '>;所以()f x 在2(,)3-∞-和(1,)+∞上单调递减,在2(,1)3-上单调递增,所以1x =是()f x 的极大值点,A错误;2()32f x ax ax a '=-++,则224(3)2250a a a a ∆=-⨯-⨯=>,所以()0f x '=恒有两个根,结合二次函数的图象可知,()f x 恒有两个相同的单调区间,B 正确;由上得2()32(32)(1)f x ax ax a a x x '=-++=-+-,当0a >时()f x 在2(,)3-∞-和(1,)+∞上单调递减,在2(,1)3-上单调递增,要使()f x 有三个零点,则222()0,3273(1)0,2f a b a f b ⎧-=-+<⎪⎪⎨⎪=+>⎪⎩解322322,227227a b b a a -<<-<<即; 当0a <时,()f x 在2(,)3-∞-和(1,)+∞上单调递增,在2(,1)3-上单调递减,要使()f x 有三个零点,则222()0,3273(1)0,2f a b a f b ⎧-=-+>⎪⎪⎨⎪=+<⎪⎩解223322,272227b a b a a <<--<<即.综上可知使得()f x 有三个零点,ba可取得的整数为﹣1,0,C 正确; 设2()()32g x f x ax ax a '==-++,则()6g x ax a '=-+,令()0g x '=得16x = 因为()6g x ax a '=-+的零点为曲线()f x 的对称中心的横坐标,所以点11(,())66f 为曲线()y f x =的对称中心,D 正确,故选BCD . 三、填空题:本题共3小题,每小题5分,共15分。
数 学选择题部分(共40分)一、选择题1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U AB ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 AB .1CD .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .325.若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y =log a (x +),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时 A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =,a 10>10B .当b =,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分二、填空题 11.复数11iz =+(为虚数单位),则||z =___________. 12.已知圆C 的圆心坐标是(0,)m ,半径长是.若直线230x y -+=与圆相切于点(2,1)A --,则m =_____, =______.13.在二项式9)x 的展开式中,常数项是________,系数为有理数的项的个数是_______.14.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 16.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得到2|(2)()|3f t f t +-≤,则实数的最大值是____.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________,最大值是_______. 三、解答题18.(本小题满分14分)设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求的值 (2)求函数22[()][()]124y f x f x ππ=+++的值域. 19.(本小题满分15分)如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.20.(本小题满分15分)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列. (1)求数列{},{}n n a b 的通项公式; (2)记,n C n *=∈N证明:12+.n C C C n *++<∈N21.(本小题满分15分)如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得到ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的标准方程; (2)求12S S 的最小值及此时点G 的坐标.22.(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()2f x a ≤ 求的取值范围. 注:e=2.71828…为自然对数的底数.答 案一、选择题 1.A 2.C 3.C 4.B 5.A 6.D7.D8.B9.C10.A二、填空题 11.212.- 13. 14.5101516.4317.0,三、解答题 18.(I )∵()sin()f x x θθ+=+是偶函数,∴对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, ∴cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (Ⅱ)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2136212sin 22222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎫⎝⎭⎝⎭=+=--⎪⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 19.方法一:(I )连接A 1E ,∵A 1A =A 1C ,E 是AC 的中点,∴A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC , ∴,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又∵A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . ∴BC ⊥平面A 1EF . 因此EF ⊥B C.(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,∴平行四边形EGFA 1为矩形. 由(I )得到BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, ∴EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E EG .由于O 为A 1G 的中点,故12A G EO OG ===, ∴2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:连接A 1E ,∵A 1A =A 1C ,E 是AC 的中点,∴A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,∴,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得到EF BC ⊥. 20.(Ⅰ)设数列{}n a 的公差为d ,由题意得到11124,333a d a d a d +=+=+,解得到10,2a d ==.从而*22,n a n n =-∈N .由12,,n n n n n n S b S b S b +++++成等比数列得到()()()212n n n n n n S b S b S b +++=++. 解得到()2121n n n n b S S S d++=-. ∴2*,n b n n n=+∈N .(Ⅱ)*n c n ===∈N . 我们用数学归纳法证明.(1)当n =1时,c 1=0<2,不等式成立;(2)假设()*n k k =∈N 时不等式成立,即12h c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<==.即当1n k =+时不等式也成立.根据(1)和(2),不等式12n c c c +++<对任意*n ∈N 成立.21.(I )由题意得到12p=,即p =2. ∴,抛物线的准线方程为x =−1.(Ⅱ)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得到 ()222140t y y t---=,故24B ty =-,即2B y t =-,∴212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得到242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∴,直线AC 方程为()222y t t x t-=-,得到()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23Ac t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=--=+++++….当m =12S S取得到最小值12+,此时G (2,0).22.(Ⅰ)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=, ∴,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(Ⅱ)由1(1)2f a≤,得到04a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ==. 故∴,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,∴1()7q x q ⎛⎫ ⎪⎝⎭….由(i )得到11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. ∴,()<0q x .因此()0g t g =>….由(i )(ii )得到对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a ….综上所述,所求a 的取值范围是0,4⎛ ⎝⎦.。