稀土元素的结构特征
- 格式:ppt
- 大小:342.00 KB
- 文档页数:28
稀土金属的特性及其在钢铁中的作用殷都学刊f,稀三,午问.衔破lI(自然斟学版)1993年第3期].I 6一稀土金属的特性及其在钢铁中的作用田沂ji『稀土金属(Re)的研究日益深入,稀土工业在迅速发展.我们应当对稀土的性质和在钢铁中的作用有较多的认识.1稀土金属的特性稀土金属指钪,钇和1;个镧系元素.它们的原子结构有两个明显的特征:一是稀土原子的价电子基本构型同为(n,1)dns.,有三个价电子.二是由于镧系收缩形成的稀土原子相互间的原子半径,离子半径相差不大.这两个因素决定了稀土金属之间性质十分相似,化学活性很强.稀土金属单质多显银白色或灰色,有金属光泽,辩和钕显淡黄色.钪的比重为3.】,钇的比重为4.3.其余介于6—9之间.镧和铈柔软可塑与锡相似.钕和钐的硬度和铁相似,稀土金属的熔点大致随着原子尺寸的减小而顿序增高.按La到cd到Lu的顺序由9000到1700?逐渐增加.稀土的化学活性很大,与许多元素反应,尤其与氧,硫反应最为强烈稀土金属在化合物中多为三价,有些元素表现出三价或四价稀土元素以氧化物的形式存在于自然界,因彼此性质相似成为分离稀土的难题.从化合物中分离稀土的方法一般有分步结晶法,分级沉淀法,氧化还原法及离子交换法.有时根据性质和用途把稀土金属分为两个系列;一个是从La到Eu,一个是从Gd到Lu.短系列开始的元素表现出较高化合价,短系列未端表现出低出化合价.这正符合4f亚层上电子排布1—7成半充满状态,另一为8一】4到全充满状态.半充满或全充满的状态表现出较稳定的低价性质.还依比重数值称作轻稀土金属和重稀土金属.这均显示结构决定着性质的原则.2稀土在钢铁中的作用稀土在钢铁中应用很广,在稀土处理钢的品种方面已纳入标准,通过鉴正的品种达40多个,我国经常生产的已有2O多种.稀士处理的铸铁有球铁,蠕铁及灰铁三大类.我国还发展了一些中国特色的用作球化剂,蠕化剂及孕育剂的稀土添加剂.稀土的应用是其特殊结构及性质的体现,较多的核电荷,较小的半径,较少的价电子决定稀土的活性比一般金属强,和Ca相似.其强烈的还原性在钢冶炼中作为脱氧剂,脱硫剂许多实验还证明,钢中加稀土后.氧含量明显降低.其脱硫性:有人算出铈脱硫平衡常数1600?下为10I3--10稀土与氢的强烈作用能提高氢在钢中的溶解度,经过充分去氢的稀土加入钢后,产生”固氢”作用,可以抑制钢中氢引起的脆性和”白点”.稀土在较低的温度下与氨的亲合力比液态钢中大得多,可以改善与氨有关的性质,如使钢的奥氏体晶粒长大倾向减弱,降低高氮钢的脆性转变温度使珠完体中的渗碳体变薄,变短,且发生弯曲,甚至发生断裂,成为不连续的短棒状渗碳体.稀土金属的强烈活性可以消除钢中的有害杂质,一定量的稀土和钢中磷,砷,锑,铅等低溶点杂质交互作用,一方面形成溶点较高的化台物,另一方面抑制这些杂质在晶界上的偏析.在低碳钢中当暑?6.7时,即出现稀土脱砷产物.在低氧硫纯铁中加入少量稀土足以与锑反应并使富集在晶界的锑转移到晶内,减少锑在—Fe晶界上的偏聚稀土在钢中能改变原来杂物的形状和分布.如在一定的氧,硫含量下加入适量的稀土,可得到分散的球状夹杂物,超过适宜量则出现聚集的稀土夹杂物.总体上讲钢中加入稀土使夹杂物含量减少.虽然稀土原子半径较铁为大,但从内耗测定和稀土对钢某些性能的影响来看,稀土在钢中是可能互溶的.稀土在钢中的固溶作用与微台金化作用引起晶界结构,化学成份和能量的变化,甚至影响其它元素的扩散及新相的成核与长大.铜中稀土含量因不同钢种,不同的冶炼方法和不同的加稀土方法有很大差异.钢中氧,硫含量低会使稀土含量增大.钢中铝含量增加,稀土含量也增大.随着加入稀土总量的增加,稀土的固溶量也增大.稀土在钢中的分布是不均匀的,多偏聚于晶界,因为晶界上有一些原子较疏松的区域.这些偏聚和与其它元素的交互作用对钢的组织和性能产生明显的影响.稀土对钢的宏观组织,微观组织,晶粒度的影响有过许多研究和报道,例如,稀土使不锈钢钢锭的宏观组织致密,表面质量改善,使15CrMov钢枝状晶显着减少,晶轴变短.稀土在碳素钢中有细化晶粒的效果.对钢的组织和性能的影响作用主要有:能降低钢的液相线和固相线,使液钢的流动性增大.改变铸态组织,使钢的晶粒细化,夹杂物的分布和状态得到改善,提高铸件致密性,增强塑性.在不锈钢,高速钢等高台金钢中稀土可以明显改善钢的热塑性,扩大可塑温度范围.这是因为稀土减少了晶界上硫的偏析,及其与晶界上低熔点有害杂质的作用.同样的道理,稀土也能减弱高碳工具钢淬火开裂倾向.通过稀土强化晶界可改善耐热钢及高温台金的热强性.提高钢轨,轴承钢及某些铸铁的耐磨性.提高疲劳性能,改善焊接性能等稀土的抗腐蚀作用有许多报道.钢中含铈量大于0.015时在盐酸和硫酸中的腐蚀行为有了显着改善.含铈0.056的钢改善了抗点腐蚀能力和在4o氯化钙溶液中的抗应力腐蚀性能.对低硫钢的抗H.S腐蚀作用稀土表现尤为突出;含硫0.005的16Mn钢对H.s介质的腐蚀破裂和诱发裂纹仍很敏感,加入适量稀土后明显提高了抗Hs腐蚀破坏能力.在低硫钢中加入稀土,钢的韧性及疲劳性能仍有改善.在低硫16Mn钢的研究中发现,稀土比钙在控制夹杂物形态和彻底消除MnS夹杂物方面更为有效.(下转51页)一:工I口f图8I薯一三Ogl\一,图9(上接第7页)稀土抗腐蚀性能的原因可能是稀土的加入降低了钢中非金属夹杂物的含量,减少了腐蚀的基础条件.再者稀土的电极电位较高,在腐蚀过程中伴随放氢反应时在钢的阳极出现强烈极化而降低了腐蚀速度.稀土的抗高温氧化作用也可用此原因解释.对于不锈钢中稀土的抗腐蚀作用,也有的解释为稀土通过捕获合金中的硫,防止了稀土,Ni 的硫化,改善了Ni,合金的热腐蚀抗力稀土在钢铁中的作用还处于研究实验阶段,有待在工业生产中大面积推广.不同的实验条件可能得出不同的结论,作出不同的解释.总之,稀土金属原子结构的特殊性决定它们具有与一般金属不同的性质.钢铁中运用不同的方法和形式加入稀土或稀土化台物能够对钢铁的组织结构性能等产生不同程度的影响;微台金化作用,减少杂质的作用,”固氢作用,硬化作用以及在组织性能方面改善铸态组织,抑制品粒长大,改善热塑性,抑制脆性,提高强性耐磨性和抗氧化抗腐蚀性作用等.进一步认识和研究稀土金属的结构,性质及反应机理,认识规律,探孵原因,必能开拓出更广阔的应用前景.。
稀土元素的结构特征稀土元素是指周期表中的镧系元素,包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)。
它们的原子数从57到71不断增加,且具有相似的化学性质。
这些元素被广泛用于电子、光学、材料科学和医学等领域,并且是许多技术和设备的基本材料。
1.电子结构:稀土元素的电子结构具有特殊的特征。
它们的电子排布在4f轨道中,这些电子具有特殊的自旋和轨道角动量,称为“内层电子自旋-轨道相互作用”(LS耦合)。
这种相互作用使得稀土元素表现出许多独特的物理和化学性质,例如磁性、发光和超导等。
2.离子半径:稀土元素的离子半径相对较小,尤其是3价稀土离子(+3)的离子半径。
它们的离子半径逐渐缩小,从镧系到镥系,这与它们在周期表中的位置有关。
3.磁性:稀土元素具有丰富的磁性。
其中,镨、钕、钆和铕是具有自发磁性的常温磁体材料,它们在室温下具有较高的磁矩。
镐、铽、钬等元素则具有温度敏感的磁性,称为“磁相变”。
这些稀土磁体在电子设备、计算机和电动汽车等领域有广泛的应用。
4.化合价:稀土元素形成的化合物的化合价多种多样。
由于它们的电子结构特殊,稀土元素可以同时显示不同化合价的特性。
例如,镧的最低化合价为+3,但它也能形成+2和+4的化合价。
5.光学特性:稀土元素在光学方面具有重要的应用价值。
它们的原子核和电子结构使得它们能够吸收和辐射可见光、紫外光和红外光等不同波长的电磁波。
稀土元素可以被用于制备发光材料,例如激光晶体和荧光粉。
总而言之,稀土元素具有独特的电子结构、离子半径、磁性、化合价和光学特性等结构特征。
这些特点使得稀土元素在各种领域有广泛的应用,对于推动科技进步和发展具有重要作用。
稀土元素性质的决定因素和体现吴秀萍上海交通大学 F0511002班 5051109030摘要:稀土元素的性质十分相似,这与它们原子和离子特有的电子结构和半径大小有关,稀土元素在各方面的应用充分体现了它们的性质。
关键词:电子组态磁性光谱特性引言:稀土元素的发现至今已经经历了一个漫长的时期,人们对稀土元素独特的化学性质和物理性质的认识,也经历了一个逐渐深入的过程,因此能合理充分地应用稀土元素。
1 稀土元素的定义稀土元素是指周期表中第57(镧)到71(镥)号原子序的镧系元素,以及第三副族中的钪和钇共17个元素,它们在自然界中共同存在,性质非常相似。
由于这些元素发现的比较晚,又难以分离出高纯的状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。
[1]2 稀土元素性质的决定因素稀土元素的性质非常相似,但彼此之间又有一些差别,这都是由它们的原子和离子的电子结构,以及半径大小所决定的。
2.1 稀土元素原子和离子的电子结构特征电子结构特征是由电子组态来描述的。
电子组态是由主量子数n和角量子数l所规定的一种原子或离子中电子排布方式。
电子组态用符号 nl表示。
根据能量最低原理,镧系元素原子的基态电子组态由两种类型:[Xe]4f6s和[Xe]4f5d6s。
当原子受热或电磁辐射的激发,分别失去它们的5d6s或4f6s三个外层电子之后,都变成正三价的离子。
当4f轨道处于全空、半充满和全充满时,离子是较稳定的,所以镧、钆、镥的正三价离子是最稳定的。
原子序比镧大1或2的铈、镨,比钆大1的铽原子,也倾向于多电离出1或2个4f电子,变成稳定的正4价的离子。
原子序比钆、镥小1或2的钐、铕、镱,也倾向于少电离出1或2个电子,变成具有半充满或全充满的4f轨道,形成稳定的正2价的离子。
2.2 稀土元素的原子半径和离子半径镧系元素随着原子序的增加,核电荷相应增加,电子依次填入4f内层,而外层保持不变。
因为4f电子的径向分布不可能完全屏蔽核电荷对外层电子的引力,核电荷的增加对外层电子的引力也增大,因而造成镧系元素原子和正三价离子半径也随之减小,这就是“镧系收缩”现象。
什么是稀土?稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(N d)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。
稀土元素的主要物理化学性质稀土元素是典型的金属元素。
它们的金属活泼性仅次于碱金属和碱土金属元素,而比其他金属元素活泼。
在17个稀土元素当中,按金属的活泼次序排列,由钪,钇、镧递增,由镧到镥递减,即镧元素最活泼。
稀土元素能形成化学稳定的氧化物、卤化物、硫化物。
稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
稀土易和氧、硫、铅等元素化合生成熔点高的化合物,因此在钢水中加入稀土,可以起到净化钢的效果。
由于稀土元素的金属原子半径比铁的原子半径大,很容易填补在其晶粒及缺陷中,并生成能阻碍晶粒继续生长的膜,从而使晶粒细化而提高钢的性能。
稀土元素具有未充满的4f电子层结构,并由此而产生多种多样的电子能级。
因此,稀土可以作为优良的荧光,激光和电光源材料以及彩色玻璃、陶瓷的釉料。
稀土离子与羟基、偶氮基或磺酸基等形成结合物,使稀土广泛用于印染行业。
而某些稀土元素具有中子俘获截面积大的特性,如钐、铕、钆、镝和铒,可用作原子能反应堆的控制材料和减速剂。
工业黄金—稀土一、稀土的概念稀土(rare earth)有“工业维生素”的美称。
现如今已成为极其重要的战略资源。
稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17 种元素的氧化物。
稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:轻稀土包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
理化性质:一是缺少硫化物和硫酸盐(只有极个别的),这说明稀土元素具有亲氧性;二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;四是稀土矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。
富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。
在已发现的250多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有10余种。
二、我国稀土的形势及价值当今世界,每6项新技术的发明,就有一项离不开稀土,稀土是21世纪重要的战略资源。
中国稀土占据着众多的世界第一,其储量占世界总储量的53.5%。
但我国稀土却存在无序开发现象,按照目前的开发速度,再过二三十年,中国就会成为稀土小国甚至是无稀土国家。
长期以来中国的稀土矿藏资源遭到压价掠夺。
近几年来,专家、人大代表、政协委员用各种方式呼吁建立稀土战略储备制度,今年以来,稀土行业主体更是通过媒体来表达自己的诉求,期待国家能出手保卫稀土,建立国家储备机制。
稀⼟元素介绍稀⼟元素介绍在周期系中,你知道什么是镧系元素?什么是稀⼟元素吗?它们的电⼦层结构和性质有什么特点?它们在科学技术和⽣产中扮演了什么样的⾓⾊? “镧系元素”在周期表中从原⼦序数为57号的镧到原⼦序数为71号的镥共15种元素,它们的化学性质⼗分相似,都位于周期表中第ⅢB 族,第6周期镧的同⼀格内,但它们不是同位素。
同位素的原⼦序数是相同的,只是质量数不同。
⽽这15种元素,不仅质量数不同,原⼦序数也不同。
称这15种元素为镧系元素,⽤Ln 表⽰。
它们组成了第⼀内过渡系元素。
“稀⼟元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格⼦上⽅的钇和钪,共17种元素总称为稀⼟元素,⽤RE 表⽰。
按照稀⼟元素的电⼦层结构及物理和化学性质,把钆以前的7个元素:La 、Ce 、Pr 、Nd 、Pm 、Sm 和Eu 称为轻稀⼟元素或铈组稀⼟元素;钆和钆以后的7个元素:Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,再加上Sc 和Y 共10个元素,称为重稀⼟元素或钇组稀⼟元素。
“稀⼟”的名称是18世纪遗留下来的。
由于当时这类矿物相当稀少,提取它们⼜困难,它们的氧化物⼜和组成⼟壤的⾦属氧化物Al2O3很相似,因此取名“稀⼟”。
实际上稀⼟元素既不“稀少”,也不像“⼟”。
它们在地壳中的含量为0.01534,其中丰度最⼤的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。
铈在地壳中的含量⽐锡还⾼,钇⽐铅⾼,就是⽐较少见的铥,其总含量也⽐⼈们熟悉的银或汞多,所以稀⼟元素并不稀少。
这些元素全部是⾦属,⼈们有时也叫它们稀⼟⾦属。
我国稀⼟矿藏遍及18个省(区),是世界上储量最多的国家。
内蒙包头的⽩云鄂博矿是世界上最⼤的稀⼟矿。
在我国,具有重要⼯业意义的稀⼟矿物有氟碳铈矿Ce(CO 3)F ,独居⽯矿RE(PO 4),它们是轻稀⼟的主要来源。
磷钇矿YPO 4和褐钇铌矿YNbO 4是重稀⼟的主要来源。