2018高考北京理科数学带答案
- 格式:pdf
- 大小:230.22 KB
- 文档页数:10
2018年普通高等学校招生全国统一考试数 学(理)(北京卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A{x ||x |<2},B{-2,0,1,2},则AB(A ){0,1} (B ){-1,0,1}(C ){-2,0,1,2} (D ){-1,0,1,2} (2)在复平面内,复数的共轭复数对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限(3)执行如图所示的程序框图,输出的S 值为 (A ) (B )(C )(D )(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为,则第八个单音的频率为(A ) (B ) (C )(D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A ) 1 (B ) 2(C ) 3(D ) 4 此卷只装订不密封班级 姓名 准考证号 考场号 座位号(6)设a,b 均为单位向量,则“”是“a”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d 为点到直线x 的距离,当m变化时,d的最大值为(A)1(B)2(C)3(D)4(8)设集合A,则(A)对任意实数a ,(B)对任意实数a ,(C)当且仅当a 时,(D)当且仅当a 时,第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京高考卷数学(理科)试题附详细标准答案一、选择题(本大题共8小题,每小题5分,共40分)1. 设集合A={x|2<x<3},集合B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅2. 若复数z满足|z|=1,则|z1|的最大值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=3,a3+a5=18,则数列的前5项和为()A. 25B. 35C. 45D. 554. 已知函数f(x)=x²+2ax+a²+2(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为()A. a≤0C. a≤1D. a≥15. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=3上,则线段AB的中点轨迹方程为()A. y=3B. x=2C. y=3xD. x=3y6. 若sinθ+cosθ=1/2,则sinθ·cosθ的值为()A. 3/4B. 1/4C. 1/4D. 3/47. 在三角形ABC中,a=3,b=4,cosB=3/5,则三角形ABC的面积为()A. 2√6B. 3√6C. 4√6D. 5√68. 设函数f(x)=x²2ax+a²+1(a为常数),若f(x)在区间[1,+∞)上单调递增,则a的取值范围为()A. a≤1B. a≥1D. a≥0二、填空题(本大题共6小题,每小题5分,共30分)9. 已知数列{an}是等差数列,若a1=1,a3+a5=10,则a4的值为______。
10. 若复数z满足|z|=1,则|z1|+|z+1|的最大值为______。
11. 在等比数列{bn}中,b1=2,b3=16,则数列的公比为______。
12. 已知函数f(x)=x²+2x+a(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为______。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年普通高等学校招生全国统一考试(北京卷)理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分. 1.已知集合{}2A x x =<,{}–2,0,1,2B =,则A B =I ( ) A .{}0,1B .{}–1,0,1C .{}–2,0,1,2D .{}–1,0,1,22.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( ) ABC.D.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .46.设a ,b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .48.设集合(){},1,4,2A x y x y ax y x ay =-≥+>-≤,则( ) A .对任意实数a ,()2,1A ∈ B .对任意实数a ,()2,1A ∉ C .当且仅当0a <时,()2,1A ∉ D .当且仅当32a ≤时,()2,1A ∉ 第II 卷二、填空题共6小题,每小题5分,共30分.9.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.10.在极坐标系中,直线()cos sin 0a a ρθρθ+=>与圆2cos ρθ=相切,则a =___.11.设函数()()πcos 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则ω的最小值为_________.此卷只装订不密封 班级 姓名 准考证号 考场号 座位号12.若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________.13.能说明“若()()0f x f >对任意的(]0,2x ∈都成立,则()f x 在[]0,2上是增函数”为假命题的一个函数是__________.14.已知椭圆()222210x y M a b a b +=>>:,双曲线22221x yN m n -=:.若双曲线N 的两条渐近线与椭圆M的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)在ABC △中,7a =,8b =,17cosB =-.(1)求A ∠;(2)求AC 边上的高.16.(本小题14分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB的中点,AB BC ==12AC AA ==. (1)求证:AC ⊥平面BEF ;(2)求二面角1B CD C --的余弦值; (3)证明:直线FG 与平面BCD 相交.17.(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.18.(本小题13分)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线() y f x =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极小值,求a 的取值范围.19.(本小题14分)已知抛物线2:2C y px =经过点()1,2P .过点()0,1Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=uuu r uuu r ,QN QO μ=uuu r uuu r ,求证:11λμ+为定值.20.(本小题14分)设n 为正整数,集合(){}{}12A=0,1,1,2,,n n t t t t k n αα=∈=L L ,,,,. 对于集合A 中的任意元素()12,,,n x x x α=L 和()12,,,n y y y β=L ,记()()()()111122221,2n n n n M x y x y x y x y x y x y αβ⎡⎤=+--++--+++--⎣⎦L . (1)当3n =时,若()1,1,0α=,()0,1,1β=,求(),M αα和(),M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素αβ,,当,αβ相同时,(),M αβ是奇数;当αβ,不同时,(),M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素αβ,,(),0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.2018年普通高等学校招生全国统一考试(北京卷)理 科 数 学 答 案第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分,共40分.第II 卷二、填空题:本大题共6小题,每题5分,共30分. 9.【答案】63n a n =- 10.【答案】1+11.【答案】2312.【答案】313.【答案】sin y x =(答案不唯一) 14.1;2三、解答题共6小题,共80分。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|〈2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2}(D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A)32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A)1 (B)2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A)对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题1.A 2.D 3.B 4.D 5.C 6.C 7.CD 8.二、填空题212..119.3 10.21?3?6n?a n3yx (答案不唯一).14 =sin 13.2;13?三、解答题(15)(共13分)π1BABCBB=–,∴sin∈(解:(Ⅰ)在△,π),∴中,∵cos=2734.2?B?1cos78ab73A=,∴sin.= 由正弦定理得??34AsinsinABsin27πππAAB =,π),∴∈(.∈(0,∵),∴∠322ABBABCCABA=∵sin+sin=sin(+cos)=sincos(Ⅱ)在△中,3114333=.?)(???727214h3333hABCC== ,,=∵如图所示,在△中,sin∴CsinBC??7?BC214.33AC边上的高为.∴214分)(16)(共CABABC -解:(Ⅰ)在三棱柱中,111ABCCC∵⊥平面,1ACCA∴四边形为矩形.11CAEFAC,分别为的中点,,又11 EFAC.∴⊥BCAB.∵=BEAC∴,⊥BEFAC∴.⊥平面CCEFEFACBEAC,⊥∥,(Ⅱ)由(I)知⊥.1ABCABCEFCC,∴⊥平面又⊥平面.1BEABCBEEF,∴⊥.平面∵ xyzE如图建立空间直角坐称系-.BCDF,),1(1,(-1,0,0),由题意得0(0,2,),0G (0,2,1).0,0,2),(uuuruur∴,0)2,CB=(1,,CD=(2,,01)BCD 的法向量为设平面,n?(bc)a,,uuur?2a?c?00n?CD???,∴,∴uur??a?2b?0?n?CB?0??abc=-4,=-1令,=2,则BCD的法向量∴平面,n?4)?(2,?1,uur CDC的法向量为又∵平面,0),,2EB=(01uuruur21n?EB.∴=????cosn?EBruu21|n||EB|BCDCBCDC的由图可得二面角为钝角,所以二面角----1121.余弦值为?21GBCDF,(Ⅲ)平面的法向量为,2,1),∵(0,?1,?4)(2n?(0,0,2),uuuruuuruuur,∴与,∴不垂直,∴1),,?2=(0GFGF?2?n GF?n GFBCDBCDGF与平面内,∴与平面不平行且不在平面∴BCD相交.(17)(共12分)解:(Ⅰ)由题意知,样本中电影的总部数是,140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50.50.故所求概率为0.025?2000A为“从第四类电影中随机选出的电影获得好评”,设事件(Ⅱ)B为“从第五类电影中随机选出的电影获得好评”.事件PPP()()故所求概率为+()=ABABAB?AB PAPBPAPB).)(1–=((()(1–)())+PAPB)估计为0.2.(()估计为0.25,由题意知:故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.??????DDDDDD142536(18)(共13分)解:(Ⅰ)因为=[],)f(x23?x?4axa?(4a?1)x e f ′xaxaaxaxa+3]+1+[)–所以(4(=)[2+4–(4+1)]e x2xR)(∈e x axax+2]e–(2.+1)=[x2fa)e.–′(1)=(1faa=1.)e=0,解得由题设知′(1)=0,即(1–f (1)=3e≠0.此时a的值为1.所以f xaxax=ax–1]e())–(=(Ⅱ)由(Ⅰ)得′()[2+1+2x2x–2)e( .x11xf ax)<0;(,若2)时,>,则当′∈(a2xf x)>0.()时,当′∈(2,+∞f xx=2处取得极小值.在( )<0所以11xxaxax–1<0,1≤2)时,,则当–若2<0,≤–∈(0,22f x)>0.所以′(f x)的极小值点.不是(所以21a,+∞).的取值范围是(综上可知,2(19)(共14分)ypxP(1,2=2)经过点,解:(Ⅰ)因为抛物线2ppyx.,所以抛物线的方程为4=2 ,解得=4=2所以2l的斜率存在且不为0由题意可知直线,lykxk≠0)=.+1设直线(的方程为由得.220?4)x?k1xk?(2??y?kx?1?依题意,解得k<0或2??4yx0<k<1.22?0?1?k??(2k?4)?4PAPBlk≠.从而-2)y轴相交,故直线1不过点(又,,与-3.l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1所以直线).AxyBxy).),,((Ⅱ)设(,211214k?2.由(I)知,?xx?x??x 212122kk?2y yPA2= 直线–的方程为.1?1)2y?(x?1x?1?y?2?kx?1Mx.=0,得点令的纵坐标为112?y??2?M x?1x?111?kx?1N.同理得点的纵坐标为22?y?N x?12ruuuuuurruuuuuur由,得,.????QO=QNQOQM=y?=1?y1?MN所以22k?4?x?1x?12xx?(x?x)111111.211221????????=2?22kk1??1?y1?y(k?1)x(k?1)xk?1xxk?1221N1M2k11为定值.所以???(20)(共14分)αβ=(0,1,1,,0),1),所以解:(Ⅰ)因为=(11Mαα)= [(1+1?|1?1|)+(1+1?|1?1|)+(0+0(?,|0?0|)]=2,21M αβ)(1|)]=1.=,1|)+(0+1 [(1+0–|1?0|)+(1+1–|1––|0–2αxxxxBMααxxxx.+,则+(+(Ⅱ)设,=(,,),)∈= 41412323xxxxMαα)为奇数,(,∈{0,1}由题意知,且,,,4312xxxx中1的个数为1或,3.所以,,4213B?{(1,0,0,0),(0,1,0,0),(所以0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).αβMαβ)=1. ,均有,经验证,对于每组中两个元素(,B的元素.所以每组中的两个元素不可能同时是集合B中元素的个数不超过4.所以集合又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,B中元素个数的最大值为所以集合4.S xxx xxxAx =1∈,,,(Ⅲ)设=(,…,,…,,)|()knnk2112xxxkn),2,…,=0)(=1==…=,k121–S xxx xxx=0},==={( ,= ,…,)|…nnn221+11ASSS.=∪…∪∪则n+111Sknαβ,经验证,,–(1=1,2,…,)中的不同元素对于k Mαβ)≥(,1.Skn–12 所以,…,()中的两个元素不可能同时是=1,k B 的元素.集合Bn+1.所以中元素的个数不超过xxxSxxk=1,2,=…=(=0…,取e=(,,…,)∈且nknkk+112n–1).BSSB的元素个数)∪,…,e(,ee∪,则集合令=nnn+1–112n.,且满足条件+1为B是一个满足条件且元素个数最多的集合.故。
2018年北京高考数学及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合{}2|<=x x A ,{}2,1,0,2-=B ,则=⋂B A ( ).A {}1,0 .B {}1,0,1- .C {}2,1,0,2- .D {}2,1,0,1-2. 在复平面内,复数i-11的共轭复数对应的点位于( ) .A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限3. 执行如图所示的程序框图,输出的s 值为( ).A 21 .B 65 .C 67 .D 1274.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ).A f 32 .B f 322 .C f 1252 .D f 12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( ).A 1 .B 2 .C 3 .D 46. 设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ).A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()θθsin ,cos P 到直线02=--my x 的距离,当m ,θ变化时,d 的最大值为( ) .A 1.B 2 .C 3.D 48. 设集合(){}2,4,1|,≤->+≥-=ay x y ax y x y x A ,则( ).A 对任意实数a ,()A ∈1,2.B 对任意实数a ,()A ∉1,2.C 当且仅当0<a 时,()A ∉1,2.D 当且仅当23≤a 时,()A ∉1,2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 设{}n a 是等差数列,且31=a ,3652=+a a ,则{}n a 的通项公式为__________.10.在极坐标系中,直线()0sin cos >=+a a θρθρ与圆θρcos 2=相切,则=a _________.11. 设函数()()06cos >⎪⎭⎫ ⎝⎛-=ωπωx x f ,若()⎪⎭⎫⎝⎛≤4πf x f 对任意的实数x 都成立,则ω的最小值为__________.12.若x ,y 满足x y x 21≤≤+,则x y -2的最小值是__________.13.能说明“若()()0f x f >对任意的]2,0(∈x 都成立,则()x f 在[]2,0上是增函数”为假命题的一个函数是__________.14. 已知椭圆()01:2222>>=+b a b y a x M ,双曲线1:2222=-ny m x N ,若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合2A x x,2,0,1,2B x ,则A BI (A )01,(B )-101,,(C )-201,,(D )-1012,,,2.在复平面内,复数i 1i的共轭复数对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为().A .32fB.322fC.1252fD.1272f5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为().A.1B.2C.3D.4a b a b”是“a b”的6.设a b,均为单位向量,则“33(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7. 在平面直角坐标系中,记d为点P cos,sin到直线20x my的距离.当,m变化时,d的最大值为(A)1(B)2 (C)3 (D)4A x y x y ax y x ay,则8. 设集合,|1,4,2A对任意实数a,2,1A B对任意实数a,2,1AC 当且仅当0a 时,2,1AD 当且仅当32a时,2,1A二.填空(9)设n a 是等差数列,且13a ,2536a a ,则n a 的通项公式为。
(10)在极坐标系中,直线cossin(0)a a与圆2cos相切,则a。
(11)设函数cos6f xx0。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学&科网 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ). A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,mθ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试 结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40 分)、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
已知集合 A={x|X|<2} , B={ -, 0, 1, 2},则 A p|B=(2) (3) (A) {0 , 1}(C ) { z 0, 1,在复平面内,复数 (A )第一象限 (C )第三象限2} 丄的共轭复数对应的点位于1 —i执行如图所示s 值为(B ) (D) (B ) (D) { -1, 0, 1}{ - , 0, 1 , 2}第二象限第四象限1(A) 丄2(B )(C) 7(D)7 12(1)(4)“十二平均律”是通用的音律体系,明代朱载埴最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 •若第一个单音的频率为的频率为(A) 32f ( B) 3.2^f最大值为(A) 1 ( B) 2(C) 3 ( D) 4(8)设集合 A ={( x, y) |x—y 亠1,ax y 4,x—ay 込2},则(A)对任意实数a, (2,1),A ( B)对任意实数a, (2, 1) A3(C)当且仅当a<0时,(2, 1)-' A ( D )当且仅当a乞3时,(2, 1) A 2第二部分(非选择题共110分) f,则第八个单(5)(C) 1225 f(A) 1(B)(C) 3 (D)(6)设a, b均为单位向量,则a - 3b = 3a b ”是“ a 丄b” 的(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P (cos 0, si n B)到直线x—my—2=0的距离,当0:m变化时,d的(D) 12 27 f某四棱锥的三视图如图所示,恻(左〉现圏正(主)视團、填空题共6小题,每小题5分,共30分。
绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为(A (B(C )(D )(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★启用前2018年普通高等学校招生全国统一考试数 学(理)(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =(A ){0,1}(B ){–1,0,1} (C ){–2,0,1,2}(D ){–1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限(3)执行如图所示的程序框图,输出的s 值为(A )12(B )56 (C )76(D )712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学&科网 (A )32f(B )322f (C )1252f (D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1(B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1(B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|2},B={–2,0,1,2},则A∩B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}【答案解析】A分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A∩B= ,选A.在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案解析】D分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)【答案解析】B分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(A)(B)(C)(D)【答案解析】D分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2 (C)3 (D)4【答案解析】C分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.设a,b均为单位向量,则“”是“a⊥b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案解析】C分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为(A)1 (B)2【答案解析】C分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a0时,(2,1)(D)当且仅当时,(2,1)【答案解析】D分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.【答案解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可.详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.在极坐标系中,直线与圆相切,则a=__________.【答案解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为,由,得,由,得,即,即,因为直线与圆相切,所以设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案解析】分析:根据题意取最大值,根据余弦函数取最大值条件解得ω,进而确定其最小值.详解:因为对任意的实数x都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案解析】3分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.能说明“若f(x)f(0)对任意的x⊥(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.【答案解析】y=sinx(答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)f(0)且(0,2]上是减函数.详解:令,则f(x)f(0)对任意的x⊥(0,2]都成立,但f(x)在[0,2]上不是增函数.又如,令f(x)=sinx,则f(0)=0,f(x)f(0)对任意的x⊥(0,2]都成立,但f(x)在[0,2]上不是增函数.已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N 的离心率为__________.【答案解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,(本小题13分)(⊥)求⊥A;(⊥)求AC边上的高.【答案解析】解:(⊥)在⊥ABC中,⊥cosB=–,⊥B⊥(,π),⊥sinB=.由正弦定理得=,⊥sinA=.⊥B⊥(,π),⊥A⊥(0,),⊥⊥A=.(⊥)在⊥ABC中,⊥sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在⊥ABC中,⊥sinC=,⊥h==,⊥AC边上的高为.(本小题14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC= AA1=2.(⊥)求证:AC⊥平面BEF;(⊥)求二面角B-CD-C1的余弦值;(⊥)证明:直线FG与平面BCD相交.【答案解析】解:(⊥)在三棱柱ABC-A1B1C1中,⊥CC1⊥平面ABC,⊥四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,⊥AC⊥EF.⊥AB=BC.⊥AC⊥BE,⊥AC⊥平面BEF.又CC1⊥平面ABC,⊥EF⊥平面ABC.⊥BE平面ABC,⊥EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).⊥,设平面BCD的法向量为,⊥,⊥,令a=2,则b=-1,c=-4,⊥平面BCD的法向量,又⊥平面CDC1的法向量为,⊥.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(⊥)平面BCD的法向量为,⊥G(0,2,1),F(0,0,2),⊥,⊥,⊥与不垂直,⊥GF与平面BCD不平行且不在平面BCD内,⊥GF与平面BCD相交.(本小题12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数50300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(⊥)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(⊥)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(⊥)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案解析】解:(⊥)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(⊥)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P()=P()+P()由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(⊥)=.(本小题13分)设函数=[].(⊥)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(⊥)若在x=2处取得极小值,求a的取值范围.【答案解析】解:(⊥)因为=[],所以f ′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x⊥R)=[ax2–(2a+1)x+2]ex.f ′(1)=(1–a)e.由题设知f ′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(⊥)由(⊥)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.若a,则当x⊥(,2)时,f ′(x)0;当x⊥(2,+∞)时,f ′(x)0.所以f (x)0在x=2处取得极小值.若a≤,则当x⊥(0,2)时,x–20,ax–1≤x–10,所以f ′(x)0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C 有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(⊥)求直线l的斜率的取值范围;(⊥)设O为原点,,,求证:为定值.【答案解析】解:(⊥)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k0或0k1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)⊥(-3,0)⊥(0,1).(⊥)设A(x1,y1),B(x2,y2).由(I)知,.直线PA的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.(本小题14分)设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(⊥)当n=3时,若,,求M()和M()的值;(⊥)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;(⊥)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.【答案解析】解:(⊥)因为α=(1,1,0),β=(0,1,1),所以M(α,α)= [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M(α,β)= [(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(⊥)设α=(x1,x 2,x3,x4)⊥B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4⊥{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(⊥)设Sk=( x1,x 2,…,xn)|( x1,x 2,…,xn)⊥A,xk=1,x1=x2=…=xk–1=0)(k=1,2,…,n),Sn+1={( x1,x 2,…,xn)| x1=x2=…=xn=0},则A=S1⊥S1⊥…⊥Sn+1.对于Sk(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以Sk(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取ek=( x1,x 2,…,xn)⊥Sk且xk+1=…=xn=0(k=1,2,…,n–1).令B=(e1,e2,…,en–1)⊥Sn⊥Sn+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。
一、选择题1.( 2018.06-北京卷)已知集合A ={x |Ιx Ι<2},B ={-2,0,1,2},则A ∩B =【答案】A A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2}【解析】考查集合运算。
集合A ={-2,2}是一个开区间,集合B 只有4个元素,两个集合取交集,也就是取公共元素,不难发现只有元素0和1符合题意。
2.( 2018.06-北京卷)在复平面内,复数i-11的共轭复数对应的点位于【答案】D A .第一象限 B .第二象限 C .第三象限 D .第四象限 【解析】复数运算。
本题考查复数的共轭。
首先把原式化简为21i +,其共轭复数为21i -,显然{21,-21}位于第四象限。
3.( 2018.06-北京卷)执行如图所示的程序框图,输出的s 值为【答案】BA .21 B .65 C .67 D .127 【解析1】考查程序框图。
当k=1时,s=21;当k=2时,s=65;当k=3时,符合判断条件程序就直接跳出来,输出65。
【解析2】初始:k=1,s=1;第一次循环:s=21,k=2;第二次循环:s=65,k=3。
k 满足k ≥3,输出s=65。
4.(2018.06-北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。
十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122。
若第一个单音的频率为f ,则第八个单音的频率为【答案】D A .32f B .322f C .1252f D .1272f【解析】考查等比数列。
由题意可知,单音的频率构成以a 1=f 为首项,q =122为公比的等比数列,则8a =a 17q =f ²(1272)7=1272f 。
故选D 。
【解析2】知道了首项1a =f ,知道了公比q =122,直接套用公式求第8项即可。