[理学]第4讲:单片机硬件基本组成电路
- 格式:ppt
- 大小:560.52 KB
- 文档页数:16
单片机硬件基础知识1、电源单片机及外围模块的供电电源,一般用交流电源和直流稳压电源两种。
一般51单片机的工作电压为+5V,因此我们必须给其提供+5V的直流稳压电源。
另外,对于其他型号的单片机,如AVR、PIC等,其工作电压可能各不相同。
在选择电源时,应考虑其输出电压和电流是否满足单片机的要求,否则将会影响单片机的正常工作。
2、时钟时钟是单片机的心脏,是单片机有序工作的基本条件。
时钟产生相等的时间间隔,每个间隔内单片机都执行一个操作。
时钟的频率决定了单片机的处理速度。
常用的时钟电路有石英晶体振荡器和RC振荡器等。
石英晶体振荡器的频率稳定度高,一般为几十MHz到几百MHz,而RC振荡器的频率则较低,一般为几十到几百KHz。
对于一些微控制器(如AVR系列),内部具有振荡电路,因此只需外部提供一个稳定可靠的时钟源即可。
3、复位电路当单片机刚上电时,由于内部电路的导通需要一个建立时间,此时单片机的所有寄存器和外部设备处于不确定状态。
为了使程序正常工作,一般将单片机的 Reset端接一个复位电路,在上电的瞬间使单片机处于复位状态。
常用的复位电路有上电复位和手动复位两种。
上电复位电路一般由一个电容和一个电阻组成,上电瞬间,电容充电,Reset 端为高电平,经过一段时间后电容放电,Reset端又变为低电平,从而实现上电复位功能。
手动复位电路则通过按键实现上电复位。
手动复位的按键一般连接到单片机的 Reset端。
另外,还有一些单片机内部具有上电复位电路,因此不需要外接上电复位电路。
4、晶振电路晶振电路是单片机内部时序的基础,它为单片机提供了一个基准频率。
晶振的频率决定了单片机的工作速度。
常用的晶振有石英晶体振荡器和陶瓷谐振器等。
在选择晶振时,需要考虑其频率、稳定性以及功耗等因素。
常用的晶振引脚连接方法有并联法和串联法两种。
并联法是将晶振的一个引脚与单片机的 XTAL1端相连,另一个引脚与地相连;而串联法则是将晶振的一个引脚与单片机的 XTAL1端相连,另一个引脚与单片机的 XTAL2端相连。
单片机的基本组成在讲单片机的组成之前我们先来说一下大家都熟知的计算机一、计算机的经典结构在设计计算机时匈牙利籍数学家冯.诺依曼提出的“程序存储”和“二进制运算”的思想。
1、二进制运算决定了计算机的硬件结构。
二进制运算包括二进制算术运算和逻辑运算(逻辑运算的基础是逻辑代数,又称布尔代数)。
逻辑量只表示两种不同的状态,可以对应电子线路中的电阻高低、二极管、三极管的通断等。
因此,二进制运算决定了计算机可以由电子元器件,特别是集成电路组成。
2、程序存储决定了软件控制硬件工作。
因此,计算机的基本结构包括硬件和软件两部分。
计算机的工作原理:由输入设备将软件送入存储器,然后由控制器逐条取出存储器中的控制软件,并运行,再将运行结果送到输出设备。
3、计算机的经典结构根据以上思路,计算机由运算器、控制器、存储器和输入设备、输出设备组成。
图1.1.1 计算机经典结构图对经典结构中各部分有机组合,就构成了微型计算机。
由于各部分的具体电路(元器件及元器件的组合方式)不同,又形成了各种应用形态。
二、微型计算机(Microcomputer)组成及应用形态1、微型计算机组成将经典结构中的运算器、控制器组合在一起,再增加一些寄存器等,集成为一个芯片,这个芯片称为微处理器(Microcontroller),即CPU(Center Processing Unit )。
这样微型计算机就由CPU、存储器、输入/输出(I/O)接口组成。
再配以输入/输出(I/O)设备和软件,就构成了微型计算机应用系统,简称微型计算机。
图1.1.2 微型计算机系统结构图2、应用形态(1)系统机(多版机)微处理器CPU、存储器、I/O端口电路和总线接口等组装在一块主板上,再通过系统总线和外设适配卡连接键盘、显示器、打印机等,再配上系统软件就构成了一个完整的计算机系统。
图1.1.3 微型计算机结构图这就是办公室、家庭使用的PC机的典型形态。
由于较大的存储容量(存储器、硬盘、软盘、光盘等),输入、输出设备齐全,而且软件丰富(系统软件和应用软件),能够进行海量计算和应用系统开发。
第1章单片机硬件系统本章概要及学习目标:本章从单片机的概念入手,以A T89C51单片机芯片为例,介绍MCS-51型单片机芯片的外部引脚功能、内部硬件结构及工作特性,并通过单片机应用系统开发过程实验说明使读者对单片机应用系统及其开发有一个感性认识,对单片机的基本工作原理和工作过程有一个大致的了解,同时也指出了学习单片机的两个基本方面:硬件结构和软件编程。
通过对本章的学习,读者应掌握和了解以下知识:1.计算机、微型机、单片机及单片机应用系统的概念2.微型机的CPU、存储器和输入/输出的硬件构成及功能3.89C51外部引脚及功能,内部结构及工作原理4.89C51的RAM分布、ROM结构及地址形成5.89C51的SFR6.89C51的并行口及时钟与复位7.单片机应用系统的开发过程及工作过程1.1 计算机、微型机、单片机及单片机应用系统概述微型计算机的出现给人类生活带来了根本性的变化,使现代科学研究产生了质的飞跃,单片机技术的出现则给现代工业测控领域带来了一次新的技术革命。
它在工业控制、数控采集、智能化仪表、办公自动化等诸多领域得到了极为广泛的应用,毫不夸张地说,单片机技术的开发和应用水平已逐步成为一个国家工业发展的标志之一。
单片微型计算机(Single Chip Micro Computer)简称单片机,它是一种把组成微型计算机的各功能部件:中央处理单元CPU、一定容量的随机存储器RAM和只读存储器ROM、I/O接口电路、定时器/计数器以及串行口等制作在一块芯片中的计算机。
由于单片机的硬件结构与指令系统的功能都是按工业控制要求而设计的,常用在工业检测、控制装置中,因而也称为微控制器(Micro-Controller)。
单片机具有结构简单、控制功能强、可靠性高、体积小、价格低等特点,在家用电器、智能化仪器、工业控制以及火箭导航尖端技术领域都发挥着十分重要的作用。
1.1.1 单片机及单片机应用系统1.微型计算机及微型计算机系统计算机的硬件系统由运算器、存储器、控制器、输入和输出设备五大部分组成。
1.2 单片机内部主要部件单片机内部电路比较复杂,MCS-51系列的8051型号单片机的内部电路根据功能可以分为CPU、RAM、ROM/EPROM、并行口、串行口、定时/计数器、中断系统及特殊功能寄存器(SFR)等8个主要部件,如图1-2-1所示。
这些部件通过片内的单一总线相连,采用CPU加外围芯片的结构模式,各个功能单元都采用特殊功能寄存器集中控制的方式。
其他公司的51系列单片机与8051结构类似,只是根据用户需要增加了特殊的部件,如A/D转换器等。
在设计程序过程中,寄存器的使用非常频繁。
本节内容在了解单片机内部的组成机构基础上,重点介绍单片机内部常用的寄存器的作用。
图1-2-1 MCS-51架构1.2.1中央处理器(CPU)中央处理器是单片机的核心,主要功能是产生各种控制信号,根据程序中每一条指令的具体功能,控制寄存器和输入/输出端口的数据传送,进行数据的算术运算、逻辑运算以及位操作等处理。
MCS-51系列单片机的CPU字长是8位,能处理8位二进制数或代码,也可处理一位二进制数据。
单片机的CPU从功能上一般可以分为运算器和控制器两部分。
一、控制器控制器由程序计数器PC、指令寄存器、指令译码器、定时控制与条件转移逻辑电路等组成。
其功能是对来自存储器中的指令进行译码,通过定时电路,在规定的时刻发出各种操作所需的全部内部和外部的控制信号,使各部分协调工作,完成指令所规定的功能。
各部分功能部件简述如下。
1.程序计数器PC(Program Counter)程序计数器是一个16位的专用寄存器,用来存放下一条指令的地址,具有自动加1的功能。
当CPU要取指令时,PC的内容送地址总线上,从存储器中去取出一个指令码后,PC 内容自动加1,指向下一个指令码,以保证程序按顺序执行。
PC是用来指示程序的执行位置,在顺序执行程序时,单片机每执行一条指令,PC就自动加1,以指示出下一条要取的指令的存储单元的16位地址。
也就是说,CPU总是把PC 的内容作为地址,根据该地址从存储器中取出指令码或包含在指令中的操作数。