雷达对抗原理(赵国庆)第三章
- 格式:ppt
- 大小:1.31 MB
- 文档页数:37
时差定位与两种测时差方法2t1~6年l2【)【】6.No.1电f对抗EI(ROMCW ARFARE总第106蛐SerieN¨.106时差定位与两种测时差方法刘刚赵国庆(西安电子科技大学电子对抗研究所,西安710071)摘要介绍了时差定位以及两种测时差的方法——基于统一信号和基于统一时间的时差测量方法,并针对测量精度进行分析,最后给出GDOP仿真.关键词时差定位信号同步时间同步定位精度TDOALocationandTwoMethodsofTimeDifferenceMeasurement LiuGangZhaoGuoqing(ResearchInst.ofElectronicCountermeasures,XidianUniv.,Xi'all710071,China) Abstract:TwomethodsoftimedifferencemeasurementinTDOAlocationaregiveninthisarti cle: themethodbasedonthesignalsynchronizationandthemethodbasedonthetimesynchronizat ion. Thenthealgorithmandaccuracyoflocationareanalyzedwithformulate.GeometricDilution OfPre—cisiongivestheeffectsofthetimemeasuringprecisionintheend.Keywords:TDOAlocation;signalsynchronization;timesynchronization;locationaccurac yO引言时差定位(TimeDifferenceOfArrivalLocation)是一种重要的无源定位方法,而无源定位系统本身并不发射电磁波,完全是被动工作的,因此具有隐蔽性好的优点,对于提高系统在电子战环境下的生存能力具有重要的作用.目前在对时差定位的研究中多关注于定位算法,精度分析和布站方式,而较少关注另一个影响定位精度的重要因素: 辐射源信号到达各观测站时间的测量,即时差测量的精度问题.这在时差定位中是相当重要的.因为我们都知道电磁波以光的速度(近似为3×l0sm/s)在空气中传播,一微秒(1OI6秒)的时间测收稿日期:2005年7月11日量误差反映到距离上就是30o米的误差,可谓是"失之毫厘,谬以千里".因此,探讨时差测量的相关问题是十分必要的.当前在时差定位中通常采用两种测时差的方式:基于统一信号的方式和基于统一时间的方式. 前者是目前比较常用的方式,而后者也处在不断发展之中.本文对这两种方式进行简要介绍,作为相关研究的参考.1时差定位原理[1][2】[3】时差定位实际上是反"罗兰"系统的应用,罗兰导航系统根据来自3个已知位置的发射机信号来确定自身的位置,而时间差测量定位系统是利22电子对抗2006年第l期用3个(多个)已知位置的接收机接收菜一个未知位置的辐射源的信号,来确定该辐射源的位置. 两个观测站采集到的信号到达时问差确定了一对双曲(面)线,多个双曲面(线)相交就可以得到目标的位置,因此时差定位又被称为双曲线定位. y'///'i/tl/,/I',,'/I(1.y1),(2.J11)图I时差定位原理图如图l所示,以平面二维三站定位为例:目标71的位置为(,),),so(o,Y o)为主站,sl(l,Y1),S2(2,),2)分别为副站l和副站2.ro,rl,r2分别为目标到主站so,副站s.和副站S2的距离.距离差为Ar,i:1,2,则定位方程为:fo=(—XO)+(Y一),0){=(—)+(Y—Yi),(i=1,2)(1)【c?△£=c?(t—to)=一ro对上式整理化简得:(0一)+(Y o—Y)Y=ki+c'△£'ro(2)其中k去[(c?△£i)+(o+yo2)一(+yi2)],(i:l,2),c:3XlOSm/s,解方程组即可得到目标位置.2两种测时差方式的介绍2.1基于统一信号方式的时差测量这种方法又称为基于信号同步的时差测量.通常各观测站之间的距离是固定的,各站位置坐标均精确标注,且只在主站有一个高稳定时钟,副站没有时钟.各站同时开始接收辐射源信号,分别收到辐射源信号后,副站立即将辐射源信号直接或变频转发到主站,本身则不对信号做任何处理.主站收到从副站转发的信号,并分别测量各副站转发信号的到达时间,因为已知各站间距,且可以预先估计出信号从各副站转发的延迟,所以可以测出辐射源信号到达各观测站的时间差,从而完成时差定位./\电磁淳/,I,,,/磁渡/电磁,,电磁渡/电磁渡\副图2基于统一信号方式的时差测量这种方法是目前普遍采用的方式,在工程上易行.但缺点也比较明显,首先此方法要求各观测站位置固定,必须在主副站间有可靠的直视传输路径,一般有效间距为15km,最大间距为30km, 不够机动灵活;其次需要建立专门的信号转发设备及传输通道,比较复杂;三是定位过程有两次信号检测和到达时间的误差.一次是在副站检}贝4辐射源直达信号,检测判别后才进行转发,第二次是在主站对副站转发信号的检测,才测量时间,由于脉冲的前沿是有斜率的,所以引起两次的时间误差.信号差转误差较大.2.2基于统一时间方式的时差测量这种方法又称为基于时间同步的时差测量.在这种方法中,主站和各副站均设有高稳定度的时钟,并且每隔一段时间(1s或Ims等)对一次时间(将当前时间归零),因此可认为各站是高度时间同步的,即拥有统一的时间基准.这样各站均可分别测量处理辐射源信号的到达时间,各副站只需将信号到达时间信息传递给主站即可.对于固定站,其位置可以预先精确标注;对于运动站, 目标,,电磁,,一//\///电磁渡,/电磁波\副味.(时钟1)-占(时钟2'(时钟)图3基于统一ri,JI'~il方式的时差测量总第106期刘刚,等:时差定位与两种测时差方法则在传递信号到达时间的同时还需要传递自身的当前位置.主站根据时间信启,计算时间差并计算出辐射源的位置.这种方法的优点是可以实现测量站的机动且便于展开站间距(基线),便于多站长基线组网,不必建立转发设备和专门的转发信号传输通道,只需利用已有的数据传输线路传递时间数据即可, 使用灵活.定位过程只有一次信号检测,所以时间测量误差较小.而缺点则是对各站的时钟稳定度要求非常高,若没有统一的时间基准(即各站时钟问的误差较大)的话则定位误差会很大.3精度分析及仿真[4】[5]3.1精度分析定位精度用GDOP(GeometricDilutionOfPreci—sion)来表示:GDOP:√(盯+盯)(3)式中,表示,Y方向上的定位标准差.首先对式C?AtC?(tf—t0)=r—r0,(=l,2)求微分,可得到:C?d(t—t0)=(c一c0)出+(.打一C0y)dy+:李:一亟:坐,(1,2)一一=一I,=I/J.一a—c3x一''一' :妻:一:,(l,2)一_-_一=一一.I,=1./,.一一—…=Clx--COxCly一-OOyCC2COC2Co】=Izy—yJl一一=I一2一.y—y2),一y.l—一=c-[d(tl—t0)d(t2一to)]rdY=C-dX+flXs=(CrC)Cr(dY一)(6)(CrC)一Cr=B=(22(7)Pet=FL?j=B{E[dY?dyr]+E[dXs?]}Br(8)'『2.r/t2r11[dY"dYr]=c2l,盯△.'盯△,盯,!j其中0"3(i=1,2)为第i站的时间测量误差,-2为At.与At2间的相关系数.假设站址误差各分量的标准差是相同的,即盯2I_:盯2盯]-(kokt]=[(9)E[_dY?dj+ELs?j=(盯)22=[m]22fc?盯+2盯(i=)盯1c2.+盯(≠)m=66(£,h=l,2)=I1I'22,,,,,24电子对抗2006年第1期GDOP=厕=[笛2菁2(+b2i62j)(11)3.2仿真对于给定的布站方式,时差定位的精度主要取决于时间测量的精度和基线长度,本文分别就这两项因素对定位误差的影响进行了仿真.y\站阈夹角/剐蝴>//W152"t:;DOpf..,/一,星:薯……一-…j¨00.-:/,,,≮∥一,,0害呻㈡,,,',0j一图8三站夹角120~,时间测量误差30ns,基线长度30kin时的GIX)P图4结语仿真时令主站位于坐标原点,且对称分布(图4),副站与主站的间距为基线长度,各站的时间测量误差相同.表1为仿真中的各主要参数.表I仿真中的各主要参数三站夹时间测量误基线长GDOP图角/度差/ns度/km1803030图51803050图61801050图7l203030图8l203050图9120l050图l0图6三站夹角180~,时间测量误差30ns,基线长度50km时的GDOP图三4020.h';I)t)p,磊落i.蜉..≯;,..,,『151)lJ¨lx/kin图9三站夹角120~,时间测量误差30ns,基线长度50km时的GDOP图由仿真可以看出,对于相同的布站方式,在一定的站间距范围内(因为站间距过长反而会降低定位精度【1]),基线越长(对比图5与图6,图8与图9),测时误差越小(对比图6与图7,图9与图§图7三站夹角l8,时问测量误差10m,基线长度50km时的GDOP图图l0三站夹角120~,时间测量误差IOns,基线长度50km时的GDOP图lO),则定位精度越高.所以无论是基于统一信号还是基于统一时间的}贝4时方法,关键问题是如何延长站间距离,并提高测时精度.基于统一信号的测时方法目前可以采用通过卫星差转信号的方法来延长站间距,并通过对转发信号的相关检测来提高测时差精度;而对于基于统一时间的测时差方法来说,其核心——高稳定度原子钟,在过去一一.,§,,,■一..一一一~_i~,,...;~一一一一一一一~,敛一|q≮.三;…一总第106期刘冈0,等:时差定位与两种测时差方法25因为造价昂贵,不易维护等原因,没能使这种方法得到广泛应用.而现在得益于科技的进步,高稳定度的铯钟,铷钟等制造成本下降,体积更小,更易于存放和维护,使得这个方法可以得到更多的应用.参考文献1赵国庆.雷达对抗原理.西安:西安电子科技大学出版,1999:63—672孙仲康,周一宇,何黎星.单多基地有源/无源定位技术.北京:国防工业出版社,1996:1811863FredrikGustafsson,FredrikGunnarsson.PositioningUsing Time—DifferenceOfArrivalMeasurements.Acoustics,Speech, andsiProcessing,2003.Proceedings(ICASSP'03),2003 IEEEInternationalConferenceOnV olume6,6—10April2003Page(s):VI一553—64杨林,周一宇,孙仲康.TDOA被动定位方法及精度分析.国防科技大学,1998;20(2):49535潘琴格.无源系统测向及时差频差联合定位方法研究.西安:西安电子科技大学硕:f=毕业沦文,2004:1723作者简介刘刚(1980一),男,2003年毕业于西安电子科技大学,电子信息工程专业.现为西安科技大学电子工程学院电路与系统专业在读硕士研究生,从事电子对抗方面研究.赵国庆男,教授,西安电子科技大学电路与系统学科博士研究生导师,校学术带头人,信息技术系主任,电子对抗研究所所长,是总装备部综合电子战专家组成员和国防973专家组组长,电子对抗学会委员,《电子对抗》杂志编委,"电子对抗"国防重点实验室学术委员.跃期从事电子对抗系统的理论与工程实践技术研究,主持和参加完成863,973,国防预研和基金项目40余项,着有国家级重点教材《雷达对抗原理》.俄罗斯重视电子战部队建设据俄罗斯国防部可靠消息称,俄罗斯武装力量中将很快增加一个新的兵种或者特种司令部——电子战部队或者电子战司令部.目前提交高层军政领导讨论该问题的所有文件都已经准备好.俄罗斯武装力量中现有三个独立的兵种:战略火箭兵,航天部队和空降部队.二十世纪下半叶的军事实践证实了一个无可否认的事实:电子战已经从一种作战保障形式变成一种极具特色的或者作战效果极其显着的作战形式.据专家统计,使用电子部队和武器,使陆军部队的作战潜力提高了2倍,空军的损失降低了三分之一至二分之一,战舰的损失减少了三分之二.目前俄罗斯电子战装备有能力侦察到敌方的电子目标,精确判定其位置,并将其消灭,并在同时对己方同类系统提供有效防御.装备现代化电子战装备的部队能够实施猛烈的电磁打击.从其与敌方武器和装备作战效果来看,完全可与使用大规模杀伤性武器的效果相媲美.据俄国防部提供的消息,新军种将用于在太空,空中,陆地和海上的对敌作战,并为国家重要目标和己方军队提供防御.俄罗斯认为,建立这支部队是完全符合逻辑的,美国的电子战部队早就已经存在了,俄罗斯当然不能落后.俄军目前已经拥有电子战部队,该部队由总参谋部电子战部指挥.一些专家将这些部队称为特种电子部队,因为这支部队完成一些特殊的任务,其工作和部署地点完全保密.五角大楼早就意-/Z$4了电子战的重要性,其叫法也不是模糊的"电子战作战",而是更加准确的"电磁战争".美军电子战部队也比俄军电子战部队在国防部的地位高.目睹美军电子战部队在最近的几次局部战争中所发挥的重要作用之后,俄军也加强了对电子战部队的重视.虽然目前俄军可以进行独立的电子战演习,但据专家估计,还不具备大规模使用专用电子装备的能力.主要原因是部队基础设施少,物质保障不足,因而发展很受限制.目前俄罗斯军方部门已经计划采取措施,将俄军的电子战水平提升至与美军对等.俄罗斯一位领导人指出,俄政府将改组军工企业,以便形成生产电子战装备的企业体系.当前的首要任务是研制出新型有效的电子战设备,例如能够精确判定恐怖分子在地形复杂区域的基地的坐标的设备等.另外,也在期待工业部门生产出使用新物理原理的电子战武器.例如作战半径不限的量子发生器,这些武器可以在几百千米的高度上摧毁敌方飞机,舰艇,战车上的电子设备.这在目前听起来像是天方夜谭,但专家认为在近几十年这将成为现实.(肖霞提供)。
《雷达对抗原理》(赵国庆著)课后答案免费下载《雷达对抗原理》(赵国庆著)内容提要第1章雷达对抗概述1.1 雷达对抗的基本概念及含义1.1.1 雷达对抗的含义及重要性1.1.2 雷达对抗的基本原理及主要技术特点1.1.3 雷达对抗与电子战1.2 雷达对抗的信号环境1.2.1 现代雷达对抗信号环境的特点1.2.2 信号环境在雷达对抗设备中的描述和参数1.3 雷达侦察概述1.3.1 雷达侦察的任务与分类1.3.2 雷达侦察的技术特点1.3.3 雷达侦察设备的基本组成1.4 雷达干扰概述1.4.1 雷达干扰技术的分类1.4.2 雷达干扰设备的基本组成习题一参考文献第2章雷达信号频率的测量2.1 概述2.1.1 雷达信号频率测量的重要性2.1.2 测频系统的主要技术指标2.1.3 现代测频技术分类2.2 频率搜索接收机2.2.1 搜索式超外差接收机2.2.2 射频调谐晶体视频接收机2.2.3 频率搜索形式2.2.4 频率搜索速度的选择2.3 比相法瞬时测频接收机2.3.1 微波鉴相器2.3.2 极性量化器的基本工原理2.3.3 多路鉴相器的并行运用2.3.4 对同时到达信号的分析与检测2.3.5 测频误差分析2.3.6 比相法瞬时测频接收机的组成及主要技术参数 2.4 信道化接收机2.4.1 基本工作原理2.4.2 信道化接收机存在的问题2.4.3 信道化接收机的特点和应用 2.5 压缩接收机2.5.1 Chirp变换原理2.5.2 表声波压缩接收机的工作原理 2.5.3 压缩接收机的参数2.6 声光接收机2.6.1 声光调制器2.6.2 空域傅立叶变换原理2.6.3 声光接收机的工作原理2.6.4 声光接收机的主要特点习题二参考文献 ?第3章雷达的方向测量和定位3.1 概述3.1.1 测向的目的3.1.2 测向的方法3.1.3 测向系统的主要技术指标3.2 振幅法测向3.2.1 波束搜索法测向技术3.2.2 全向振幅单脉冲测向技术3.2.3 多波束测向技术3.3 相位法测向3.3.1 数字式相位干涉仪测向技术3.3.2 线性相位多模圆阵测向技术3.4 对雷达的定位3.4.1 单点定位3.4.2 多点定位习题三参考文献 ?第4章雷达侦察的信号处理4.1 概述4.1.1 信号处理的任务和主要技术要求 4.1.2 信号处理的基本流程和工作原理 4.2 对雷达信号时域参数的'测量4.2.1 tTOA的测量4.2.2 PW的测量4.2.3?AP的测量4.3 雷达侦察信号的预处理4.3.1 对已知雷达信号的预处理4.3.2 对未知信号的预处理4.4 对雷达信号的主处理4.4.1 对已知雷达信号的主处理4.4.2 对未知雷达信号的主处理4.5 数字接收机和数字信号处理4.5.1 数字接收机4.5.2 数字测频4.5.3 数字测向4.5.4 信号脉内调制的分析习题四参考文献 ?第5章雷达侦察作用距离与截获概率5.1 侦察系统的灵敏度5.1.1 切线信号灵敏度PTSS和工作灵敏度POPS的定义 5.1.2 切线信号灵敏度PTSS的分析计算5.1.3 工作灵敏度的换算5.2 侦察作用距离5.2.1 简化侦察方程5.2.2 修正侦察方程5.2.3 侦察的直视距离5.2.4 侦察作用距离Rr对雷达作用距离Ra的优势 5.2.5 对雷达旁瓣信号的侦察5.3 侦察截获概率与截获时间5.3.1 前端的截获概率和截获时间5.3.2 系统截获概率和截获时间习题五参考文献第6章遮盖性干扰6.1 概述6.1.1 遮盖性干扰的作用和分类6.1.2 遮盖性干扰的效果度量6.1.3 最佳遮盖干扰波形6.2 射频噪声干扰6.2.1 射频噪声干扰对雷达接收机的作用6.2.2 射频噪声干扰对信号检测的影响6.3 噪声调幅干扰6.3.1 噪声调幅干扰的统计特性6.3.2 噪声调幅干扰对雷达接收机的作用 6.3.3 噪声调幅干扰对信号检测的影响 6.4 噪声调频干扰6.4.1 噪声调频干扰的统计特性6.4.2 噪声调频干扰对雷达接收机的作用 6.4.3 噪声调频干扰对信号检测的影响 6.5 噪声调相干扰6.5.1 噪声调相干扰的统计特性6.5.2 影响噪声调相干扰信号效果的因素 6.6 脉冲干扰习题六参考文献第7章欺骗性干扰7.1 概述7.1.1 欺骗性干扰的作用7.1.2 欺骗性干扰的分类7.1.3 欺骗性干扰的效果度量7.2 对雷达距离信息的欺骗7.2.1 雷达对目标距离信息的检测和跟踪7.2.2 对脉冲雷达距离信息的欺骗7.2.3 对连续波调频测距雷达距离信息的欺骗 7.3 对雷达角度信息的欺骗7.3.1 雷达对目标角度信息的检测和跟踪7.3.2 对圆锥扫描角度跟踪系统的干扰7.3.3 对线性扫描角度跟踪系统的干扰7.3.4 对单脉冲角度跟踪系统的干扰7.4 对雷达速度信息的欺骗7.4.1 雷达对目标速度信息的检测和跟踪7.4.2 对测速跟踪系统的干扰7.5 对跟踪雷达AGC电路的干扰7.5.1 跟踪雷达AGC电路7.5.2 对AGC控制系统的干扰习题七参考文献第8章干扰机构成及干扰能量计算8.1 干扰机的基本组成和主要性能要求8.1.1 干扰机的基本组成8.1.2 干扰机的主要性能要求8.2 干扰机的有效干扰空间8.2.1 干扰方程8.2.2 干扰机的时间计算8.3 干扰机的收发隔离和效果监视8.3.1 收发隔离8.3.2 效果监视8.4 射频信号存储技术8.4.1 模拟储频技术(ARFM)8.4.2 数字储频技术(DRFM)8.5 载频移频技术8.5.1 由行波管移相放大器构成的载频移频电路 8.5.2 由固态移相器构成的载频移频电路习题八参考文献第9章对雷达的无源对抗技术9.1 箔条干扰9.1.1 箔条干扰的一般特性9.1.2 箔条的有效反射面积9.1.3 箔条的频率响应9.1.4 箔条干扰的极化特性9.1.5 箔条回波信号的频谱9.1.6 箔条的战术应用9.2 反射器9.2.1 角反射器9.2.2 龙伯透镜反射器9.3 假目标和雷达诱饵9.3.1 带有发动机的假目标9.3.2 火箭式雷达诱饵9.3.3 投掷式雷达诱饵9.3.4 拖曳式雷达诱饵9.4 隐身技术习题九参考文献《雷达对抗原理》(赵国庆著)目录该书系统介绍了雷达对抗的基本原理,系统的组成,应用的主要技术等。
一、一体化防空的概念内涵一体化防空作战,是指在信息网络技术的大量运用,信息技术的联通和融合把多元力量融为一体,在纵向上和横向上无缝链接,作战时可实现全维实时信息共享的一体化、大系统的背景下,运用各种力量进行的防空作战行动。
一体化防空主要包括以下内涵:作战空间一体化。
一体化防空作战中,空袭方攻击手段的多样化,雷达对抗是一切从敌方雷达及其武器系统获取信息(雷达侦察),破坏或干扰敌方雷达及其武器系统的正常工作(雷达干扰和雷达攻击)的战术、技术措施。
其实质是通过干扰信号对目标回波的压制、掩盖与模拟作用,使雷达的信号接收显示系统与自动控制系统不能正确地获取信息与控制武器,降低侦察效能与火力效能,最终丧失战斗力。
它是在雷达信号环境范围内夺取制电磁权的重要作战行动,在现代战争特别是防空作战中处于举足轻重、日益突出的地位。
本文通过分析一体化防空作战的特点,对雷达对抗战术发展的趋势进行分析与探讨。
防空中雷达对抗战术及其发展趋势■ 刘 伟使得作战空域明显扩大,为保证防空作战任务的完成必须增大防空作战纵深,组织多层对空防御。
为了统一使用各种防空力量和各种防空火力,提高防空作战的整体效能,要求对防空力量实施统一部署,使陆、海、空军的防空兵力和地方防空力量协调一致,构成远、中、近结合,高、中、低配套的整体防空体系。
作战部署一体化。
现代防空作战中,实质上是一场信息优势的较量。
“得信息者得天下”,为了增加战场的透明度,各军事强国正不断把雷达送上天,地面雷达、舰载雷达、机载雷达和星载雷达构成的高边疆多维立体体系正逐步改变当前以地面雷达为主体的状态。
这种集陆、海、空、天、电、网于一体的侦察体系,以空中侦察为主,实施远距离、大纵深、宽正面探测,以陆、海、天侦察为辅,实施高精度、低空域、大密度搜索。
作战指挥一体化。
一体化的作战指挥使得指挥周期大大缩短, 先. All Rights Reserved.进的指挥手段也对雷达对抗的战术运用效果的影响力越来越大。