广州市2020版中考数学一模试题(I)卷
- 格式:doc
- 大小:225.51 KB
- 文档页数:6
2020年广东省中考数学一模试卷一.选择题(共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.D.【分析】根据求一个数的相反数就是在这个数前面添上“﹣”号,即可得出答案.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义,结合选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称的特点.3.(3分)2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15万=15×104=1.5×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)计算a4•a2的结果是()A.a8B.a6C.a4D.a2【分析】根据同底数幂的乘法法则计算即可.【解答】解:a4•a2=a4+2=a6.故选:B.【点评】本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.5.(3分)若在实数范围内有意义,则x的取值范围是()A.B.x<2C.D.x≥0【分析】根据二次根式的被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,1﹣2x>0,解得,x<,故选:A.【点评】本题考查的是二次根式、分式有意义的条件,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.6.(3分)不透明袋子中有3个红球和2个白球,这些球除颜色外无其他差别,从袋中随机取出1个球,是红球的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子装有3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)如图,直线AC和直线BD相交于点O,若∠1+∠2=70°,则∠BOC的度数是()A.100°B.115°C.135°D.145°【分析】根据对顶角和邻补角的定义即可得到结论.【解答】解:∵∠1=∠2,∠1+∠2=70°,∴∠1=∠2=35°,∴∠BOC=180°﹣∠1=145°,故选:D.【点评】本题考查了邻补角、对顶角的应用,主要考查学生的计算能力.8.(3分)若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣1【分析】根据根的判别式即可求出答案.【解答】解:当该方程是一元二次方程时,由题意可知:△=4+4k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,当该方程时一元一次方程时,k=0,满足题意,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9.(3分)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由y的值随着x值的增大而减小可得出2m﹣1<0,再利用一次函数图象与系数的关系可得出一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【解答】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<0.∵2m﹣1<0,1>0,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【点评】本题考查了一次函数图象与系数的关系以及一次函数的性质,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.10.(3分)如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y 轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6【分析】再根据反比例函数的比例系数k的几何意义得到|k|=2,然后去绝对值即可得到满足条件的k的值.【解答】解:∵AB⊥y轴,∴S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二.填空题(共7小题,每题4分,共28分)11.(4分)11的平方根是.【分析】根据正数有两个平方根可得11的平方根是±.【解答】解:11的平方根是±.故答案为:±.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.12.(4分)已知,|a﹣2|+|b+3|=0,则b a=9.【分析】根据非负数的性质可求出a、b的值,再将它们代b a中求解即可.【解答】解:∵|a﹣2|+|b+3|=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,则b a=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.(4分)分解因式:m4﹣81m2=m2(m﹣9)(m+9).【分析】首先提公因式m2,再利用平方差进行二次分解即可.【解答】解:原式=m2(m2﹣81),=m2(m﹣9)(m+9).故答案为:m2(m﹣9)(m+9).【点评】此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(4分)点M(3,﹣1)到x轴距离是1.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:1【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值是解题关键.15.(4分)圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为10π.【分析】由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式可得圆锥的侧面积,然后求得底面积,二者相加即可求得全面积.【解答】解:圆锥的侧面积=×3×2π×2=6π,底面积为22π=4π,所以全面积为:6π+4π=10π.故答案为:10π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.16.(4分)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE =2cm,则这个六边形的周长等于17cm.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.17.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为②④.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),【分析】根据抛物线开口方向得到a>0,根据抛物线对称轴为直线x=﹣=﹣1,得到b=2a,则b>0,根据抛物线与y轴的交点在x轴下方得到c<0,所以abc<0;由x=,y=0,得到a+b+c=0,即a+2b+4c=0;由a=b,a+b+c>0,得到b+2b+c >0,即3b+2c>0;由x=﹣1时,函数值最小,则a﹣b+c≤m2a﹣mb+c(m≠1),即a ﹣b≤m(am﹣b).【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,则2a﹣b=0,所以③错误;∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵x=时,y=0,∴a+b+c=0,即a+2b+4c=0,所以②正确;∵a=b,a+b+c>0,∴b+2b+c>0,即3b+2c>0,所以④正确;∵x=﹣1时,函数值最小,∴a﹣b+c≤am2﹣mb+c,∴a﹣b≤m(am﹣b),所以⑤错误.故答案为②④.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)计算:+()0+•sin45°﹣(π﹣2019)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=3+1+×﹣1=4+1﹣1=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.【点评】此题主要考查了分式的化简求值,关键是掌握计算顺序,正确把分式进行化简.20.(6分)已知:△ABC中,AB=AC.(1)求作:△ABC的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=12,求⊙O的面积.【分析】(1)作线段BC的垂直平分线AD,线段AB的垂直平分线EF,最小AD交EF 于点O,以O为圆心,OA为半径作⊙O即可.(2)设BC的垂直平分线交BC于点D,连接OB.利用勾股定理求出OB2即可.【解答】解:(1)如图,⊙O即为所求.(2)设BC的垂直平分线交BC于点D,连接OB.由题意得:OD=4,BD=CD=BC=6,在Rt△OBD中,OB2=OD2+BD2=42+62=52,∴⊙O的面积=π•OB2=52π.【点评】本题考查﹣复杂作图,等腰三角形的性质,三角形的外接圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四.解答题(二)(共3小题,每题8分,共24分)21.(8分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为120°,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;据此即可补全条形图;(2)分别用树状图和列表两种方法表示出所有等可能结果,从中找到恰好选到一男一女的概率结果数,利用概率公式计算可得.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.22.(8分)如图,一名滑雪爱好者先从山脚下A处沿登山步道走到点B处,再沿索道乘坐缆车到达顶部C.已知在点A处观测点C,得仰角为35°,且A,B的水平距离AE=1000米,索道BC的坡度i=1:1,长度为2600米,求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,结果保留整数)【分析】作CD⊥AE于点D,BF⊥CD于点F.证四边形BEDF是矩形,由BC=2600米知米、米.由AE=1000米知米.结合∠CAD=35°求解可得.【解答】解:如图,作CD⊥AE于点D,BF⊥CD于点F.又∵BE⊥AD,∴四边形BEDF是矩形.在Rt△BCF中,∵BC的坡度i=1:1,∴∠CBF=45°.∵BC=2600米,∴米.∴米.∵A,B的水平距离AE=1000米,∴米.∵∠CAD=35°,∴(米).答:山高CD约为1983米.【点评】本题考查解直角三角形﹣坡度坡角问题,解题的关键是明确题意,找出所求问题需要的条件.23.(8分)某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B 种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让顾客得到更多的优惠,该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请设计获利最大的进货方案,并求出最大利润.【分析】(1)直接利用A种水杯单价每降低1元,平均每天的销量可增加10个,用m 表示出A种水杯的销量,再根据销量×每件利润=630,进而解方程得出答案;(2)设购进A种水杯x个,则B种水杯(120﹣x)个.求得利润y关于x的一次函数,再利用x的取值范围和一次函数的增减性求出y的最大值.【解答】解:(1)超市将A种水杯售价调整为每个m元,则单件利润为(m﹣15)元,销量为[60+10(25﹣m)]=(310﹣10m)个,依题意得:(m﹣15)(310﹣10m)=630,解得:m1=22,m2=24,答:为了尽量让顾客得到更多的优惠,m=22.(2)设购进A种水杯x个,则B种水杯(120﹣x)个.设获利y元,依题意得:,解不等式组得:40≤x≤53,利润y=(25﹣15)x+(120﹣x)(20﹣12)=2x+960.∵2>0,∴y随x增大而增大,当x=53时,最大利润为:2×53+960=1066(元).答:购进A种水杯53个,B种水杯67个时获利最大,最大利润为1066元.【点评】此题考查了一元二次方程的应用以及一次函数的应用,一元二次方程应用的关键是理解题意找到等式两边的平衡条件,列出方程.求一次函数应用最值关键是求出自变量的取值范围.五.解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.【分析】(1)连接AF,分别证∠BGF+∠AFG=90°,∠BGF=∠AFB,即可得∠OFG =90°,进一步得出结论;(2)①连接CF,则∠ACF=∠ABF,证△ABO≌△ACO,推出∠CAO=∠ACF,证△ADO∽△CDF,可求出DF,BD的长,再证△ADB∽△FDC,可推出AD•CD=7,即AD2=7,可写出AD的长;②因为△ODC为直角三角形,∠DCO不可能等于90°,所以存在∠ODC=90°或∠COD=90°,分两种情况讨论:当∠ODC=90°时,求出AD,AC的长,可进一步求出△ABC 的面积;当∠COD=90°时,△OBC是等腰直角三角形,延长AO交BC于点M,可求出MO,AM的长,进一步可求出△ABC的面积.【解答】(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠F AG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,∴S△ABC=×4×6=12;当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,∴S△ABC=×4×(4+2)=8+8,∴△ABC的面积为12或8+8.【点评】本题考查了圆的有关概念及性质,切线的判定定理,相似三角形的判定及性质,直角三角形的存在性质等,解题关键是在求直角三角形的存在性及三角形ABC的面积时注意分类讨论思想的运用等.25.(10分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.【分析】(1)由题意可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,则可求解析式;(2)连接PO,设P(n,﹣n2+2n+3),分别求出S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,所以S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,当x=时,S△ABP的最大值为;(3)设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,在Rt△CGD中,CG==DG,所以(t﹣3)=t2﹣2t+3,求出D(3+,﹣3),所以AG=3,GD=3,连接AD,在Rt△ADG中,AD=AC=6,∠CAD=120°,在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2=36,求出m=3或m=﹣3,即可求Q.【解答】解:(1)抛物线顶点坐标为C(3,6),∴可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,∴y=﹣x2+2x+3;(2)连接PO,BO=3,AO=3,设P(n,﹣n2+2n+3),∴S△ABP=S△BOP+S△AOP﹣S△ABO,S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,∴S△ABP=S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,∴当x=时,S△ABP的最大值为;(3)存在,设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,∴∠ACD=30°,∴2DG=DC,在Rt△CGD中,CG==DG,∴(t﹣3)=t2﹣2t+3,∴t=3+3或t=3(舍)∴D(3+,﹣3),∴AG=3,GD=3,连接AD,在Rt△ADG中,∴AD==6,∴AD=AC=6,∠CAD=120°,∴在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2,∴AQ2=AC2,∴9+m2=36,∴m=3或m=﹣3,综上所述:Q点坐标为(0,3)或(0,﹣3).【点评】本题考查二次函数的综合题;熟练掌握二次函数的图象及性质,能够利用直角三角形和圆的知识综合解题是关键.。
2020年广东省广州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在实数−3,0,5,3中,最小的实数是()A. −3B. 0C. 5D. 32.如图是五个相同的小正方体搭成的几何体,其俯视图是()A.B.C.D.3.下列计算中,正确的是()A. (a2)3⋅a3=a9B. (a−b)2=a2+2ab−b2C. x2⋅x4=x8D. √2⋅√3=√54.如图,将△ABC沿AB方向平移至△DEF,且AB=5,BD=2,则CF的长度为()A. 4B. 5C. 3D. 25.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则参加绘画兴趣小组的频数是()。
A. 8B. 9C. 11D. 126.在下列性质中,菱形具有而矩形不具有的性质是()A. 内角和等于360°B. 对角相等C. 对角线平分一组对角D. 邻角互补7.不等式组{2x−1>1−x≤2的解集为()A. x>1B. −2≤x<1C. x≥−2D. 无解8.已知:如图,将∠ABC放置在正方形网格纸中,其中点A、B、C均在格点上,则tan∠ABC的值是()A. 2B. 12C. √52D. 2√559.已知一元二次方程x2−2018x+10092=0的两个根为α,β,则α2β+αβ2=()A. 10093B. 2×10093C. −2×10093D. 3×1009310.如图,在平面直角坐标系中,点A坐标为(2,1),直线l与x轴,y轴分别交于点B(−4,0),C(0,4),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是()A. (−2,2)B. (−32,52) C. (−12,72) D.(1,0)二、填空题(本大题共6小题,共18.0分)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.12.已知a<0,b>0,化简√(a−b)2=______.13.分式方程2xx−3=1的解是______.14.如图,已知∠ABC=30°,以O为圆心、2cm为半径作⊙O,使圆心O在BC边上移动,则当OB=______ cm时,⊙O与AB相切.15.一个圆锥的高线长是8cm,底面直径为12cm,则这个圆锥的侧面积是______.16.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3√5,且∠ECF=45°,则CF的长为__________.三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:a2−2aba−b −b2b−a,其中a=1+√3,b=−1+√3.四、解答题(本大题共8小题,共92.0分)18.计算:√83−2cos60°−(π−2018)0+|1−√4|19.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.20.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.21.已知一次函数y=ax+b与反比例函数y=3b−ax 的图象交于点(12,2),求:(1)这两个函数的解析式;(2)两个函数图象另一个交点的坐标.22.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?23.尺规作图(保留作图痕迹,不写作法和证明)如图,已知:△ABC,∠ACB=90°,求作:⊙O,使圆心O在AC边上,且⊙O与AB,BC均相切.24.如图,在平面直角坐标系中.直线y=−x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A(−1,0),连结AC.(1)求抛物线的解析式;(2)如图1,若点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)如图2,若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.25.如图,∠ABD=∠BCD=90°,DB平分∠A DC,过点B作BM//CD交AD于M,连接CM交DB于N。
2020年广东省广州市中考数学训练试卷(一)一、选择题(本大题共20小题,共100.0分)1.6的相反数是()A. 6B. 16C. −6 D. −162.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430B. 530C. 570D. 4703.下列实数中,为有理数的是()A. √3B. πC. √23D. 14. 6.8×105这个数的原数是()A. 68000B. 680000C. 0.000086D. −6800005.下列方程是一元一次方程的是()A. x+2y=5B. 1x−1=2 C. x2=8x−3 D. y=16.多项式4x2−2xy2−12y+2的次数、一次项系数分别为()A. 6,3B. 3,3C. 3,12D. 3,−127.下列各式中正确的是()A. √16=±4B. √(−2)2=2C. √27=3√3=√38.下列计算正确的是()A. x2+2x=3x2B. x6÷x2=x3C. x2⋅(2x3)=2x5D. (3x2)2=6x29.如果am=an,那么下列等式不一定成立的是()A. am−3=an−3B. 5+am=5+anC. m=nD. −12am=−12an10.若2x2+5x+1=a(x+1)2+b(x+1)+c,则()A. a=2,b=−2,c=−1B. a=2,b=2,c=−1C. a=2,b=1,c=−2D. a=2,b=−1,c=211.下列分解因式正确的是()A. x2+y2=(x+y)(x−y)B. m2−2m+1=(m+1)2C. a2−16=(a+4)(a−4)D. x3−x=x(x2−1)12.要使代数式√1−xx+2有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥1且x≠−2D. x≤1且x≠−213.已知{x=1,y=1是方程组{ax+by=2,x−by=3的解,则a、b的值分别为()A. 4、−2B. −2、4C. 5、2D. 2、514.今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化建设的投入,计划2018年投入1440万元,已知2016年投入1000万元,设2016~2018年投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A. 1000(1+x)2=1440B. 1000(x2+1)=1440C. 1000+1000x+1000x2=1440D. 1000+1000(1+x)+1000(1+x)2=144015.将抛物线y=5x2向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为()A. y=5(x+3)2+2B. y=5(x+3)2−2C. y=5(x−3)2+2D. y=5(x−3)2−216.下面的图象反映的过程是:张涵从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到早餐店吃早餐,吃完早餐后散步回家.其中x表示时间,y表示张涵离家的距离.(1)体育场离张涵家2.5千米,张涵从家到体育场用了15分钟;(2)体育场离早餐店1.5千米;(3)张涵在吃早餐用了20分钟.(4)张涵从早餐店回家的平均速度是15米/分.以上说法错误的有()个.A. 1B. 2C. 3D. 417.一次函数y=(3−k)x+18−2k2的图象经过原点,则k的值为()A. 3B. −3C. ±3D. 任何实数18.反比例函数y=k−3x的图象中,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥319.如图,反比例函数y1=mx 和正比例函数y2=nx的图象交于A(−1,−3)、B两点,则mx−nx≥0的解集是()A. −1<x<0B. x<−1或0<x<1C. x≤−1或0<x≤1D. −1<x<0或x≥120.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(−1,0),对称轴为直线x=2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1或5<x2.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、解答题(本大题共3小题,共50.0分)21. (1)计算(2017−π)0−(14)−1+|−2|(2)化简(1−1a−1)÷(a 2−4a+4a 2−a ).22. 某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了,一共用了10小时完成任务.求原计划每小时抢修道路多少米.23.已知:关于x的一元二次方程l有两个实数根.(1)求k的取值范围;(2)当k为负整数时,抛物线y=−12x2+12x+1与x轴的交点是整数点(横坐标是整数),求抛物线的函数表达式;(3)若(2)中的抛物线与y轴交于点A,过A作x轴的平行线与抛物线交于点B,连接OB,将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△OAB的内部(不包括△OAB的边界),求n的取值范围.【答案与解析】1.答案:C解析:解:6的相反数是:−6.故选:C.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.答案:C解析:本题考查了有理数的加减法,实质是把实际问题转化为有理数的加减法计算题.下降200米用−200米表示,上升130米,用+130米表示,根据题意列式:(−500)+(−200)+130计算即可.解:(−500)+(−200)+130=−500−200+130=−570米,即这时潜水艇停在海面下570米.故选C.3.答案:D3是无理数,解析:解:√3,π,√21是有理数,故选:D.根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.本题考查了实数,正确区分有理数与无理数是解题关键.4.答案:B解析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据6.8×105中6.8的小数点向右移动5位就可以得到.本题考查写出用科学记数法表示的原数.将科学记数法a×10−n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.解:6.8×105=680000,故选:B.5.答案:D解析:解:A、含有2个未知数,故不是一元一次方程;B、不是整式方程,故不是一元一次方程;C、最高次数是2次,故不是一元一次方程;D、是一元一次方程.故选D.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+ b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.答案:D解析:解:多项式4x2−2xy2−12y+2的次数、一次项系数分别为:3,−12.故选:D.直接利用多项式的次数确定方法和一次项系数的确定方法分析即可.此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.7.答案:B解析:解:∵√16=4,∴选项A错误;∵√(−2)2=2,∴选项B正确;∵√27=3√3,∴选项C错误;∵√3=√33,∴选项D错误;故选:B.根据二次根式的性质对各个选项分别化简即可.本题考查的二次根式的性质与化简;熟练掌握二次根式的化简是关键.8.答案:C解析:本题主要考查合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方,熟练掌握其运算法则是解题的关键.根据合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方分别计算可得.解:A.x2与2x不是同类项,不能合并,此选项错误;B.x6÷x2=x4,此选项错误;C.x2⋅(2x3)=2x5,此选项正确;D.(3x2)2=9x4,此选项错误;故选C.9.答案:C解析:解:如果am=an且a=0,那么等式m=n不成立.故选:C.已知等式利用等式的性质变形得到结果,即可做出判断.此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.10.答案:C解析:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.已知等式右边利用完全平方公式和单项式乘多项式法则展开,合并后利用多项式相等的条件即可求出a,b,c的值.解:a(x+1)2+b(x+1)+c=a(x2+2x+1)+bx+b+c=ax2+(2a+b)x+a+b+c.因为2x2+5x+1=a(x+1)2+b(x+1)+c,所以2x2+5x+1=ax2+(2a+b)x+a+b+c,所以{a=2,2a+b=5,a+b+c=1,解得{a=2,b=1,c=−2.故选C.11.答案:C解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式各项分解得到结果,即可做出判断.解:A.原式不能分解,错误;B .原式=(m −1)2,错误;C .原式=(a +4)(a −4),正确;D .原式=x(x 2−1)=x(x +1)(x −1),错误.故选C .12.答案:D解析:根据二次根式有意义的条件可得1−x ≥0,根据分式有意义的条件可得x +2≠0,再解即可. 此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.解:由题意得:1−x ≥0,且x +2≠0,解得:x ≤1,且x ≠−2,故选D .13.答案:A解析:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将x 与y 的值代入方程组求出a 与b 的值即可.解:由题可得:{a +b =21−b =3, 解得:{a =4b =−2. 故选A .14.答案:A解析:本题主要考查了一元二次方程的应用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2016年投入1000万元,计划2018年投入1440万元即可得出方程.解:设教育经费的年平均增长率为x,则2017的教育经费为:1000×(1+x),2018的教育经费为:1000×(1+x)2.那么可得方程:1000×(1+x)2=1440.故选A.15.答案:C解析:【试题解析】主要考查的是函数图象的平移,也可以利用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.根据“左加右减,上加下减”的规律写出平移后抛物线解析式即可.解:抛物线y=5x2的顶点坐标是(0,0),则向上平移2个单位,再向右平移3个单位后的顶点坐标是(3,2),所以平移后抛物线的解析式为:y=5(x−3)2+2.故选C.16.答案:B解析:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.结合图象得出张涵从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张涵家2.5千米,体育场离早餐店2.5−1.5千米;平均速度=总路程÷总时间.解:(1).由纵坐标看出,体育场离张涵家2.5千米,由横坐标看出,张涵从家到体育场用了15分钟,故(1)不合题意;(2)体育场离张涵家2.5千米,体育场离早餐店2.5−1.5=1(千米),故(2)合题意;(3)张涵在吃早餐用了65−45=20(分钟),故(3)不合题意;(米/分),故(4)合题意.(4)张涵从早餐店回家的平均速度是1500÷(100−65)=3007故选B.17.答案:B解析:本题考查了一次函数图象上点的坐标特征及一次函数的定义,是基础题型,要熟练掌握此类题目的解法.直接把原点坐标代入解析式得到关于k的方程,然后解方程即可.注意3−k≠0.解:∵一次函数y=(3−k)x+18−2k2的图象过原点,∴18−2k2=0,解得k=±3,∵3−k≠0,∴k≠3,∴k=−3,故选:B.18.答案:A解析:本题考查了反比例函数的性质解题.(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y 根据对于反比例函数y=kx随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大,进行解答.解:∵当x>0时,y随x的增大而增大,∴函数图象位于第二、四象限,∴k−3<0,∴k<3.故选A.19.答案:C解析:本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.≥nx,再求出B的坐标,即可根据A、B的坐标结合图象得出答案.先求出mx−nx≥0,解:∵mx≥nx,∴mx∵反比例函数y1=m和正比例函数y2=nx的图象交于A(−1,−3)、B两点,x∴B点的坐标是(1,3),通过观察函数图像可得,当x≤−1或0<x≤1时,反比例函数图像都在正比例函数图像上方(或者相等),即y1≥y2,−nx≥0的解集是x≤−1或0<x≤1,∴mx故选C.20.答案:B解析:本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.①根据对称轴公式计算,然后进行判断即可;②利用x=−3时,y<0,即可判断;③由图象可知抛物线经过(−1,0)和(5,0),列出方程组求出a,b即可判断;④利用函数图象即可判断;⑤利用二次函数与二次不等式关系即可解决问题.解:①∵−b 2a =2,∴4a +b =0.故①正确;②∵x =−3时,y <0,∴9a −3b +c <0,∴9a +c <3b ,故②错误;③由图象可知抛物线经过(−1,0)和(5,0),∴{a −b +c =025a +5b +c =0解得{b =−4a c =−5a , ∴8a +7b +2c =8a −28a −10a =−30a ,∵a <0,∴8a +7b +2c >0,故③正确;④∵点A(−3,y 1),点B(−12,y 2),点C(72,y 3),∵72−2=32,2−(−12)=52, ∴32<52, ∴点C 离对称轴的距离近,∴y 3>y 2,∵a <0,−3<−12<2,∴y 1<y 2,∴y 1<y 2<y 3,故④错误.⑤∵a <0,∴(x +1)(x −5)=−3a >0, 即(x +1)(x −5)>0,故x <−1或x >5,故⑤正确.∴正确的有3个.故选B .21.答案:解:(1)原式=1−4+2=−1;(2)原式=a−1−1a−1÷(a−2)2a(a−1) =a−2a−1⋅a(a−1)(a−2)2=a a−2.解析:本题考查了分式的混合运算和零指数幂、负整数指数幂、绝对值等知识点,能灵活运用知识点进行化简是解此题的关键,注意运算顺序.(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.22.答案:解:按原计划完成总任务的13时,已抢修道路3600×13 =1200米,设原计划每小时抢修道路x 米,根据题意得:1200x +3600−1200(1+50%)x =10 ,解得:x =280,经检验:x =280是原方程的解.答:原计划每小时抢修道路280米.解析:本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效,设原计划每天修道路x 米,根据原计划工作效率用的时间+提高工作效率后用的时间=10这个等量关系列出方程求解即可.23.答案:解:(1)由题意得,(1+2k)2−4(k 2−2)≥0,解得,k ≥−94K 的取值范围是k ≥−94.(2)k 为负整数,k =−2,−1.当k =−2时,y =x 2+3x +2与x 轴的两个交点是(−1,0)(−2,0)是整数点,符合题意, 当k =−1时,y =x 2+x −1与x 轴的交点不是整数点,不符合题意,抛物线的解析式是y =x 2+3x +2.(3)由题意得,A(0,2),B(−3,2)设OB的解析式为y=mx+2,解得m=−23OB的解析式为y=−23x,y=x2+3x+2的顶点坐标是(−32,−14)OB与抛物线对称轴的交点坐标(−32,1),直线AB与抛物线对称轴的交点坐标是(−32,2),由图象可知,n的取值范围是54<n<94,解析:本题主要考查二次函数的综合题的知识点.(1)根据一元二次方程有两个实数根,求出根的判别式,即可求出k的取值范围;(2)根据(1)中求出的k的取值范围,分别讨论k=−2,k=−1时的情况,求出抛物线的解析式;(3)由题意得,A(0,2),B(−3,2),设OB的解析式为y=mx+2,。
2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。
2020年广州市荔湾区中考数学一模试卷一、选择题1.(3分)“广州电视课堂”上线以来备受欢迎,截至2020年3月29日,累计约有7183900人次观看,7183900用科学记数法表示为()A.7.1839×107B.7.1839×106C.71.839×105D.71.839×106 2.(3分)“千年一遇的对称日”2020年2月2日,用数字书写为“20200202”,如图下列说法正确的是()A.中心对称图形B.既是轴对称图形,又是中心对称图形C.轴对称图形D.既不是轴对称图形,也不是中心对称图形3.(3分)下列运算正确的是()A.a3+a3=a6B.a2•a3=a6C.(ab2)2=ab4D.5a4b÷ab=5a34.(3分)如图是一个4×4的方格,若在这个方格内投掷飞镖,则飞镖恰好落在阴影部分的概率是()A.B.C.D.(3分)若关于x的方程x2﹣4x+m=0有两个不相等的实数根,则实数m的取值范围是()5.A.m≤4 B.m>4 C.m<4且m≠0 D.m<46.(3分)若点A(2,y1),B(﹣1,y2)在抛物线y=(x﹣2)2+1的图象上,则y1、y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定7.(3分)扇形的弧长为10πcm,面积为120πcm2,则扇形的半径是()A.12cm B.24cm C.28cm D.30cm8.(3分)如图,D、E分别是△ABC边AB,AC上的点,∠AED=∠B,若AD=1,BD=AC=3,则AE的长是()A.1 B.C.D.29.(3分)如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为()A.4 B.4.8 C.5 D.5.510.(3分)如图,直线y=x+1与x轴和y轴分别交于B0,B1两点,将B1B0绕B1逆时针旋转135°得B1B0′,过点B0'作y轴平行线,交直线y=x+1于点B2,记△B1B0B2的面积为S1;再将B2B1绕B2逆时针旋转135°得B2B1',过点B1'作y轴平行线,交直线y=x+l于点B3,记△B2B1'B3的面积为S2…以此类推,则△B n B n﹣1'B n+1的面积为S n=()A.()n B.()n﹣1C.2n D.2n﹣1二、填空题(本大题共6小题,每小题3分,共18分.)11.函数y=中,自变量x的取值范围是.12.已知多边形的内角和为540°,则该多边形的边数为.13.计算:(π﹣)0+()2=.14.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.15.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片平方米(结果保留π).16.如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为.三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤.)17.先化简再求值:1﹣÷,其中a=﹣1.18.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.19.如图:已知:点A(﹣4,0),B(0,3)分别是x、y轴上的两点.(1)用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)(2)求出⊙P向上平移几个单位后与x轴相切.20.“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形E的圆心角度数;(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.21.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?22.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.23.已知:如图,AB是⊙O的直径,点C是过点A的⊙O的切线上一点,连接OC,过点A 作OC的垂线交OC于点D,交⊙O于点E,连接CE.(1)求证:CE与⊙O相切;(2)连结BD并延长交AC于点F,若OA=5,sin∠BAE=,求AF的长.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.25.如图1,已知A、B、C是⊙O上的三点,AB=AC,∠BAC=120°.(1)求证:⊙O的半径R=AB;(2)如图2,若点D是∠BAC所对弧上的一动点,连接DA,DB,DC.①探究DA,DB,DC三者之间的数量关系,并说明理由;②若AB=3,点C'与C关于AD对称,连接C'D,点E是C'D的中点,当点D从点B运动到点C时,求点E的运动路径长.参考答案一、选择题(本大题共10小题,每小题3分共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解:7183900=7.1839×106.故选:B.2.解:用数字书写为“20200202”,不是轴对称图形,是中心对称图形,故选:A.3.解:A、a3+a3=2a3,故此选项错误;B、a2•a3=a5,故此选项错误;C、(ab2)2=a2b4,故此选项错误;D、5a4b÷ab=5a3,故此选项正确;故选:D.4.解:如图:正方形的面积为4×4=16,阴影部分占5份,飞镖落在阴影区域的概率是;故选:C.5.解:∵方程有两个不相等的实数根,a=1,b=﹣4,c=m,∴△=b2﹣4ac=(﹣4)2﹣4×1×m>0,解得m<4.故选:D.6.解:当x=2时,y1=(x﹣2)2+1=1;当x=﹣1时,y2=(x﹣2)2+1=10;∵10>1,∴y1<y2.故选:A.7.解:∵S扇形=lr,∴120π=•10π•r,∴r=24(cm);故选:B.8.解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ACB,∴,∵AD=1,BD=AC=3,∴AB=1+3=4,∴,∴AE=,故选:C.9.解:设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC===5,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.10.解:直线l1:y=x+1与x轴正半轴夹角45°,由题意可知B′0B1∥x轴,B1′B2∥x轴,…,B n′B n+1∥x轴,B′0B2∥y轴,B′1B3∥y轴,…,B′n﹣1B n+1∥y轴,∴△B1B0B2;…;△B n B n﹣1'B n+1都是直角三角形,∴B1B0′=OB0,B2B1′=B1B0′,…,B n+1B′n=B n B n﹣1′由直线l1:y=x+1可知,B0(﹣1,0),B1(0,1),∴OB0=1,∴B1B0′=,B2B1′=2,…,B n B n﹣1'=n,∴△B n B n﹣1'B n+1的面积为S n=(n)2=2n﹣1故选:D.二、填空题(本大题共6小题,每小题3分,共18分.)11.函数y=中,自变量x的取值范围是x>2 .【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的意义以及分式的意义可知:x﹣2>0,所以,x>2,故答案为:x>2.12.已知多边形的内角和为540°,则该多边形的边数为 5 .【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.13.计算:(π﹣)0+()2= 3 .【分析】直接利用零指数幂的性质、二次根式的性质分别化简得出答案.解:原式=1+2=3.故答案为:3.14.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是m<.【分析】考查反比例函数图象的特点,当k>0时,图象在一三象限,k<0时,图象在二四象限解答.解:当x1<0<x2时,有y1<y2,图象位于一、三象限,此时k>0,所以1﹣2m>0,解不等式得m<.故答案为:m<.15.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片60π平方米(结果保留π).【分析】本题就是求圆锥铁片的侧面积.由圆锥高为8,母线AB与底面半径OB的夹角为α,tanα=,利用解直角三角形得出BO的长,再由勾股定理求得圆锥的母线长后,利用圆锥的侧面面积公式求出.解:∵AO=8米,母线AB与底面半径OB的夹角为α,tanα=,∴tanα===,∴BO=6,∴AB==10,根据圆锥的侧面积公式:πrl=π×6×10=60π(平方米),故答案为:60π.16.如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为3.【分析】过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,根据四边形ABCD是菱形,且∠B=120°,∠DAC=∠CAB=30°,可得PE=AP,当点D,P,E三点共线且DE⊥AB 时,PE+DP的值最小,最小值为DF的长,根据勾股定理即可求解.解:如图,过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,∵四边形ABCD是菱形,且∠B=120°,∴∠DAC=∠CAB=30°,∴PE=AP,∵∠DAF=60°,∴∠ADF=30°,∴AF=AD=6=3,∴DF=3,∵AP+PD=PE+PD,∴当点D,P,E三点共线且DE⊥AB时,PE+DP的值最小,最小值为DF的长,∴AP+PD的最小值为3.故答案为:3.三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤.)17.先化简再求值:1﹣÷,其中a=﹣1.【分析】直接利用分式的混合运算法则计算,进而把a的值代入得出答案.解:原式=1﹣÷=1﹣•=1﹣==,当a=﹣1时,原式==.18.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.【分析】证出FE是△ABC的中位线,由三角形中位线定理得出FE=AB,FE∥AB,得出∠EFC=∠BAC=90°,得出∠DAF=∠EFC,AD=FE,证明△ADF≌△FEC得出DF=EC,即可得出结论.【解答】证明:∵∠BAC=90°,∴∠DAF=90°,∵点E,F分别是边BC,AC的中点,∴AF=FC,BE=EC,FE是△ABC的中位线,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=90°,∴∠DAF=∠EFC,∵AD=AB,∴AD=FE,在△ADF和△FEC中,,∴△ADF≌△FEC(SAS),∴DF=EC,∴DF=BE.19.如图:已知:点A(﹣4,0),B(0,3)分别是x、y轴上的两点.(1)用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)(2)求出⊙P向上平移几个单位后与x轴相切.【分析】(1)用尺规作图作出OA和OB的垂直平分线,即可作出△ABO的外接圆⊙P;(2)根据A(﹣4,0),B(0,3)可以求出圆P的半径进而可求出⊙P向上平移1个单位后与x轴相切.解:(1)如图,即为△ABO的外接圆⊙P;(2)∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴⊙P的半径为2.5,即PD=2.5,∵PC是AB的中点,C是OA的中点,∴PC=OB=1.5,∴CD=PD﹣PC=1.所以⊙P向上平移1个单位后与x轴相切.20.“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形E的圆心角度数;(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.【分析】(1)由D组人数及其所占百分比可得总人数,总人数减去A、B、C、D组人数求出E的人数即可补全图形;(2)用360°乘以E组人数所占比例即可得;(3)画树状图得出所有等可能结果数,再根据概率公式求解可得.解:(1)本次比赛参赛选手总人数为9÷25%=36(人),则E组人数为36﹣(4+7+11+9)=5(人),补全直方图如下:(2)扇形统计图中扇形E的圆心角度数为360°×=50°.(3)由题意知E组中男生有3人,女生有2人,画图如下:共有20种等可能结果,其中恰好选中两名女生的有2种,所以恰好选中两名女生的概率为=.21.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?【分析】(1)求A、B两种品牌的口罩进价分别为多少元,可设A种品牌的口罩每个进价为x元,根据题意列出方程解方程.(2)先设B种品牌口罩购进m件,根据全部出售后所获利润不低于3000元列出不等式求解即可.解:(1)设A种品牌的口罩每个的进价为x元,根据题意得:,解得x=1.8,经检验x=1.8是原方程的解,x+1.8=2.5(元),答:A种品牌的口罩每个的进价为1.8元,B种品牌的口罩每个的进价为2.5元.(2)设购进B种品牌的口罩m个,根据题意得,(2.1﹣1.8)(8000﹣m)+(3﹣2.5)m≥3000,解得m≥3000,∵m为整数,∴m的最小值为3000.答:最少购进种品牌的口罩3000个.22.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出|x﹣|=2,解之即可得出结论.解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得,∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).23.已知:如图,AB是⊙O的直径,点C是过点A的⊙O的切线上一点,连接OC,过点A 作OC的垂线交OC于点D,交⊙O于点E,连接CE.(1)求证:CE与⊙O相切;(2)连结BD并延长交AC于点F,若OA=5,sin∠BAE=,求AF的长.【分析】(1)连接OE,证明△AOC≌△EOC(SAS),得出∠CAO=∠CEO,∠CAO=90°,则∠CEO=90°,结论得证;(2)过点D作DH⊥AB于点H,求出OD,DH,证明△BDH∽△BFA,由比例线段可求出AF 的长.解:(1)证明:连接OE,∵OA=OE,OD⊥AE,∴∠AOD=∠EOD,∵OC=OC,∴△AOC≌△EOC(SAS),∴∠CAO=∠CEO,∵CA为⊙O的切线,∴∠CAO=90°,∴∠CEO=90°,即OE⊥CE,∴CE与⊙O相切;(2)过点D作DH⊥AB于点H,∵OA=5,sin∠BAE=,∴在Rt△ADO中,sin∠DAO=,∴OD=∴AD==2,∵S△ADO=×OD×AD=OA×OH,∴DH==2,∴OH==1,∴BH=5+1=6,∵DH⊥AB,AF⊥AB,∴DH∥AF,∴△BDH∽△BFA,∴,∴,∴AF=.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求得即可;(2)根据C的纵坐标求得F的坐标,然后通过△OCD≌△HDE,得出DH=OC=3,即可求得OD的长;(3)①先确定C、D、E、F四点共圆,根据圆周角定理求得∠ECF=∠EDF,由于tan∠ECF ===,即可求得tan∠FDE=;②连接CE,得出△CDE是等腰直角三角形,得出∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°,求得直线CE的解析式为y=﹣x+3,即可设出直线DG1的解析式为y=﹣x+m,直线DG2的解析式为y=2x+n,把D的坐标代入即可求得m、n,从而求得解析式,进而求得G的坐标.解:(1)如图1,∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,∴,解得.∴抛物线解析式为y=﹣x2+x+3;(2)如图2,∵点F恰好在抛物线上,C(0,3),∴F的纵坐标为3,把y=3代入y=﹣x2+x+3得,3=﹣x2+x+3;解得x=0或x=4,∴F(4,3)∴OH=4,∵∠CDE=90°,∴∠ODC+∠EDH=90°,∴∠OCD=∠EDH,在△OCD和△HDE中,,∴△OCD≌△HDE(AAS),∴DH=OC=3,∴OD=4﹣3=1;(3)①如图3,连接CE,DF,△OCD≌△HDE,∴HE=OD=1,∵BF=OC=3,∴EF=3﹣1=2,∵∠CDE=∠CFE=90°,∴C、D、E、F四点共圆,∴∠ECF=∠EDF,在RT△CEF中,∵CF=OH=4,∴tan∠ECF===,∴tan∠FDE=;②如图4,连接CE,∵CD=DE,∠CDE=90°,∴∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°∵EH=1,OH=4,∴E(4,1),∵C(0,3),∴直线CE的解析式为y=﹣x+3,设直线DG1的解析式为y=﹣x+m,∵D(1,0),∴0=﹣×1+m,解得m=,∴直线DG1的解析式为y=﹣x+,当x=4时,y=﹣+=﹣,∴G1(4,﹣);设直线DG2的解析式为y=2x+n,∵D(1,0),∴0=2×1+n,解得n=﹣2,∴直线DG2的解析式为y=2x﹣2,当x=4时,y=2×4﹣2=6,∴G2(4,6);综上,在直线l上,是否存在点G,使∠EDG=45°,点G的坐标为(4,﹣)或(4,6).25.证明:(1)如图1,连接OA,OB,OC,∵AB=AC,OB=OA,OA=OC,∴△OAB≌△OCA(SSS),∴∠BAO=∠CAO,又∵∠BAC=120°,∴∠OAB=60°=∠OAC,∴△ABO是等边三角形,∴⊙O的半径R=AB;(2)CD+BD=AD,理由如下:如图2,将△ABD绕点A逆时针旋转120°得到△ACH,过点A作AN⊥CH于N,∴BD=CH,AD=AH,∠DAH=120°,∠ABD=∠ACH,∵四边形ABDC是圆内接四边形,∴∠ABD+∠ACD=180°,∴点D,点C,点H三点共线,∵AD=AH,∠DAH=120°,AN⊥CH,∴∠AHD=∠ADH=30°,HN=DN=DH,∴AD=2AN,DN=AN,∴HD=2AN=AD,∴CD+CH=CD+BD=AD;(3)如图3,连接BC,过点A作AM⊥BC于M,连接CC',CE,∵AB=AC,∠BAC=120°,AM⊥BC,AB=3,∴∠ABC=∠ACB=30°,∴AM=,BM=AM=,∵∠ADB=∠ACB=30°,∠ADC=∠ABC=30°,∴∠ADB=∠ADC,∴点C关于AD对称点C'在BD上,∴CD=C'D,又∵∠CDC'=60°,∴△CDC'是等边三角形,∵点E是C'D的中点,∴CE⊥BD,∴点E在以BC为直径的圆上,当点B与点D重合时,∵E'M=BM=CM,∴∠BME'=60°,当点D与点C重合时,点E也与点C重合,∴点E的运动路径长==2π.。
2020年广州市荔湾区中考数学一模试卷一、选择题1.(3分)“广州电视课堂”上线以来备受欢迎,截至2020年3月29日,累计约有7183900人次观看,7183900用科学记数法表示为()A.7.1839×107B.7.1839×106C.71.839×105D.71.839×106 2.(3分)“千年一遇的对称日”2020年2月2日,用数字书写为“20200202”,如图下列说法正确的是()A.中心对称图形B.既是轴对称图形,又是中心对称图形C.轴对称图形D.既不是轴对称图形,也不是中心对称图形3.(3分)下列运算正确的是()A.a3+a3=a6B.a2•a3=a6C.(ab2)2=ab4D.5a4b÷ab=5a34.(3分)如图是一个4×4的方格,若在这个方格内投掷飞镖,则飞镖恰好落在阴影部分的概率是()A.B.C.D.(3分)若关于x的方程x2﹣4x+m=0有两个不相等的实数根,则实数m的取值范围是()5.A.m≤4 B.m>4 C.m<4且m≠0 D.m<46.(3分)若点A(2,y1),B(﹣1,y2)在抛物线y=(x﹣2)2+1的图象上,则y1、y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定7.(3分)扇形的弧长为10πcm,面积为120πcm2,则扇形的半径是()A.12cm B.24cm C.28cm D.30cm8.(3分)如图,D、E分别是△ABC边AB,AC上的点,∠AED=∠B,若AD=1,BD=AC=3,则AE的长是()A.1 B.C.D.29.(3分)如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为()A.4 B.4.8 C.5 D.5.510.(3分)如图,直线y=x+1与x轴和y轴分别交于B0,B1两点,将B1B0绕B1逆时针旋转135°得B1B0′,过点B0'作y轴平行线,交直线y=x+1于点B2,记△B1B0B2的面积为S1;再将B2B1绕B2逆时针旋转135°得B2B1',过点B1'作y轴平行线,交直线y=x+l于点B3,记△B2B1'B3的面积为S2…以此类推,则△B n B n﹣1'B n+1的面积为S n=()A.()n B.()n﹣1C.2n D.2n﹣1二、填空题(本大题共6小题,每小题3分,共18分.)11.函数y=中,自变量x的取值范围是.12.已知多边形的内角和为540°,则该多边形的边数为.13.计算:(π﹣)0+()2=.14.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是.15.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片平方米(结果保留π).16.如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为.三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤.)17.先化简再求值:1﹣÷,其中a=﹣1.18.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.19.如图:已知:点A(﹣4,0),B(0,3)分别是x、y轴上的两点.(1)用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)(2)求出⊙P向上平移几个单位后与x轴相切.20.“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形E的圆心角度数;(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.21.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?22.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.23.已知:如图,AB是⊙O的直径,点C是过点A的⊙O的切线上一点,连接OC,过点A 作OC的垂线交OC于点D,交⊙O于点E,连接CE.(1)求证:CE与⊙O相切;(2)连结BD并延长交AC于点F,若OA=5,sin∠BAE=,求AF的长.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.25.如图1,已知A、B、C是⊙O上的三点,AB=AC,∠BAC=120°.(1)求证:⊙O的半径R=AB;(2)如图2,若点D是∠BAC所对弧上的一动点,连接DA,DB,DC.①探究DA,DB,DC三者之间的数量关系,并说明理由;②若AB=3,点C'与C关于AD对称,连接C'D,点E是C'D的中点,当点D从点B运动到点C时,求点E的运动路径长.参考答案一、选择题(本大题共10小题,每小题3分共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解:7183900=7.1839×106.故选:B.2.解:用数字书写为“20200202”,不是轴对称图形,是中心对称图形,故选:A.3.解:A、a3+a3=2a3,故此选项错误;B、a2•a3=a5,故此选项错误;C、(ab2)2=a2b4,故此选项错误;D、5a4b÷ab=5a3,故此选项正确;故选:D.4.解:如图:正方形的面积为4×4=16,阴影部分占5份,飞镖落在阴影区域的概率是;故选:C.5.解:∵方程有两个不相等的实数根,a=1,b=﹣4,c=m,∴△=b2﹣4ac=(﹣4)2﹣4×1×m>0,解得m<4.故选:D.6.解:当x=2时,y1=(x﹣2)2+1=1;当x=﹣1时,y2=(x﹣2)2+1=10;∵10>1,∴y1<y2.故选:A.7.解:∵S扇形=lr,∴120π=•10π•r,∴r=24(cm);故选:B.8.解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ACB,∴,∵AD=1,BD=AC=3,∴AB=1+3=4,∴,∴AE=,故选:C.9.解:设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC===5,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.10.解:直线l1:y=x+1与x轴正半轴夹角45°,由题意可知B′0B1∥x轴,B1′B2∥x轴,…,B n′B n+1∥x轴,B′0B2∥y轴,B′1B3∥y轴,…,B′n﹣1B n+1∥y轴,∴△B1B0B2;…;△B n B n﹣1'B n+1都是直角三角形,∴B1B0′=OB0,B2B1′=B1B0′,…,B n+1B′n=B n B n﹣1′由直线l1:y=x+1可知,B0(﹣1,0),B1(0,1),∴OB0=1,∴B1B0′=,B2B1′=2,…,B n B n﹣1'=n,∴△B n B n﹣1'B n+1的面积为S n=(n)2=2n﹣1故选:D.二、填空题(本大题共6小题,每小题3分,共18分.)11.函数y=中,自变量x的取值范围是x>2 .【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的意义以及分式的意义可知:x﹣2>0,所以,x>2,故答案为:x>2.12.已知多边形的内角和为540°,则该多边形的边数为 5 .【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.13.计算:(π﹣)0+()2= 3 .【分析】直接利用零指数幂的性质、二次根式的性质分别化简得出答案.解:原式=1+2=3.故答案为:3.14.已知反比例函数的图象上有两点A(x1,y1)、B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是m<.【分析】考查反比例函数图象的特点,当k>0时,图象在一三象限,k<0时,图象在二四象限解答.解:当x1<0<x2时,有y1<y2,图象位于一、三象限,此时k>0,所以1﹣2m>0,解不等式得m<.故答案为:m<.15.如图,一个无底的圆锥铁片,它的高AO=8米,母线AB与底面半径OB的夹角为α,tanα=,则制作这样一个无底圆锥需要铁片60π平方米(结果保留π).【分析】本题就是求圆锥铁片的侧面积.由圆锥高为8,母线AB与底面半径OB的夹角为α,tanα=,利用解直角三角形得出BO的长,再由勾股定理求得圆锥的母线长后,利用圆锥的侧面面积公式求出.解:∵AO=8米,母线AB与底面半径OB的夹角为α,tanα=,∴tanα===,∴BO=6,∴AB==10,根据圆锥的侧面积公式:πrl=π×6×10=60π(平方米),故答案为:60π.16.如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为3.【分析】过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,根据四边形ABCD是菱形,且∠B=120°,∠DAC=∠CAB=30°,可得PE=AP,当点D,P,E三点共线且DE⊥AB 时,PE+DP的值最小,最小值为DF的长,根据勾股定理即可求解.解:如图,过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,∵四边形ABCD是菱形,且∠B=120°,∴∠DAC=∠CAB=30°,∴PE=AP,∵∠DAF=60°,∴∠ADF=30°,∴AF=AD=6=3,∴DF=3,∵AP+PD=PE+PD,∴当点D,P,E三点共线且DE⊥AB时,PE+DP的值最小,最小值为DF的长,∴AP+PD的最小值为3.故答案为:3.三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤.)17.先化简再求值:1﹣÷,其中a=﹣1.【分析】直接利用分式的混合运算法则计算,进而把a的值代入得出答案.解:原式=1﹣÷=1﹣•=1﹣==,当a=﹣1时,原式==.18.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.【分析】证出FE是△ABC的中位线,由三角形中位线定理得出FE=AB,FE∥AB,得出∠EFC=∠BAC=90°,得出∠DAF=∠EFC,AD=FE,证明△ADF≌△FEC得出DF=EC,即可得出结论.【解答】证明:∵∠BAC=90°,∴∠DAF=90°,∵点E,F分别是边BC,AC的中点,∴AF=FC,BE=EC,FE是△ABC的中位线,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=90°,∴∠DAF=∠EFC,∵AD=AB,∴AD=FE,在△ADF和△FEC中,,∴△ADF≌△FEC(SAS),∴DF=EC,∴DF=BE.19.如图:已知:点A(﹣4,0),B(0,3)分别是x、y轴上的两点.(1)用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)(2)求出⊙P向上平移几个单位后与x轴相切.【分析】(1)用尺规作图作出OA和OB的垂直平分线,即可作出△ABO的外接圆⊙P;(2)根据A(﹣4,0),B(0,3)可以求出圆P的半径进而可求出⊙P向上平移1个单位后与x轴相切.解:(1)如图,即为△ABO的外接圆⊙P;(2)∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴⊙P的半径为2.5,即PD=2.5,∵PC是AB的中点,C是OA的中点,∴PC=OB=1.5,∴CD=PD﹣PC=1.所以⊙P向上平移1个单位后与x轴相切.20.“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形E的圆心角度数;(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.【分析】(1)由D组人数及其所占百分比可得总人数,总人数减去A、B、C、D组人数求出E的人数即可补全图形;(2)用360°乘以E组人数所占比例即可得;(3)画树状图得出所有等可能结果数,再根据概率公式求解可得.解:(1)本次比赛参赛选手总人数为9÷25%=36(人),则E组人数为36﹣(4+7+11+9)=5(人),补全直方图如下:(2)扇形统计图中扇形E的圆心角度数为360°×=50°.(3)由题意知E组中男生有3人,女生有2人,画图如下:共有20种等可能结果,其中恰好选中两名女生的有2种,所以恰好选中两名女生的概率为=.21.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?【分析】(1)求A、B两种品牌的口罩进价分别为多少元,可设A种品牌的口罩每个进价为x元,根据题意列出方程解方程.(2)先设B种品牌口罩购进m件,根据全部出售后所获利润不低于3000元列出不等式求解即可.解:(1)设A种品牌的口罩每个的进价为x元,根据题意得:,解得x=1.8,经检验x=1.8是原方程的解,x+1.8=2.5(元),答:A种品牌的口罩每个的进价为1.8元,B种品牌的口罩每个的进价为2.5元.(2)设购进B种品牌的口罩m个,根据题意得,(2.1﹣1.8)(8000﹣m)+(3﹣2.5)m≥3000,解得m≥3000,∵m为整数,∴m的最小值为3000.答:最少购进种品牌的口罩3000个.22.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出|x﹣|=2,解之即可得出结论.解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得,∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).23.已知:如图,AB是⊙O的直径,点C是过点A的⊙O的切线上一点,连接OC,过点A 作OC的垂线交OC于点D,交⊙O于点E,连接CE.(1)求证:CE与⊙O相切;(2)连结BD并延长交AC于点F,若OA=5,sin∠BAE=,求AF的长.【分析】(1)连接OE,证明△AOC≌△EOC(SAS),得出∠CAO=∠CEO,∠CAO=90°,则∠CEO=90°,结论得证;(2)过点D作DH⊥AB于点H,求出OD,DH,证明△BDH∽△BFA,由比例线段可求出AF 的长.解:(1)证明:连接OE,∵OA=OE,OD⊥AE,∴∠AOD=∠EOD,∵OC=OC,∴△AOC≌△EOC(SAS),∴∠CAO=∠CEO,∵CA为⊙O的切线,∴∠CAO=90°,∴∠CEO=90°,即OE⊥CE,∴CE与⊙O相切;(2)过点D作DH⊥AB于点H,∵OA=5,sin∠BAE=,∴在Rt△ADO中,sin∠DAO=,∴OD=∴AD==2,∵S△ADO=×OD×AD=OA×OH,∴DH==2,∴OH==1,∴BH=5+1=6,∵DH⊥AB,AF⊥AB,∴DH∥AF,∴△BDH∽△BFA,∴,∴,∴AF=.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求得即可;(2)根据C的纵坐标求得F的坐标,然后通过△OCD≌△HDE,得出DH=OC=3,即可求得OD的长;(3)①先确定C、D、E、F四点共圆,根据圆周角定理求得∠ECF=∠EDF,由于tan∠ECF ===,即可求得tan∠FDE=;②连接CE,得出△CDE是等腰直角三角形,得出∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°,求得直线CE的解析式为y=﹣x+3,即可设出直线DG1的解析式为y=﹣x+m,直线DG2的解析式为y=2x+n,把D的坐标代入即可求得m、n,从而求得解析式,进而求得G的坐标.解:(1)如图1,∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,∴,解得.∴抛物线解析式为y=﹣x2+x+3;(2)如图2,∵点F恰好在抛物线上,C(0,3),∴F的纵坐标为3,把y=3代入y=﹣x2+x+3得,3=﹣x2+x+3;解得x=0或x=4,∴F(4,3)∴OH=4,∵∠CDE=90°,∴∠ODC+∠EDH=90°,∴∠OCD=∠EDH,在△OCD和△HDE中,,∴△OCD≌△HDE(AAS),∴DH=OC=3,∴OD=4﹣3=1;(3)①如图3,连接CE,DF,△OCD≌△HDE,∴HE=OD=1,∵BF=OC=3,∴EF=3﹣1=2,∵∠CDE=∠CFE=90°,∴C、D、E、F四点共圆,∴∠ECF=∠EDF,在RT△CEF中,∵CF=OH=4,∴tan∠ECF===,∴tan∠FDE=;②如图4,连接CE,∵CD=DE,∠CDE=90°,∴∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°∵EH=1,OH=4,∴E(4,1),∵C(0,3),∴直线CE的解析式为y=﹣x+3,设直线DG1的解析式为y=﹣x+m,∵D(1,0),∴0=﹣×1+m,解得m=,∴直线DG1的解析式为y=﹣x+,当x=4时,y=﹣+=﹣,∴G1(4,﹣);设直线DG2的解析式为y=2x+n,∵D(1,0),∴0=2×1+n,解得n=﹣2,∴直线DG2的解析式为y=2x﹣2,当x=4时,y=2×4﹣2=6,∴G2(4,6);综上,在直线l上,是否存在点G,使∠EDG=45°,点G的坐标为(4,﹣)或(4,6).25.证明:(1)如图1,连接OA,OB,OC,∵AB=AC,OB=OA,OA=OC,∴△OAB≌△OCA(SSS),∴∠BAO=∠CAO,又∵∠BAC=120°,∴∠OAB=60°=∠OAC,∴△ABO是等边三角形,∴⊙O的半径R=AB;(2)CD+BD=AD,理由如下:如图2,将△ABD绕点A逆时针旋转120°得到△ACH,过点A作AN⊥CH于N,∴BD=CH,AD=AH,∠DAH=120°,∠ABD=∠ACH,∵四边形ABDC是圆内接四边形,∴∠ABD+∠ACD=180°,∴点D,点C,点H三点共线,∵AD=AH,∠DAH=120°,AN⊥CH,∴∠AHD=∠ADH=30°,HN=DN=DH,∴AD=2AN,DN=AN,∴HD=2AN=AD,∴CD+CH=CD+BD=AD;(3)如图3,连接BC,过点A作AM⊥BC于M,连接CC',CE,∵AB=AC,∠BAC=120°,AM⊥BC,AB=3,∴∠ABC=∠ACB=30°,∴AM=,BM=AM=,∵∠ADB=∠ACB=30°,∠ADC=∠ABC=30°,∴∠ADB=∠ADC,∴点C关于AD对称点C'在BD上,∴CD=C'D,又∵∠CDC'=60°,∴△CDC'是等边三角形,∵点E是C'D的中点,∴CE⊥BD,∴点E在以BC为直径的圆上,当点B与点D重合时,∵E'M=BM=CM,∴∠BME'=60°,当点D与点C重合时,点E也与点C重合,∴点E的运动路径长==2π.。
2020年广省广州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分) 1. -2020的相反数是( )A. -2020B. 2020C.20201- D.20201- 2. 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C. D.3. 如图几何体的俯视图是( )A. B. C. D.4. 下列运算正确的是( )A. a 6÷a 3=a 2B. a 4−a =a 3C. 2a ⋅3a =6aD. (−2x 2y)3=−8x 6y 35. 使分式x2x−4有意义的x 的取值范围是( )A. x =2B. x ≠2C. x =−2D. x ≠06. 下列说法正确的是( )A. 一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数和中位数都是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小7. 在二次函数y =−x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <−1 D. x >−18. 已知x 1、x 2是关于x 的方程x 2−ax −2=0的两根,下列结论一定正确的是( )A. x 1≠x 2B. x 1+x 2>0C. x 1⋅x 2>0D. x 1<0,x 2<09. 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是( )A. 24√2πB. 24πC. 16πD. 12π10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y(cm 2),已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =−25t +27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18分)11.因式分解:a2−2ab+b2=______.12.分式方程1x−2=3x的解是______.13.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.15.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为______.16.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=12AB,连接OE.下列结论:①S▱ABCD= AD⋅BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的结论是______.三、计算题(本大题共2小题,共22分)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ax)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+1x(x>0)的图象和性质.x (1)413121234…y……③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+1x(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.四、解答题(本大题共7小题,共80分)19.解不等式组{−2x≤03x−1<520.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=3,求线段AB的长.4(k>0)21.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=kx与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.22.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.AB,应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.24.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG 交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.25.抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(−1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=−x−4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;(3)Q为直线y=−x−4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】C【解析】解:从上面看得到图形为,故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.4.【答案】D【解析】解:(A)原式=a3,故A错误;(B)原式=a4−a,故B错误;(C)原式=6a2,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】B有意义,【解析】解:∵分式x2x−4∴2x−4≠0,即x≠2.故选:B.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.6.【答案】C【解析】解:A、一个游戏中奖的概率是1,做10次这样的游戏也不一定会中奖,故此10选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故此选项错误;故选:C.根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.7.【答案】A【解析】解:∵a=−1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=−x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=−b,在对称轴左边,y随x的增大而增大.2a8.【答案】A【解析】解:A.∵△=(−a)2−4×1×(−2)=a2+8>0,∴x1≠x2,结论A正确;B.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1⋅x2=−2,结论C错误;D.∵x1⋅x2=−2,∴x1、x2异号,结论D错误.故选:A.A.根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B.根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C.根据根与系数的关系可得出x1⋅x2=−2,结论C错误;D.由x1⋅x2=−2,可得出x1、x2异号,结论D错误.综上即可得出结论.本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.【答案】D【解析】解:∵sinθ=1,母线长为6,3×6=2,∴圆锥的底面半径=13∴该圆锥的侧面积=12×6×2π⋅2=12π.故选:D .先根据正弦的定义计算出圆锥的半径=2,然后根据扇形的面积公式求圆锥的侧面积. 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 10.【答案】B【解析】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4, ∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =ABBE =45, ∴PF =PBsin∠PBF =45t ,∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11, 故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34, ∴PQBQ =34,即11−t 5=34,解得:t =294.(故④正确);综上可得①②④正确,共3个.故选:B .据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.【答案】(a−b)2【解析】解:原式=(a−b)2故答案为:(a−b)2根据完全平方公式即可求出答案.本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.12.【答案】3【解析】解:去分母得:x=3(x−2),去括号得:x=3x−6,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【答案】频数分布【解析】解:频数分布是反映一组数据中,某一范围内的数据的出现的次数,通过次数计算出所占的比,而平均数则反映一组数据集中变化趋势,故答案为:频数分布.平均数是反映一组数据集中变化趋势,而频数分布则反映某一范围内的数出现的次数,即频数,因此选择频数分布.考查频数分布的意义、平均数的意义及求法,理解各个统计量的意义和反映数据的特征,才是解决问题的关键.14.【答案】3√6【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BEAB,∴BE=AB⋅sin∠BAC=6×√32=3√3,由题意得,∠C=45°,∴BC=BEsinC =3√3÷√22=3√6(千米),故答案为:3√6.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】30°或110°【解析】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC−∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.分两种情形,利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】①②【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=1AB,2∴E是AB的中点,∴DE=BE,∴∠BDE=1∠AED=30°,2∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,AD,∴OE//AD,OE=12∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故答案为:①②.求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE= 30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即AD,进而得可得到AO>DE;依据OE是△ABD的中位线,即可得到OE//AD,OE=12到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.17.【答案】(1)200;(2)补全图形,如图所示:甲 乙 丙 丁 甲 --- (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) --- (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) --- (丁,丙) 丁(甲,丁)(乙,丁)(丙,丁)---所有等可能的结果为种,其中符合要求的只有种, 则P =212=16.【解析】解:(1)根据题意得:20÷36360=200(人),则这次被调查的学生共有200人;故答案为:200; (2)见答案; (3)见答案. 【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A ,B 及D 的人数求出喜欢C 的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.【答案】解:(1)①故答案为:174,103,52,2,52,103,174.函数y =x +1x 的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x =1时,函数y =x +1x(x >0)的最小值是2.③y =x +1x =x 2+1x=x 2−2x+1x+2=(x−1)2x+2,∵x >0,所以(x−1)2x≥0,所以当x =1时,(x−1)2x的最小值为0,∴函数y=x+1x(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为√a时,它的周长最小,最小值是4√a.【解析】(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[(√x−√ax)2+2√a],即可求出答案.本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.19.【答案】解:{−2x≤0 ①3x−1<5 ②解不等式①得:x≥0解不等式②得:x<2∴不等式组的解集为0≤x<2.【解析】别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.20.【答案】解:∵四边形ABCD为菱形∴BO=OD,∠AOB=90°∵BD=8∴BO=4∵tan∠ABD=AOBO,∴34=AO4∴AO=3在Rt△ABC中,AO=3,OB=4则AB=√AD2+OB2=√32+42=5【解析】由菱形的性质可得BO=OD=4,∠AOB=90°,由锐角三角函数可求AO=3,由勾股定理可求AB的长.本题考查了菱形的性质,锐角三角函数,勾股定理,熟练运用菱形的性质是本题的关键.21.【答案】解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=kx,可得k=4,即反比例函数解析式为:y=4x,∵点F的横坐标为4,∴点F的纵坐标=44=1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE =DE ,BF =DF ,∠B =∠EDF =90°, ∵∠CDF +∠EDG =90°,∠GED +∠EDG =90°, ∴∠CDF =∠GED ,又∵∠EGD =∠DCF =90°, ∴△EGD∽△DCF ,结合图形可设点E 坐标为(k2,2),点F 坐标为(4,k4),则CF =k4,BF =DF =2−k4,ED =BE =AB −AE =4−k2,在Rt △CDF 中,CD =√DF 2−CF 2=√(2−k 4)2−(k4)2=√4−k ,∵CD GE=DFED ,即√4−k2=2−k44−k 2,∴√4−k =1, 解得:k =3.【解析】(1)根据点E 是AB 中点,可求出点E 的坐标,将点E 的坐标代入反比例函数解析式可求出k 的值,再由点F 的横坐标为4,可求出点F 的纵坐标,继而得出答案; (2)证明∠GED =∠CDF ,然后利用两角法可判断△EGD∽△DCF ,设点E 坐标为(k2,2),点F 坐标为(4,k4),即可得CF =k4,BF =DF =2−k4,在Rt △CDF 中表示出CD ,利用对应边成比例可求出k 的值.本题考查了反比例函数的综合,解答本题的关键是利用点E 的纵坐标,点F 的横坐标,用含k 的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.22.【答案】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元; 根据题意得:{2x +3y =90x +2y =55,解得:{x =15y =20;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克, 根据题意得:12−t ≥2t , ∴t ≤4,∵W =15t +20(12−t)=−5t +240, k =−5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220(元),此时12−4=8; 答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克,根据题意得出12−t ≥2t ,得出t ≤4,由题意得出W =−5t +240,由一次函数的性质得出W 随t 的增大而减小,得出当t =4时,W 的最小值=220(元),求出12−4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23.【答案】应用:解:①若PB =PC ,连接PB ,则∠PCB =∠PBC , ∵CD 为等边三角形的高, ∴AD =BD ,∠PCB =30°, ∴∠PBD =∠PBC =30°, ∴PD =√33DB =√36AB , 与已知PD =12AB 矛盾,∴PB ≠PC ,②若PA =PC ,连接PA ,同理可得PA ≠PC , ③若PA =PB ,由PD =12AB ,得PD =BD , ∴∠APD =45°, 故∠APB =90°;探究:解:∵BC =5,AB =3, ∴AC =√BC 2−AB 2=√52−32=4, ①若PB =PC ,设PA =x ,则x 2+32=(4−x)2,∴x =78,即PA =78,②若PA =PC ,则PA =2,③若PA =PB ,由图知,在Rt △PAB 中,不可能. 故PA =2或78.【解析】应用:连接PA 、PB ,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB =45°,然后即可求出∠APB 的度数; 探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论. 24.【答案】(1)证明:如图1,∵PE =BE , ∴∠EBP =∠EPB .又∵∠EPH =∠EBC =90°,∴∠EPH −∠EPB =∠EBC −∠EBP . 即∠PBC =∠BPH . 又∵AD//BC , ∴∠APB =∠PBC . ∴∠APB =∠BPH .(2)△PHD 的周长不变为定值8.证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB =∠BPH ,在△ABP和△QBP中{∠APB=∠BPH ∠A=∠BQPBP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4−BE)2+x2=BE2.解得,BE=2+x28.∴CF=BE−EM=2+x28−x.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴S=12(BE+CF)BC=12(4+x24−x)×4.即:S=12x2−2x+8.配方得,S=12(x−2)2+6,∴当x=2时,S有最小值6.【解析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH= AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4−BE)2+x2=BE2,利用二次函数的最值求出即可.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.25.【答案】解:(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=−2,∵点A坐标为(−1,0),∴点B坐标为(−3,0),∵OB=OC,∴C点坐标为(0,−3).将A(−1,0)、C(0,−3)分别代入解析式得,{a +c =04a +c =−3,解得,{a =−1c =1,则函数解析式为y =−x 2−4x −3.(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m , 由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0, ∵平移后的抛物线总有不动点, ∴△≥0,∴4m 2+4m +1−4(m 2−2m −4)≥0, 解得m ≥−1712.(3)如图,设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,切点为D ,直线y =−x −4交抛物线的对称轴于E ,则E(−2,−2)∴PE =m +2,PD =√22PE ,∵PA =PD , ∴(m+2)22=1+m 2,解得m =2±√6,故P(−2,2+√6)或(−2,2−√6).【解析】(1)根据函数的解析式可以得到函数的对称轴是x =−2,则B 点的坐标可以求得,求得OB 的长,则C 的坐标可以求得,把A 、C 的坐标代入函数解析式即可求得;(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m ,由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0,平移后的抛物线总有不动点,推出△≥0,由此构建不等式即可解决问题;(3)设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,根据切线的性质即可求解. 本题考查二次函数综合题、待定系数法求函数的解析式、一次函数的应用,以及直线与圆相切的判定等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
2020年广东省广州越秀区中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.四个数0,1,,中,无理数的是()A.1B.C.0D.2.自新冠肺炎疫情发生以来,全国广大共产党员积极响应党中央的号召,为支持新冠肺炎疫情防控工作踊跃捐款.据统计,截至3月26日,全国已有7901万多名党员自愿捐款.共捐款82.6亿元.将82.6亿元用科学记数法表示为()元.A.82.6×108B.8.26×109C.0.826×1010D.8.26×10103.下列运算正确的是()A.=±2B.a3÷a2=a C.m2•m3=m6D.(2x2)3=6x64.如图,由5个相同正方体组合而成的几何体,它的俯视图是()A.B.C.D.5.已知点A(1,﹣3)关于y轴的对称点A′在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣6.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°7.AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.25°B.30°C.35°D.40°8.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AD=6,tan B=,则BC的值为()A.B.8C.D.149.在下列函数图象上任取不同两点A(x1,y1)、B(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x﹣1(x<0)10.关于x的方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是()A.﹣2B.C.﹣2或D.﹣2或二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:a3﹣4a=.12.在函数y=中,自变量x的取值范围是.13.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为.14.当≤x≤2时,函数y=的图象为曲线段CD,y=﹣2x﹣b的图象分别与x轴、y轴交于A、B两点,若曲线段CD在△AOB的内部(且与三条边无交点),则b的取值范围为.15.如图,已知圆锥的高为2,高所在直线与母线的夹角为30°,则圆锥的全面积为.16.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF,CF,AF=10,BC=4.则下列结论:①∠BAC=2∠DAC;②CA垂直平分BF;③DE=;④tan∠BAD=.其中正确的结论是.(写出所有正确结论的序号)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程组:.18.(9分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=10,AC=12,求▱ABCD的面积.19.(10分)已知代数式A满足A=.(1)化简A;(2)若x2﹣3x=4,求代数式A的值.20.(10分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数)频率A40.04B m0.51C nD合计1001(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应扇形的圆心角的度数;(3)成绩等级为A的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.21.(12分)2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,全社会积极参与疫情防控工作,广州市某企业临时增加甲、乙两个厂房参与生产一批口罩,先由甲厂房生产600箱口罩,再由乙厂房完成剩下的生产任务,已知乙厂房生产口罩箱数是甲厂房生产口罩箱数的倍.甲厂房比乙厂房少生产4天.(1)求乙厂房生产口罩总箱数;(2)若甲、乙两厂房平均每天生产口罩箱数之比为5:4,求乙厂房平均每天生产口罩多少箱.22.(12分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.23.(12分)如图,AB是⊙O的直径,点C是上一点,AB=13,AC=5.(1)尺规作图:作出的中点D;(保留作图痕迹,不写作法)(2)连接AD,求AD的长;(3)若点G为△ABC的内心,连接DG,求DG的长.24.(14分)在平面直角坐标系xOy中,已知点A在抛物线y=x2+bx+c(b>0)上,且A(1,﹣1).(1)求b,c满足的关系式;(2)若该抛物线与y轴交于点B,其对称轴与x轴交于点C,抛物线的顶点为D,若直线BC分四边形OBDC的面积的比为2:3,求二次函数的解析式;(3)将该抛物线平移,平移后的抛物线仍经过(1,﹣1),点A的对应点为A′(1﹣m,2b﹣1),当m ≥﹣1时,求平移后抛物线的顶点所能达到的最高点的坐标.25.(14分)如图,在正方形ABCD中,点E为BC边上一点,以AE为直角边作等腰直角△AEF,EF交DC于点G,AF交DC于点H,连接EH.(1)求证:∠AHE=∠AHD;(2)若tan∠HEG=,求的值;(3)若正方形ABCD的边长为4,点E在运动过程中,△AEH的面积是否为定值?如果是,请求出定值;如果不是,请求出△AEH面积的最小值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项,只有一项是符合题目要求的)1.四个数0,1,,中,无理数的是()A.1B.C.0D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0和1是整数,属于有理数;是分数,属于有理数;是无理数.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.5757757775…(相邻两个5之间的7的个数逐次加1)等有这样规律的数.2.自新冠肺炎疫情发生以来,全国广大共产党员积极响应党中央的号召,为支持新冠肺炎疫情防控工作踊跃捐款.据统计,截至3月26日,全国已有7901万多名党员自愿捐款.共捐款82.6亿元.将82.6亿元用科学记数法表示为()元.A.82.6×108B.8.26×109C.0.826×1010D.8.26×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:82.6亿=8260000000=8.26×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.=±2B.a3÷a2=a C.m2•m3=m6D.(2x2)3=6x6【分析】分别根据算术平方根的定义,同底数幂的除法法则,同底数幂的乘法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.,故本选项不合题意;B.a3÷a2=a,运算正确;C.m2•m3=m5,故本选项不合题意;D.(2x2)3=8x6,故本选项不合题意.故选:B.【点评】本题主要考查了算术平方根,同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.如图,由5个相同正方体组合而成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义进行判断即可.【解答】解:选项A中的图形比较符合该组合体的俯视图,故选:A.【点评】本题考查计算组合体的三视图,理解视图的意义是正确判断的前提.5.已知点A(1,﹣3)关于y轴的对称点A′在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】根据对称性求出点A′的坐标,把点A′的坐标代入反比例函数y=可求出k的值.【解答】解:∵点A′与点A(1,﹣3)关于y轴的对称,∴点A′(﹣1,﹣3),∵点A′(﹣1,﹣3)在反比例函数y=(k≠0)的图象上,∴k=(﹣1)×(﹣3)=3,故选:A.【点评】本题考查了轴对称的坐标变化、反比例函数图象上点的坐标特征等知识;求出点A′的坐标是解决问题的关键.6.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°【分析】想办法求出∠5即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.【点评】本题考查平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.25°B.30°C.35°D.40°【分析】连接OC,根据切线的性质得到∠OCP=90°,证明∠OCA=∠OAC=∠COP,再根据圆周角定理得出答案.【解答】证明:连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠COP+∠P=90°,∵∠P=40°,∴∠COP=50°,∵OA=OC,∴∠OCA=∠OAC=∠COP=25°,∴∠D=∠CAO=25°,故选:A.【点评】本题考查了切线的性质、圆周角定理,掌握切线的性质定理是解题的关键.8.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AD=6,tan B=,则BC的值为()A.B.8C.D.14【分析】解直角三角形分别求出BD,DC即可解决问题.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∠BAD+∠DAC=90°,∴∠B=∠DAC,∴tan B=tan∠DAC=,∴==,∵AD=6.∴BD=8,CD=,∴BC=BD+CD=,故选:C.【点评】本题考查解直角三角形,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.在下列函数图象上任取不同两点A(x1,y1)、B(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x﹣1(x<0)【分析】根据各函数的增减性依次进行判断即可.【解答】解:A、∵y=3x﹣1中,k=3>0,∴y随x的增大而增大,即当x1>x2时,必有y1>y2,∴当x<0时,>0,故A选项不成立;B、∵y=﹣x2+2x﹣1的对称轴为直线x=1,∴当0<x<1时,y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时,当x1>x2时,必有y1>y2,此时>0,故B选项不成立;C、y=﹣中,k=﹣,则当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2,此>0,故C选项不成立;D、∵y=x2﹣4x﹣1的对称轴为直线x=2,∴当x<0时,y随x的增大而减小,即当x1>x2时,必有y1<y2,此时<0,故D选项成立;故选:D.【点评】本题主要考查了一次函数、反比例函数和二次函数的图象和性质,需要结合图象去一一分析,有点难度.10.关于x的方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是()A.﹣2B.C.﹣2或D.﹣2或【分析】先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么△=0,解方程即可求解.【解答】解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,则△=(2k+1)2﹣4(k2﹣2)=0.解得:k=﹣.所以k的值为﹣2或﹣.故选:D.【点评】本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.【点评】考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为(1,1).【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故答案为:(1,1).【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.14.当≤x≤2时,函数y=的图象为曲线段CD,y=﹣2x﹣b的图象分别与x轴、y轴交于A、B两点,若曲线段CD在△AOB的内部(且与三条边无交点),则b的取值范围为b<﹣.【分析】求出C、D两点坐标,再代入一次函数的关系式求出b的值,即可确定b的取值范围.【解答】解:把x=代入y=得,y=2,把x=2代入y=得,y=,把(,2)代入y=﹣2x﹣b得,b=﹣3,把(2,)代入y=﹣2x﹣b得,b=﹣,因此,b的取值范围为b<﹣.故答案为:b<﹣.【点评】考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用的方法,数形结合则更直观.15.如图,已知圆锥的高为2,高所在直线与母线的夹角为30°,则圆锥的全面积为6π.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的全面积.【解答】解:如图,∠BAO=30°,AO=2,在Rt△ABO中,∵tan∠BAO=,∴BO=2tan30°=2,即圆锥的底面圆的半径为2,∴AB=2OB=4,即圆锥的母线长为4,∴圆锥的全面积=•2π•1•2+π•22=6π.故答案为6π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF,CF,AF=10,BC=4.则下列结论:①∠BAC=2∠DAC;②CA垂直平分BF;③DE=;④tan∠BAD=.其中正确的结论是①②④.(写出所有正确结论的序号)【分析】①正确,证明∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,可得结论.②正确,证明CB=CF,可得结论.③错误,通过计算可得DE=3.④正确,过点D作DH⊥AB于H.想办法求出DH,AH,可得结论.【解答】解:∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD,故①正确,∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,故②正确,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,∴AE=6,BE=8,CE=4,∴DE===3,故③错误,过点D作DH⊥AB于H.∵∠DBH=∠ABE,∠BHD=∠AEB=90°,∴△DBH∽△ABE,∵==,∴==,∴BH=,DH=,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===,故④正确.故答案为:①②④.【点评】本题主要考查圆周角定理,相似三角形的判定和性质,解直角三角形等知识,解题的关键是掌握圆周角定理及其推论、勾股定理等知识点.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程组:.【分析】按照消元法解二元一次方程组的步骤解答即可.【解答】解:②×2,得2x﹣2y=2③,①+③,得5x=10,把x=2代入②,得y=1,∴原方程组的解为.【点评】本题考查了二元一次方程组的解法,熟练掌握代入消元法或加减消元法的步骤是解决问题的关键.18.(9分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=10,AC=12,求▱ABCD的面积.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,在△AEB和△AFD中,,∴△AEB≌△AFD(ASA),∴AB=AD,∴四边形ABCD是菱形;(2)解:连接BD交AC于O,∵四边形ABCD是菱形,AC=12,∴AC⊥BD,AO=OC=AC=×12=6,∵AB=10,AO=6,∴BO===8,∴BD=2BO=16,∴S平行四边形ABCD=AC•BD=96.【点评】本题考查菱形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是根据全等三角形的判定证得△AEB≌△AFD.19.(10分)已知代数式A满足A=.(1)化简A;(2)若x2﹣3x=4,求代数式A的值.【分析】(1)先对的分子和分母因式分解后进行约分,然后先算括号里,最后把括号外的除法运算转化为乘法运算即可;(2)先解方程x2﹣3x=4求出x的值,再判断x的取值是否使原分式有意义,代入使原分式有意义的x 的值计算即可.【解答】解:(1)原式====;(2)解方程x2﹣3x=4得:x1=4,x2=﹣1,当x=﹣1时,原分式没有意义,当x=4时,A=.【点评】本题考查了分式的化简求值,因式分解是解决化简求值问题的重要方法.20.(10分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数)频率A40.04B m0.51C nD合计1001(1)求m=51,n=30;(2)在扇形统计图中,求“C等级”所对应扇形的圆心角的度数;(3)成绩等级为A的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.【分析】(1)由A的人数和其所占的百分比即可求出总人数,由此即可解决问题;(2)由总人数求出C等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好选出的两名同学中至少有一名是女生的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷0.04=100(人);∴m=0.51×100=51(人),D组人数=100×15%=15(人),∴n=100﹣4﹣51﹣15=30(人),故答案为:51,30;(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人),∴所占的百分比为:16÷50=32%,∴C等级所对应扇形的圆心角度数为:360°×30%=108°;(3)由题意可得,树状图如下图所示,选出的两名同学中至少有一名是女生的概率是=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.21.(12分)2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,全社会积极参与疫情防控工作,广州市某企业临时增加甲、乙两个厂房参与生产一批口罩,先由甲厂房生产600箱口罩,再由乙厂房完成剩下的生产任务,已知乙厂房生产口罩箱数是甲厂房生产口罩箱数的倍.甲厂房比乙厂房少生产4天.(1)求乙厂房生产口罩总箱数;(2)若甲、乙两厂房平均每天生产口罩箱数之比为5:4,求乙厂房平均每天生产口罩多少箱.【分析】(1)由乙厂房生产口罩箱数是甲厂房生产口罩箱数的倍,列式计算即可;(2)设甲厂房平均每天生产口罩5x箱,则乙厂房平均每天生产口罩4x箱,由题意“甲厂房比乙厂房少生产4天”列出方程,解方程即可求解.【解答】解:(1)乙厂房生产口罩总箱数为:600×=800(箱);(2)设甲厂房平均每天生产口罩5x箱,则乙厂房平均每天生产口罩4x箱,由题意得:+4=,解得:x=20,经检验,x=20是原方程的解,且符合题意,则4x=4×20=80(箱),答:乙厂房平均每天生产口罩80箱.【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.22.(12分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【分析】(1)将点A,B坐标代入双曲线中即可求出m,n,最后将点A,B坐标代入直线解析式中即可得出结论;(2)根据点A,B坐标和图象即可得出结论;(3)先求出点C,D坐标,进而求出CD,AD,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.【解答】解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.23.(12分)如图,AB是⊙O的直径,点C是上一点,AB=13,AC=5.(1)尺规作图:作出的中点D;(保留作图痕迹,不写作法)(2)连接AD,求AD的长;(3)若点G为△ABC的内心,连接DG,求DG的长.【分析】(1)作线段AB的垂直平分线交于D.(2)证明△AOD是等腰直角三角形即可解决问题.(3)求出GJ,DJ,利用勾股定理求解即可.【解答】解:(1)如图,点D即为所求作.(2)∵OD⊥AB,OA=OD,∴△ADO是等腰直角三角形,∴AD=OA=.(3)过点G作GT⊥OA于G,GJ⊥OD于J,GK⊥AC于K.∵AB是直径,∴∠ACB=90°,∴BC===12,∵G是△ABC的内心,∴GT=GK==2,在△AGK和△AGT中,,∴△AGK≌△AGT(AAS),∴AK=AT,∵∠GCK=∠GCB=45°,∠CKG=90°,∴KC=GK=2,∴AK=AT=3,∴OT=﹣3=,∵∠GTO=∠TOJ=∠GJO=90°,∴四边形OTGJ是矩形,∴OJ=GT=2,GT=OT=,∴DJ=﹣2=,∴DG===.【点评】本题考查了作图﹣复杂作图,解直角三角形,三角形的内心,圆周角定理,矩形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,24.(14分)在平面直角坐标系xOy中,已知点A在抛物线y=x2+bx+c(b>0)上,且A(1,﹣1).(1)求b,c满足的关系式;(2)若该抛物线与y轴交于点B,其对称轴与x轴交于点C,抛物线的顶点为D,若直线BC分四边形OBDC的面积的比为2:3,求二次函数的解析式;(3)将该抛物线平移,平移后的抛物线仍经过(1,﹣1),点A的对应点为A′(1﹣m,2b﹣1),当m ≥﹣1时,求平移后抛物线的顶点所能达到的最高点的坐标.【分析】(1)把点A的坐标代入抛物线的解析式,可得结论.(2)首先证明c<﹣2,推出点B在y轴的负半轴上,由直线BC分四边形OBDC的面积的比为2:3,推出CE=2DE,推出顶点D的纵坐标为c,由此构建方程求出c,b即可.(3)因为平移后A(1,﹣1)的对应点为A′(1﹣m,2b﹣1)可知,抛物线向左平移m个单位长度,向上平移2b个单位长度.则平移后的抛物线解析式为y=(x++m)2﹣﹣2﹣b+2b,即y=(x++m)2﹣﹣2+b.利用待定系数法求出m=﹣b,再利用二次函数的性质件及其他即可.【解答】解:(1)把A(1,﹣1)代入y=x2+bx+c得到,﹣1=1+b+c,∴b+c=﹣2.(2)如图,过点B作BE⊥CD于E.∵b=﹣2﹣c>0,∴c<﹣2,∴点B在y轴的负半轴上,∵直线BC分四边形OBDC的面积的比为2:3,∴CE=2DE,∴顶点D的纵坐标为c,∴c=,∴b2=﹣2c,∵b=﹣2﹣c,∴4+4c+c2=﹣2c,∴c2+6c+4=0,∴c==﹣3±,∵c<﹣2,∴c=﹣3﹣,∴b=1+,∴抛物线的解析式为y=x2+(1+)x﹣3﹣.(3)由平移前的抛物线y=x2+bx+c,可得y=(x+)2﹣+c,即y=(x+)2﹣﹣2﹣b.因为平移后A(1,﹣1)的对应点为A′(1﹣m,2b﹣1)可知,抛物线向左平移m个单位长度,向上平移2b个单位长度.则平移后的抛物线解析式为y=(x++m)2﹣﹣2﹣b+2b,即y=(x++m)2﹣﹣2+b.把(1,﹣1)代入,得(1++m)2﹣﹣2+b=﹣1.(1++m)2=﹣b+1.(1++m)2=(﹣1)2,所以1++m=±(﹣1).当1++m=﹣1时,m=﹣2(不合题意,舍去);当1++m=﹣(﹣1)时,m=﹣b,因为m≥﹣1,所以b≤1.所以0<b≤1,所以平移后的抛物线解析式为y=(x﹣)2﹣﹣2+b.即顶点为(,﹣﹣2+b),设p=﹣﹣2+b,即p=﹣(b﹣2)2﹣1.因为﹣<0,所以当b<2时,p随b的增大而增大.因为0<b≤1,所以当b=1时,p取最大值为﹣,此时,平移后抛物线的顶点所能达到的最高点坐标为(,﹣).【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.(14分)如图,在正方形ABCD中,点E为BC边上一点,以AE为直角边作等腰直角△AEF,EF交DC于点G,AF交DC于点H,连接EH.(1)求证:∠AHE=∠AHD;(2)若tan∠HEG=,求的值;(3)若正方形ABCD的边长为4,点E在运动过程中,△AEH的面积是否为定值?如果是,请求出定值;如果不是,请求出△AEH面积的最小值.【分析】(1)延长HD到点M,使DM=BE,可证△AEH≌△AMH,可得∠AHE=∠AHD;(2)由(1)中全等可得,∠1=∠3=∠4,设BE=m,则可得AB=3m,AM=AE=m,BC=2m,CG=m,EG=m,FG=m,===3;(3)设BE=m,DH=n,则S△AEH=2m+2n,EC=4﹣m,HC=4﹣n,可知当m=n时,S有最小值16﹣16.【解答】解:(1)如图,延长HD到点M,使DM=BE,∵四边形ABCD是正方形,∴AB=AD,∠B=∠BAD=∠ADM=90°,∴△ABE≌△ADM(SAS),∴∠3=∠4,AE=AM∵△AEF是等腰直角三角形,∴∠EAF=45°,∴∠4+∠DAH=45°,∴∠3+∠DAH=45°,即∠MAH=∠EAH=45°,又AH=AH,∴△AEH≌△AMH(SAS),∴∠AHE=∠AHD;(2)∵△AEF是等腰直角三角形,∴∠AEF=90°,即∠1+∠2=90°,由(1)知,△AEH≌△AMH,∴∠2=∠M,∵∠3+∠M=90°,∴∠1=∠3=∠4,∵tan∠HEG=,∴tan∠4=,设BE=m,则AB=3m,∴AM=AE=EF=m,BC=3m,∴BC=2m,又∠GEC=∠4,∴tan∠GEC=,∴CG=m,EG=m,∴FG=m,∴===3;(3)设BE=m,DH=n,∴DM=BE=m,EC=4﹣m,HC=4﹣n,∴S△AEH==2m+2n,且当m=n时,S最小,在Rt△ECH中,由勾股定理可知,(4﹣m)2+(4﹣n)2=(m+n)2,解得,m=4﹣4,此时,S取最小值16﹣16.【点评】本题主要考查正方形的性质,等腰直角三角形的性质,全等三角形的性质与判定等内容,作出辅助线,构造全等是本题突破点.。
A B C D广州市天河区2020年中考数学一模试卷本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项:1. 答卷前,考生务必在答题卡第1面用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号,再用2B 铅笔把对应号码的标号涂黑.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在数轴上表示实数一1和7这两点间的距离为( )个单位长度. (A) 6 (B) 8 (C) 一6 (D) -8 2.函数3y x =-中,自变量x 的取值范围是( ).(A )x >3 (B )x ≥3 (C )x >-3 (D )x ≥-3 3.在一个圆柱体中间挖出一个小圆洞,如图1所示,则该物体俯视图的形状是( ).4.如图2,在△ABC 中,AB=AC ,∠A=40°,顶点B在直线DE 上,△ABC 绕着点B旋转,当AC ∥DE 时,∠CBE 的度数是( ). (A)50° (B) 60° (C) 70° (D) 80°5.在梯形ABCD 中,AD ∥BC ,AD<BC , AB >CD ,则∠B 与∠C 的关系是( ). (A) ∠B >∠C (B) ∠B <∠C (C) ∠B =∠C (D)无法比较 6.对于抛物线2y x m =-,若y 的最小值是1,则m =( ). (A) -1 (B) 0 (C)1 (D) 27. 如图3,在⊙O 中,∠ABC = ∠ACD = 60°,若△ACD 的周长为27,则AC = ( ).(A) 7 (B) 8 (C) 9 (D) 108.若一元二次方程220x x a --=有两个实数根,则a 的值不可以...是( ). (A)1 (B) 0 (C) -1 (D)-2 9.如图4,直线AB 与x 轴相交于点A(1,0),则直线AB 绕点A 旋转90°后 所得到的直线解析式可能是( ).(A) 1y x =+ (B) 1y x =-+ (C) 1y x =- (D) 1y x =--10.将一个正方形纸片依次按图(1),图(2)方式对折,然后沿图(3)中的虚线(剪切点是边的三等分点)裁剪,最后将图(4)的纸再展开铺平,所看到的图案面积与原正方形面积的比值为( ). (A) 3236π- (B) 436π+ (C) 29π+ (D) 89π-第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.)(向上对折)图(1)(向右对折) 图(2)图(3)图(4)11.()29a a a••=12.将点A(-1,1)沿x 轴的正方向平移3个单位得到点B 的坐标是 . 13. 已知1x =是方程20x mx -=的解,则实数m 的值等于 .14.如图5,铁道口栏杆的短臂长为1.6 m ,长臂长为10 m ,当短臂端点下降0.8 m 时,长臂端点升高 m .(杆的粗细忽略不计)15.已知关于x 的方程4 ( x – 3 ) = 3t + 9的解为正数,则t 的取值范围为 . 16.对于函数y ax b =+ ,根据图6表格的对应值,则可以判断方程0(0,,ax b a a b +=≠为常数)的解可能是 .(只写出满足条件的一个解即可)三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分) 计算:2933x x x ---.18.(本小题满分9分) 如图7,AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上的一点,且∠A = ∠BOC = 60°.求证:△ADB ≌ △OBC .图6图7CAOBD19.(本小题满分lO分)八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成6个小组,分别负责早、中、晚三个时段闯红灯违章现象的调查数据汇总如下:如图8图8观察表中的数据及条形统计图回答下列问题:(1)早晨、中午、晚上三个时段的车流总量的极差是,这三个时段的每分钟车流量的平均数是 , 三个时段车辆及行人违章的九个数组成的一组数据的中位数是 .(2)写出你发现的一个现象,并针对此现象向交通管理部门提出一条合理化建议.20.(本小题满分10分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下. 小明和小亮各从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由;(3)若小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.其他条件不变,则小明获胜的概率为.21.(本小题满分12分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图9所示,请根据图象所提供的信息解答下列问题:(1)描述乙队在0~6(h)内所挖河渠的长度变化情况;(2)请你求出:乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲队在施工过程中所挖河渠的长度y的值在30和50之间变化?图922.(本小题满分12分)已知线段a,b(如图10所示)(1)用尺规作图法作出△ABC,使得BC = a ,AB = AC = b (保留作图痕迹,不写作法) (2)通过直尺测量线段a ,b 的长度,利用计算器计算出所作的等腰△ABC 的底角度数.(精确到度)23.(本小题满分12分)如图11,AB 为半圆的直径, 点C 、D 在半圆上. (1)若3,2BC AD CD AD ==,求∠DAB 和∠ABC 的大小; (2)若点C 、D 在半圆上运动,并保持弧CD 的长度不变,(点C 、D 不与点A 、B 重合).试比较∠DAB 和∠ABC 的大小.ba 图1024.(本小题满分14分) 如图12,抛物线E :()20y axa =>沿x 轴正方向平移2个单位得到抛物线F ,抛物线F 的顶点为B ,抛物线F 交抛物线E 于点A ,点C 是线段OB 上一动点.(1)求点A 的坐标;(2)求证:△AOB 是等腰三角形;(3)当a 为何值时,直线AC 把△AOB 分割成 的两个三角形均为等腰三角形.图11图1 225.(本小题满分14分)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、BC、•PF,b = PE•PN,解答下列问题:AD于点M、N、(1)当四边形ABCD是菱形时(如图13),请判断a与b的大小关系;(2)当四边形ABCD是平行四边形,且∠A为钝角时(如图14),(1)中的结论是否成立?请说明理由.(3)在(2)的条件下,设DPkPB=,是否存在这样的实数k,使得49PECNBCDSS=?若存在,请求出满足条件的所有k的值;若不存在,请说明理由。
广州市白云区2020年初中毕业班综合测试数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-12的相反数是(*)(A)12 (B)2 (C)-0.5 (D)-22.下列各种图形中,可以比较大小的是(*)(A)两条射线 (B)两条直线 (C)直线与射线 (D)两条线段 3.下列代数式中,是4次单项式的为(*)(A)4abc (B)-22x y π (C)2xyz (D)444x y z ++4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为(*) (A)7,8 (B)7,6 (C)6,7 (D)7,4 5.用直接开平方法解下列一元二次方程,其中无解的方程为(*)(A)2x -1=0 (B)2x =0 (C)2x +4=0 (D)-2x +3=0 6.平面内三条直线a 、b 、c ,若a ⊥b ,b ⊥c ,则直线a 、c 的位置关系是(*) (A)垂直 (B)平行 (C)相交 (D)以上都不对 7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是(*)(A)91分 (B)92分 (C)93分 (D)94分8.如图1,直线AB⊥CD,垂足为点O,直线EF经过点O,若∠1=26°,则∠2的度数是(*) (A)26° (B)64° (C)54° (D)以上答案都不对9.在反比例函数y =13mx-的图象上有两点A(1x ,1y ),B(2x ,2y ),当1x <0<2x 时,有1y <2y ,则m 的取值范围是(*)(A)m >0 (B)m <0 (C)m >13 (D)m <1310.如图2,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为(*)(A)1sin α (B)1cos α (C)tan α (D)1第二部分 非选择题(共120分)A BC D EF O 12 图1α ABCD 图2↓↑1二、填空题(本大题共6小题,每小题3分,满分18分)11.如图3,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED= * °. 12.△ABC中,∠A、∠B都是锐角,且sin A=cos B=12,则△ABC是* 三角形.13.若3m a a ⋅=9a ,则m = * .14.已知,如图4,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB= * .15.化简:22242x y xy x y ++-+-= * .16.如图5,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP时(P与A、B与P分别为对应顶点),∠APB= * °.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程组:2547x y x y +=-⎧⎨-=⎩ABCDE图3ABCD 图4CBD PA 图518.(本小题满分9分)如图6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.19.(本小题满分10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x ,再从剩下的三张中随机取出一张,记下数字为y ,这样确定了点P的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标; (2)求点P(x ,y )在函数y =-x +4图象上的概率.20.(本小题满分10分)如图7,一条直线分别交x 轴、y 轴于A、B两点,交反比例函数y =mx(m ≠0)位于第二象限的一支于C点,OA=OB=2. (1)m = * ;(2)求直线所对应的一次函数的解析式;ABCDE F图6xyO图7ABC-24(3)根据(1)所填m 的值,直接写出分解因式2a +ma +7的结果.21.(本小题满分12分)如图8,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么? (3)若四边形BDFE的面积为9,求△ABD的面积.22.(本小题满分12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(本小题满分12分)如图9,⊙O的半径OA⊥OC,点D在»AC 上,且»AD =2»CD ,OA=4. (1)∠COD= * °; (2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)ABCD 图8· E24.(本小题满分14分)二次函数y =2x +px +q 的顶点M是直线y =-12x 和直线y =x +m 的交点.(1)若直线y =x +m 过点D(0,-3),求M点的坐标及二次函数y =2x +px+q 的解析式;(2)试证明无论m 取任何值,二次函数y =2x +px +q 的图象与直线y =x +m总有两个不同的交点;(3)在(1)的条件下,若二次函数y =2x +px +q 的图象与y 轴交于点C,与x 的右交点为A,试在直线y =-12x 上求异于M的点P,使P在△CMA的外接圆上.25.(本小题满分14分)已知,如图10,△ABC的三条边BC=a ,CA=b ,AB=c ,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u ,DB=v ,DC=w .(1)若∠CBD=18°,则∠BCD= * °;图9CC备用图(2)将△ACD绕点A顺时针方向旋转90°到△AC D'',画出△AC D'',若∠CAD=20°,求∠CAD'度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a、b、c,且正三角形的边长为u+v+w,并给予证明.AB CDuvwab c图10参考答案及评分建议(2020初三模拟考)一、选择题二、填空题三、解答题17.(本小题满分9分)解法一(加减消元法):2 547 x yx y⎧+=-⎨-=⎩①②①-②,得(x+2y)-(x-4y)=-5-7,…………………………3分即6y=-12,…………………………………………………………………4分解得y=-2,……………………………………………………………………5分把y=-2代入②,………………………………………………………………6分x-4×(-2)=7,…………………………………………………………7分得x=-1,………………………………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[若用②-①、①×2+②等,均参照给分]解法二(代入消元法):2 547 x yx y⎧+=-⎨-=⎩①②由①得,x=-2y-5③,……………………………………………3分把③式代入②式,…………………………………………………………………4分得(-2y-5)-4y=7,……………………………………………………5分解得y=-2,……………………………………………………………………6分把y=-2代入③式,……………………………………………………………7分x=-2×(-2)-5=-1,………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[由②式变形代入,均参照给分]18.(本小题满分9分)证法一:∵四边形ABCD为菱形,∴AB=AD,∠BAC=∠DAC,………………2分又∵BE=DF,∴AB-BE=AD-DF,……………………………………4分即AE=AF.…………………………………………………………………………5分在△ACE和△ACF中,∵AE AFEAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………8分∴△ACE≌△ACF(SAS).……………………………………………………9分证法二:∵四边形ABCD为菱形,∴BC=DC,∠B=∠D,…………………………1分在△BCE和△DCF中,∵BE DFB DBC DC=⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………………2分∴△BCE≌△DCF(SAS),……………………………………………………3分∴CE=CF.…………………………………………………………………………4分∵AB=AD,BE=DF,AB-BE=AD-DF,…………………………5分即AE=AF.…………………………………………………………………………6分在△ACE和△ACF中,∵AE AFCE CFAC AC=⎧⎪=⎨⎪=⎩,…………………………………………………………………………8分∴△ACE≌△ACF(SSS).……………………………………………………9分19.(本小题满分10分)解:(1)树状图如下:12 3 421 3 431 2 4x y41 2 3点P所有可能的坐标有:(1,2),(1,3),(1,4), (2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;……………………7分列表如下:(注:树形图或列表二者取其一)(2)∵共有12种等可能的结果,其中在函数y =-x +4图象上的点有2个(2种),………………………1分 即(1,3),(3,1),∴点P(x ,y )在函数y =-x +4图象上的概率为: P(点在图象上)=212=16.…………………………………………………3分20.(本小题满分10分)解:(1)-8;…………………………………………………………………2分 (2)∵OA=OB=2,∴A、B点的坐标……………………………5分……………………………7分分别为A(2,0)、B(0,2).……………………………………………2分 设直线所对应的一次函数的解析为y =kx +b ,……………………………3分 分别把A、B的坐标代入其中,得202k b b +=⎧⎨=⎩,……………………………………………………………………4分 解得12k b =-⎧⎨=⎩,…………………………………………………………………5分∴一次函数的解析为y =-x +2; (3)由(1)m =-8, 则2a +ma +7=2a -8m +7=(a -1)(a -7).……………………………………3分21.(本小题满分12分)解:(1)尺规作图略;…………………………………………………………3分 (2)EF∥BC(即EF平行于BC).……………………………………1分 原因如下:如图1,∵∠CAD=∠CDA,∴AC=DC(等角对等边),即△CAD为等腰三角形;…………………2分 又CF是顶角∠ACD的平分线,由“三线合一”定理,知CF是底边AD的中线,即F为AD的中点,……………………………3分 结合E是AB的中点,得EF为△ABD的中位线,………………………4分 ∴EF∥BD,从而EF∥BC;……………………………………………5分 (3)由(2)知EF∥BC,∴△AEF∽△ABD,…………………1分 ∴2()AEF ABD S AES AB=V V ,……………………………………………………………2分又∵AE=12AB,∴得14AEF AEF BDFE S S S =+V V , 把S四边形BDFE=9代入其中,解得S△AEF=3,………………………………………………………………………3分 ∴S△ABD=S△AEF+S四边形BDFE=3+9=12,……………………………4分 即△ABD的面积为12.22.(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分 由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分解此分式方程,得x =392,……………………………………………………9分 经检验,x =392是原分式方程的解,………………………………………10分2x -49=735.……………………………………………………………11分 答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分23.(本小题满分12分)解:(1)30;……………………………………………………………………1分 (2)连结OD、AD(如图2).∵OA⊥OC,∴∠AOC=90°.∵»AD =2»CD , A BCD E F图1设»CD所对的圆心角∠COD=m,………………………………………………1分则∠AOD=2m,…………………………………………………………………2分由∠AOD+∠DOC=90°,得m+2m=90°,∴m=30°,2m=60°,…………………………3分即∠AOD=60°,又∵OA=OD,∴△AOD为等边三角形,…………4分∴AD=OA=4;…………………………………………………………………5分(3)过点D作DE⊥OC,交⊙O于点E,……………………………………1分连结AE,交OC于点P(如图3),………………………………………………2分则此时,AP+PD的值最小.∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE.………………………………………3分∴AP+PD=AP+PE=AE,若在OC上另取一点F,连结AF、FD及EF,在△AFE中,AF+FE>AE,即AF+FE>AP+PD,∴可知AP+PD最小.…………………………………………………………4分∵∠AED=12∠AOD=30°,又∵OA⊥OC,DE⊥OC,∴OA∥DE,∴∠OAE=∠AED=30°.延长AO交⊙O于点B,连结BE,∵AB为直径,∴△ABE为直角三角形.由AEAB=cos∠BAE,……………………………5分得AE=AB·cos30°=2×4×2=即AP+PD=[也可利用勾股定理求得AE]24.(本小题满分14分)解:(1)把D(0,-3)坐标代入直线y =x +m 中,得m =-3,从而得直线y =x -3.……………………………………………1分由M为直线y =-12x 与直线y =x -3的交点,得123y x y x ⎧=-⎪⎨⎪=-⎩,………………………………………………………………………2分 解得21x y =⎧⎨=-⎩,∴得M点坐标为M(2,-1).…………………………………3分∵M为二次函数y =2x +px +q 的顶点,∴其对称轴为x =2, 由对称轴公式:x =-2b a ,得-2p=2,∴p =-4; 由244ac b a-=-1,得24(4)4q --=-1,得q =3.图2C图3B∴二次函数y =2x +px +q 的解析式为:y =2x -4x +3;………………4分 [也可用顶点式求得解析式:由M(2,-1), 得y =2(2)x --1,展开得y =2x -4x +3](2)∵M是直线y =-12x 和y =x +m 的交点,得12y xy x m⎧=-⎪⎨⎪=+⎩,解得2313x m y m ⎧=-⎪⎪⎨⎪=⎪⎩,∴得M点坐标为M(-23m ,13m ).…………………………1分从而有-2p =-23m 和244()34q m -=13m , 解得p =43m ;q =249m +13m .…………………………………………………3分由2y x m y x px q =+⎧⎨=++⎩,得2x +(p -1)x +q -m =0,……………………4分 该一元二次方程根的判别式 ⊿=(p -1)2-4(q -m )=(43m -1)2-4(249m +13m -m )=1>0,…………………………5分∴二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点; (3)解法①:由(1)知,二次函数的解析式为:y =2x -4x +3,当x =0时,y =3.∴点C的坐标为C(0,3).……………………………1分 令y =0,即2x -4x +3=0,解得1x =1,2x =3,∴点A的坐标为A(3,0).………………………………………………………2分.∵M点的坐标为M(2,-1),过M点作x 轴的垂线,垂足的坐标应为(2,0),由勾股定理,;过M点作y 轴的垂线,垂足的坐标应为(0,-1),.∵AC2+AM2=20=CM2,∴△CMA是直角三角形,……………………3分 CM为斜边,∠CAM=90°.直线y =-12x 与△CMA的外接圆的一个交点为M,另一个交点为P,则∠CPM=90°.即△CPM为Rt △.………………………………………4分设P点的横坐标为x ,则P(x ,-12x ).过点P作x 轴垂线,过点M作y 轴垂线,两条垂线交于点E(如图4),则E(x ,-1).过P作PF⊥y 轴于点F,则F(0,-12x ).在Rt △PEM中,PM2=PE2+EM2=(-12x +1)2+(2-x )2=254x -5x +5.在Rt △PCF中,PC2=PF2+CF2=2x +(3+12x )2=254x +3x +9.在Rt △PCM中,PC2+PM2=CM2, 得254x +3x +9+254x -5x +5=20, 化简整理得52x -4x -12=0,解得1x =2,2x =-65.当x =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35.∴P(-65,35).……………………………………………………………………5分解法②[运用现行高中基本知识(解析几何):线段中点公式及两点间距离公式]: 设线段CM的中点(即△CMA内接圆的圆心)为H,则由线段中点公式,可求出H的坐标为H(1,1).∵点P在⊙H上,∴点P到圆心H的距离等于半径.设点P的坐标为:P(n ,-12n ),由两点间的距离公式,得PH的长度为:,即221(1)(1)2n n -+--=5,化简,整理,得化简整理得52n -4n -12=0,解得1n =2,2n =-65.当n =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35.∴P(-65,35).[对该解法,可相应给分]25.(本小题满分14分)解:(1)42;……………………………………………………………………1分(2)画图如下(如图5).………………………………………………………3分 ∵∠DAD '=90°,∠CAD=20°,∴∠CAD '=∠DAD '-∠CAD=90°-20°=70°;…………5分(3)画图如下:将△BDC绕点B按逆时针方向旋转60°…………………2分 到△BEF的位置(如图6).连结DE,CF,这样可知△BDE和△BCF均为等边三角形, 从而DE=v ,CF=a .∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).……………………………3分 同理,∵∠BEF=∠BDC=120°,∠BED=60°, 即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.…………………………………………4分 ∵EF=DC=w ,∴线段AF=u +v +w .以线段AF为边在点B一侧作等边△AFG(图6),……………………………5分 则△AFG即为符合条件的等边三角形,其中的点B即为点M.…………………6ABCDuv wabc 图5C 'D '分正三角形的边长为u +v +w 已证,BA=c ,BF=BC=a , 下面再证BG=b .∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2. 在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB, ∴△AFC≌△GFB(SAS), ∴AC=GB,即BG=CA=b .从而点B(M)到等边△AFG三个顶点的距离分别为a 、b 、c ,且其边长为u +v +w .………………………………………………………………8分[注:把△ADB绕点A按逆时针方向旋转60°,把△CDA绕点C按逆时针方向旋转60°, 把△ADC绕点A按顺时针方向旋转60°, 把△BCD绕点C按顺时针方向旋转60°等 均可证得,方法类似]ABCDu v wabc EF G图612。
广东省广州市天河区2020年中考数学一模试卷一、选择题1.南、北为两个相反方向,如果+4m表示一个物体向北运动4m,那么﹣3m表示的是()A.向东运动3m B.向南运动3m C.向西运动3m D.向北运动3m2.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.3.2019年3月11日互联网生活服务平台美团点评发布2018年全年美团点评实现总营收为652亿元,同比增长92.3%,数据“652亿”用科学记数法表示为()A.0.652×1011B.6.52×109C.6.52×1010D.65.2×10104.某班级开展一种游戏互动,规则是:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖,每人有三次翻牌机会.小明同学前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么他第三次翻牌获奖的概率是()A.B.C.D.5.下列计算正确的是()A.(4a)2=4a2B.2a+2b=4ab C.==2D.3﹣2=1 6.甲、乙两地相距100千米,某人开车从甲地到乙地,那么它的速度v(千米/小时)与时间t(小时)之间的函数关系用图象表示大致为()A.B.C.D.7.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE=4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm8.对于抛物线y=﹣x2+x﹣4,下列说法正确的是()A.y随x的增大而减少B.当x=2时,y有最大值﹣3C.顶点坐标为(﹣2,﹣7)D.抛物线与x轴有两个交点9.若一次函数y=ax+b的图象经过一、二、四象限,则下列不等式中能成立的是()A.a>0B.b<0C.a+b>0D.a﹣b<010.定义新运算:a*b=a(m﹣b).若方程x2﹣mx+4=0有两个相等正实数根,且b*b=a*a (其中a≠b),则a+b的值为()A.﹣4B.4C.﹣2D.2二、填空题(本题有6个小题,每小题3分,共18分.)11.分解因式:2a﹣a2b=.12.当代数式有意义时,实数x的取值范围是.13.方程=的解是.14.如图,△ABC中,AB=AC=12,点D在AC上,DC=4,将线段DC沿CB方向平移7个单位长度得到线段EF,此时点E,F分别落在边AB,BC上,则△ADE的周长是.15.如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则的长为.16.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,点E ,F 分别在AB ,BD 上,且△ADE ≌△FDE ,DE 交AC 于点G ,连接GF .得到下列四个结论:①∠ADG =22.5°;②S △AGD =S △OGD ;③BE =2OG ;④四边形AEFG 是菱形,其中正确的结论是.(填写所有正确结论的序号)三、解答题(本大题有9小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.解不等式组:,并在数轴上表示解集.18.如图,Rt△ABC 中,∠ABC =90°,O 是AC 的中点,若AB =AO ,求∠ABO 的度数.19.正比例函数y =2x 与反比例函数y =的图象有一个交点的纵坐标为4,求关于x 的方程2x =的解.20.若a,b互为倒数,请求出式子×(﹣)的值.21.如图,已知△ABC的面积为4,D为AB的中点.(1)尺规作图:作边AC的中点E,并连接DE;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求△ADE的面积.22.如图,为测量某条河的宽度BC,工程队用无人机在距地面高度为200米的A处测得B,C两点的俯角分别为30°和45°,且点B,C,D在同一水平直线上,求A,C之间的距离和这条河的宽度BC.(结果保留根号)23.如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).(1)求直线AD的解析式;(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.24.如图,已知抛物线y=﹣x2+ax+3的顶点为P,它分别与x轴的负半轴、正半轴交于点A,B,与y轴正半轴交于点C,连接AC,BC,若tan∠OCB﹣tan∠OCA=.(1)求a的值;(2)若过点P的直线l把四边形ABPC分为两部分,它们的面积比为1:2,求该直线的解析式.25.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC .(1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.参考答案一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中,只有一个是正确的。
广州市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·瑶海期末) 有理数a、b在数轴上的位置如图所示,下列各式成立的是()A . a+b>0B . a﹣b>0C . ab>0D . <02. (2分) (2020九上·覃塘期末) 计算的结果是()A .B .C .D .3. (2分)下列图形中,不是轴对称图形的是()A . 一条线段B . 两条相交直线C . 有公共端点的两条相等的线段D . 有公共端点的两条不相等的线段4. (2分)据报道,2011年全国普通高等学校招生计划约675万人。
数据6750000用科学记数法表示为()A . 675×104B . 67.5×105C . 6.75×106D . 0.675×1075. (2分)(2017·江阴模拟) 如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A .B .C .D .6. (2分)如图,数轴上的A,B,C,D四点中,与表示数的点数接近的点是()A . 点AB . 点BC . 点CD . 点D7. (2分)(2018·徐州模拟) 袋子里有4个黑球,m个白球,它们除颜色外都相同,经过大量实验,从中任取一个球恰好是白球的频率是0.20,则m的值是()A . 1B . 2C . 4D . 168. (2分)化简÷(﹣x﹣2)的结果()A .B .C .D .9. (2分)(2017·金乡模拟) 宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A . 矩形ABFEB . 矩形EFCDC . 矩形EFGHD . 矩形DCGH10. (2分)(2016·高邮模拟) 如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A . 5B . 6C . 7D . 811. (2分)(2020·温州模拟) 如图,在平面直角坐标系中,抛物线y=a(x-m)²+1(a<0)与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,顶点是D,且∠DAB=45°,点C绕O逆时针旋转90°得到点C',当-2≤m≤5时,BC'的长度范围是()A . 0≤BC'≤1B . 0≤BC'≤18C . 1≤BC'≤D . 2≤BC'≤12. (2分)(2019·昆明模拟) 如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC 的中点M,分别与AB,BC交于点D,E,若矩形OABC的面积为8,则k的值为()A . ﹣2B . ﹣2C . 2D . ﹣2二、填空题 (共6题;共15分)13. (1分)(2018·广元) 分解因式: =________14. (1分) (2016七下·吴中期中) 三角形的内角和是________度.15. (1分)(2019·聊城) 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是________.16. (1分) (2019八下·江门月考) 如图,在平面直角坐标系中,点是直线上第一象限的点,点的坐标是,是坐标原点,的面积为,则关于的函数关系式(取值范围)是________.17. (1分)(2017·定远模拟) 去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快.物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月、3月的平均增长率为________.18. (10分) (2019九下·乐清月考) 如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,交CP于点H,还结AC,CD.(1)求证:∠PBH=2∠D.(2)若sin∠P= ,BH=2,求⊙O的半径及BD的长。
2020年广东省广州市中考数学一模试题及答案学校:___________姓名:___________班级:___________考号:___________ 1.-2020的相反数的绝对值是()A .-2020B .2020C .12020D .12020-2.目前,世界上能制造出的最小晶体管的长度只有0.00000004 m ,将0.00000004用科学记数法表示为4×4×1010n ,则n 是()A .8 B .-8 C .-9 D .-7 3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()A .青B .春C .梦D .想4.函数y =21x x +-中自变量x 的取值范围是()A .2x ≥-且1x ≠B .2x ≥-C .1x ≠D .21x -≤<5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下图:下列说法正确的是()A .该班级所售图书的总数收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一组数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是26.估计()123+623⨯的值应在(的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y 值为1的是(的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==, 9.如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12厘米,EF=16厘米,则边AD 的长是(的长是( )A .12厘米B .16厘米C .20厘米D .28厘米 10.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线1x =-,给出四个结论:①24b ac >;②20a b +=;③0a b c ++>;④若点B (52-,1y )、C (12-,2y )为函数图象上的两点,则12y y <,其中正确结论是( )A .②④②④B .①④①④C .①③①③D .②③②③11.64立方根是__________.12.分解因式:(x +5)2-4=____.13.如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若23=OA ,则阴影部分的面积为_____.14.观察下列一组数:1121231234123451,,,,,,,,,,,,,,,,1213214321543216….它们是按分子、分母和的递增顺序排列的(和相等的分数,分子小的排在前面),那么这一组数的第108个数是______15.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-; 2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-;2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:根据以上信息,完成下面计算: 2(12)(2)(2)i i i +-+-=_______.16.如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x =≠的图象上运动,且始终保持线段42AB =的长度不变.M 为线段AB 的中点,连接OM .则线段OM 长度的最小值是_____(用含k 的代数式表示).17.(1)计算:(2﹣1)0﹣2sin30°2sin30°++(13)﹣1+(﹣1)2019(2)解不等式组:21452x x x -<⎧⎨+>+⎩并把解集在数轴上表示出来.18.如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作圆O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E(1)判断四边形AMCD 的形状,并说明理由;(2)求证:ND =NE ;(3)若DE =2,EC =3,求BC 的长.19.某汽车销售公司一位销售经理1—5月份的汽车销售统计图如下:月份的汽车销售统计图如下:(1)已知1月的销售量是2月的销售量的3.5倍,则1月的销售量为________辆,在扇形图中,2月的销售量所对应的扇形的圆心角大小为________;(2)补全图中销售量折线统计图;)补全图中销售量折线统计图;(3)已知4月份销售的车中有3辆国产车和2辆合资车,国产车分别用G 1,G 2,G 3表示,合资车分别用H 1,H 2表示,现从这5辆车中随机抽取两辆车参加公司的回馈活动,请用列举法(画树状图或列表)求出“抽到的两辆车都是国产车”的概率.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A 处,手柄长25AB cm =, AB 与墙壁'DD 的夹角'37D AB ∠=︒,喷出的水流BC 与AB 形成的夹角72ABC ∠=︒,现在住户要求:当人站在E 处淋浴时,水流正好喷洒在人体的C 处,且使50,130.DE cm CE cm == 问:安装师傅应将支架固定在离地面多高的位置?安装师傅应将支架固定在离地面多高的位置? (参考数据:sin370.60,cos370.80,tan370.75,sin 720.95,cos720.31,︒≈︒≈︒≈︒≈︒≈tan 72 3.08,sin350.57,cos350.82,tan350.70︒≈︒≈︒≈︒≈).21.如图,在平面直角坐标系中,直线AB 与y 轴交于点(0,7)B ,与反比例函数8y x-=在第二象限内的图象相交于点(1, )A a -.(1)求直线AB 的解析式; (2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E ,与y 轴交于点D ,求ACD ∆的面积;的面积;(3)设直线CD 的解析式为y mx n =+,根据图象直接写出不等式8mx n x-+≤的解集.22.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,件,其中其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.23.如图,Rt △ABC 中,∠ACB =90°,以BC 为直径的为直径的⊙⊙O 交AB 于点D ,E 、F 是⊙O 上的两点,连结AE 、CF 、DF ,满足EA =CA .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径是3,tan ∠CFD =43,求AD 的长.24.如图,在正方形ABCD 中,AB =10cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2cm 的速度运动,当点E 与点D 重合时,运动停止.设△BEF 的面积为y cm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围;的取值范围;(3)求△BEF 面积的最大值.25.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.参考答案1.B【解析】【分析】根据相反数的定义:指绝对值相等,正负号相反的两个数互为相反数,绝对值的性质:正数的绝对值是它本身即可求解.【详解】【详解】解:-2020的相反数的绝对值是2020.故选:B【点睛】【点睛】本题主要考查的是相反数和绝对值,掌握相反数和绝对值是解题的关键.2.B【解析】【分析】绝对值小于1的正数利用科学记数法表示为:10n a -⨯,将0.00000004 m 表示为此形式即可得出n 的值.【详解】解:0.00000004=4×0.00000004=4×1010-8故选:B【点睛】本题主要考查的是绝对值小于1的正数的科学记数法的表示形式,掌握这个知识点是解题的关键.3.B【解析】【解析】【分析】根据正方体展开图可知,相对的面一定不相邻即可得出结果.根据正方体展开图可知,相对的面一定不相邻即可得出结果.【详解】解:“梦”的对面是“青”,“想”的对面是“亮”,“点”的对面是“春”.故选:B【点睛】【点睛】本题主要考查的是正方体展开图,熟练掌握正方体展开图找对面的方法是解题的关键. 4.A【解析】【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0,解得:x≥-2且x≠1.故选:A .【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x .②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.5.A【解析】【分析】【分析】根据表即可算出总收入,根据表即可算出总收入,可对可对A 进行判断;利用中位数和众数的定义对B 、C 进行判断;利用方差的计算公式计算出这组数据的方差,从而对D 进行判断.进行判断.【详解】解:该班级所售图书总收入为::3×3×14+4×14+4×14+4×11+5×11+5×11+5×10+6×10+6×10+6×15=22615=226,故A 选项正确;选项正确;第25个数字是4,第26个数字是5,所以这组数据的中位数为4.5,故B 选项错误;选项错误; 这组数据的众数为6,故C 选项错误;这组数据的平均数为:226÷226÷50=4.5250=4.52,所以这组数据的方差为:()()()()22221143 4.52114 4.52105 4.52156 4.52 1.450⎡⎤⨯⨯-+⨯-+⨯-+⨯-≈⎣⎦,故D 选项错误.故选:A【点睛】本题主要考查的是众数、中位数与方差,掌握众数、中位数和方差是解题的关键. 6.C【解析】【分析】【分析】先将原式化简为2+24,由于24在4和5之间,那么2+24就在6和7之间.【详解】解:()123+623⨯=2+623=2+24 又因为4<24<5所以6<2+24<7故答案为C.【点睛】本题考查了二次根式的化简,其中明确化简方向和正确的估值是解题的关键.7.A【解析】【分析】根据“乙把其一半的钱给甲,则甲的数为50”和“甲把其23的钱给乙.则乙的钱数也为50”两个等量关系,即可列出方程组.【详解】【详解】解:设甲的钱数为x ,乙的钱数为y ;由甲得乙半而钱五十,可得:1x y 502+= 由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y += 故答案为:A【点睛】本题考查了列二元一次方程组解实际问题,解题的关键在于,找到正确的等量关系. 8.D【解析】【解析】【分析】逐项代入,寻找正确答案即可.【详解】【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m-1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.9.C【解析】【解析】【分析】【详解】【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=12cm ,EF=16cm ,根据勾股定理得HF=22+EF EH ,∴HF=20cm ,∴AD=20cm ,故选C10.B【解析】【解析】【分析】根据抛物线与x 轴的交点情况判断轴的交点情况判断①①,根据对称轴判断根据对称轴判断②②,根据抛物线的对称性判断根据抛物线的对称性判断③③、④. 【详解】∵抛物线的开口方向向下,抛物线的开口方向向下,∴a <0;∵抛物线与x 轴有两个交点,轴有两个交点,∴240b ac ->,即24b ac >,故①正确 由图象可知:对称轴12b x a=-=-, ∴20a b -=,故②错误;∵抛物线与y 轴的交点在y 轴的正半轴上,∴c >0,由图象可知:当x=1时y=0,∴0a b c ++=,故③错误;由图象可知:当x=﹣1时y >0,∴点B (52-,1y )、C (12-,2y )为函数图象上的两点,为函数图象上的两点,则则12y y <,故④正确.故选B . 11.2;【解析】【分析】【分析】先计算64=8,再计算8的立方根即可.【详解】【详解】∵64=8,38=2,∴64的立方根是2.故答案为:2.【点睛】【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.12.(x +7)(x +3)【解析】【分析】【分析】将原式化为()2252x +-,再利用平方差公式:()()22a b a b a b -=+-,即可得出结果. 【详解】解:原式()()()()()22=52=52527+3x x x x x +-++⨯+-=+⨯.故答案为:(x +7)(x +3)【点睛】本题主要考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.本题主要考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.13.3π+【解析】【解析】【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是AOD ∆的面积与扇形OBC 的面积之和再减去BDO ∆的面积,本题得以解决.【详解】【详解】解:作OE AB ⊥于点F ,Q 在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.23=OA , 90AOD ︒∴∠=,90BOC ︒∠=,OA OB =,30OAB OBA ︒∴∠=∠=, 3tan302323OD OA ︒∴=⋅=⨯=,4=AD ,3222362AB AF ==⨯⨯=,3OF =, 2BD ∴=,∴阴影部分的面积是:223230(23)23323602AOD BDO OBC S S S ππ∆∆⨯⨯⨯-++-==+扇形, 故答案为:3π+.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 14.313【解析】【分析】【分析】根据观察数列,可发现规律:1121231234123451,,,,,,,,,,,,,,,,1213214321543216⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…和相等的数分别为1个、2个、3个、4个…,即可得出答案.【详解】【详解】解:()114141+2+3+4++14=1052+⨯=K , 即第105个数是141, 第106个数是115, 第107个数是214, 第108个数是313. 故答案为:313【点睛】 本题主要考查了找规律,根据题目提供的已知数据找出其中所存在的规律是解题的关键.15.7i -【解析】【分析】【分析】根据题目材料,可得复数计算方法,先去括号,再进行加减运算.【详解】【详解】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++- 26i i =-- 61i =-+7i =-.故答案为:7i -.【点睛】【点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.16.28k +【解析】【解析】【分析】如图,如图,当当OM ⊥AB 时,线段OM 长度的最小.长度的最小.首先证明点首先证明点A 与点B 关于直线y=x 对称,对称,因因为点A ,B 在反比例函数()0ky k x=≠的图象上,AB=42,所以可以假设A (m ,k m),则B (m+4,k m -4),则有+4k m =4k m -,解得k=m 2+4m ,推出A (m ,m+4),B (m+4,m ),可得M (m+2,m+2),求出OM 即可解决问题.【详解】 如图,当OM AB ⊥时,线段OM 长度的最小,长度的最小,∵M 为线段AB 的中点,∴OA OB =,∵点A ,B 在反比例函数()0ky k x =≠的图象上,的图象上,∴点A 与点B 关于直线y x =对称,∵42AB =,∴可以假设,k A m m ⎛⎫ ⎪⎝⎭,则4,4k B m m ⎛⎫+- ⎪⎝⎭, ∴22222(4)(4)k km m m m +=++-, 解得24k m m =+,∴(),4A m m +,()4,B m m +, ∴()2,2M m m ++, ∴()()2222248OM m m m =+=++28k =+, ∴OM 的最小值为28k +.故答案为28k +.【点睛】本题考查反比例函数图象上的点的特征,反比例函数的性质等知识,解题的关键是理解题意,学会利用参数解决问题.17.(1)2;(2)﹣1<x <3,数轴见解析【解析】【分析】(1)任何数的零次幂等于1(零除外),sin30°等于12,一个不为0的数的负指数幂等于它正指数幂的倒数,-1的奇次幂等于-1,根据以上知识点即可得出结果;,根据以上知识点即可得出结果;(2)分别解出不等数组中的两个不等式,再求出不等式组的解集在数轴上表示出来即可.【详解】解:(1)原式=1﹣2×12+3﹣1=1﹣1+3﹣1=2. (2)解不等式x ﹣2<1得x <3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:【点睛】【点睛】本题主要考查的是实数的综合运算以及不等式组的解集,掌握实数的综合运算以及解不等式组是解题的关键.18.(1)四边形AMCD是菱形,理由见解析;(2)证明见解析;(3)BC=25.【解析】【解析】【分析】(1)证明四边形AMCD的对角线互相平分,且为菱形;的对角线互相平分,且∠∠CNM=90°,可得四边形AMCD为菱形;(2)可证得∠CMN=∠DEN,由CD=CM可证出∠CDM=∠CMN,则∠DEN=∠CDM,结论得证;论得证;(3)证出△MDC∽△EDN,由比例线段可求出ND长,再求MN的长,则BC可求出.【详解】【详解】(1)四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,的中点,∴CM=AM,∵CM为⊙O的直径,的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形;(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,是菱形,∴CD =CM ,∴∠CDM =∠CMN ,∴∠DEN =∠CDM ,∴ND =NE ;(3)∵∠CMN =∠DEN ,∠MDC =∠EDN ,∴△MDC ∽△EDN ,∴MD DC DE DN=, 设DN =x ,则MD =2x ,由此得252x x =, 解得:x =5或x =﹣5(不合题意,舍去),∴5MN =,∵MN 为△ABC 的中位线,∴BC =2MN ,∴BC =25.【点睛】本题考查了圆的综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.勾股定理以及相似三角形的判定与性质是解题的关键.19.(1)7;36°;(2)见解析;(3)树状图见解析,310【解析】【分析】【分析】(1)结合扇形统计图和折线统计图即可得出销售总量,再求出三月份的销售量,根据1月的销售量是2月的销售量的3.5倍即可得出1月份的销售量,再根据2月份销售量占销售总量几分之几即可得出2月份销售量所对圆心角;月份销售量所对圆心角;(2)由题(1)中得出来的每个月的销售量即可补充完整折线统计图;中得出来的每个月的销售量即可补充完整折线统计图;(3)根据题目要求画出树状图即可.【详解】解:(1)∵由题得销售总量为:5÷5÷25%=2025%=20(辆),三月份销售量为:20×20×10%=210%=2(辆),则一月份和二月份销售量和为:20-2-5-4=9(辆),1月的销售量是2月的销售量的3.5倍,倍,∴2月份销售量::9÷(1+3.5)=2(辆),1月销售量为2×2×3.5=73.5=7(辆),2月份销售量所对的圆心角:2÷2÷20×20×20×360°360°360°=36°=36°.(2)由题(1)得:如图所示.(3)画树状图如下:所有等可能的情况有20种,抽到的两辆车都是国产车的情况有6种.所以P(抽到的两辆车都是国产车)=632010=. 【点睛】【点睛】本题主要考查的是折线统计图和扇形统计图的结合,掌握这两种统计图是解题的关键. 20.安装师傅应将支架固定在离地面160cm 的位置.的位置.【解析】【分析】【分析】过B 作'BG D D ⊥于点G ,延长EC 、GB 交于点F ,根据锐角三角函数的定义即可求出答案.【详解】【详解】过点B 作'BG D D ⊥于点G ,延长EC 、GB 交于点F ,∵25AB =,50DE =,∴sin37GB AB ︒=,cos37GA AB︒=, ∴250.6015GB ≈⨯=,250.8020GA ≈⨯=,∴501535BF =-=,∵72ABC ∠=︒,'37D AB ∠=︒,∴53GBA ∠=︒,∴55CBF ∠=︒,∴35BCF ∠=︒,∵tan35BF CF ︒=, ∴35500.70CF ≈=, ∴50130180FE =+=,∴180GD FE ==,∴18020160AD =-=,∴安装师傅应将支架固定在离地面160cm 的位置.的位置.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.21.(1))7y x =-+;(2)ACD ∆的面积为18;(3)40x -≤<或2x ≥.【解析】【分析】【分析】 (1)将点A (-1,a )代入反比例函数8y x-=求出a 的值,确定出A 的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD 的解析式为y=-x-2,从而求得D 的坐标,联立方程求得交点C 、E 的坐标,根据三角形面积公式求得△CDB 的面积,然后由同底等高的两三角形面积相等可得△ACD 与△CDB 面积相等;(3)根据图象即可求得.)根据图象即可求得.【详解】(1))∵点(1, )A a -在反比例函数8y x -=的图象上,的图象上, ∴881a -==-, ∴(1,8)A -,∵点(0,7)B ,∴设直线AB 的解析式为7y k x =+, ∵直线AB 过点(1,8)A -,∴87k =-+,解得1k =-,∴直线AB 的解析式为7y x =-+;(2)∵将直线AB 向下平移9个单位后得到直线CD 的解析式为2y x =--, ∴(0,2)D -,∴729BD =+=,联立28y x y x =--⎧⎪⎨=⎪⎩,解得42x y =-⎧⎨=⎩或24x y =⎧⎨=-⎩, ∴(4,2)C -,(2,4)E -,连接AC ,则CBD ∆的面积194182=⨯⨯=, 由平行线间的距离处处相等可得ACD ∆与CDB ∆面积相等,∴ACD ∆的面积为18.(3)∵(4,2)C -,(2,4)E -,∴不等式8mx n x-+≤的解集是:40x -≤<或2x ≥.【点睛】【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,时,获利最大,即买即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,)问中所有进货方案获利相同,③③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x元,则B 种商品每件的进价是()20x -元,元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩…, 解得:40183a ≤≤, ∵a 为正整数,为正整数,∴a =14、15、16、17、18,∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,元,由题意得:(())(()()())8050453040y m a a =--+-- ()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程 23.(1)证明见解析;(2)325. 【解析】【分析】(1)连接OA ,OE ,易证△AOC ≌△AOE (SSS ),从而可知,从而可知∠∠OEA=∠ACB=90°,所以AE 是⊙O 的切线.(2)连接CD ,因为∠CBA=∠CFD ,所以tan ∠CBA=tan ∠CFD=43,从而可求出AC=8,利用勾股定理即可求出AB=10,再证明△ADC ∽△ACB ,从而可求出AD 的长度.的长度.【详解】(1)连接OA ,OE ,在△AOC 与△AOE 中,中,AC AE OC OE OA OA⎧⎪⎨⎪⎩=== ∴△AOC ≌△AOE (SSS )∴∠OEA=∠ACB=90°,∴OE ⊥AE ,∴AE 是⊙O 的切线的切线(2)连接CD∵∠CBA=∠CFD∴tan ∠CBA=tan ∠CFD=43,∵在Rt △ACB 中,中,tan ∠CBA=463CA CA CB == ∴AC=8∴由勾股定理可知:AB=10,∵BC 为⊙O 的直径,∴∠CDB=∠ADC=90°,∵∠ADC=∠ACB ,∠DAC=∠CAB ,∴△ADC ∽△ACB∴AD AC AC AB=, ∴AD=6.4本题考查圆的综合问题,本题考查圆的综合问题,涉及全等三角形的性质与判定,涉及全等三角形的性质与判定,涉及全等三角形的性质与判定,相似三角形的性质与判定,相似三角形的性质与判定,相似三角形的性质与判定,勾股定勾股定理,圆周角定理等知识,综合程度较高.24.(1)见解析;(2)22522520252252522y x x x y x x x ⎧⎛⎫=-+≤≤⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-<≤ ⎪⎪ ⎪⎝⎭⎩;(3)50 【解析】【分析】【分析】 (1)作辅助线,构建三角形全等,证明△AEM ≌△EFN 和△ADE ≌△CDE (SAS ),可得AE=CE=EF ;(2)分两种情况:根据三角形的面积公式可得y 与x 之间关系的函数表达式,根据勾股定理计算BD 的长可得x 的取值;(3)根据(2)中的两种情况,分别利用配方法和二次函数的增减性可得结论.)中的两种情况,分别利用配方法和二次函数的增减性可得结论.【详解】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N ,∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD ,∴MN ⊥AD ,MN ⊥BC ,∴∠AME =∠FNE =90°=∠NFE +∠FEN ,∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°,∴∠AEM =∠NFE ,∵∠DBC =45°,∠BNE =90°,∴BN =EN =AM ,∴△AEM ≌△EFN (AAS ),AE EF∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE ,∵DE =DE ,∴△ADE ≌△CDE (SAS ),∴AE =CE =EF ;(2)解:在Rt △BCD 中,由勾股定理得:BD =221010102+=,∴0≤x ≤52,由题意得:BE =2x ,∴BN =EN =2x ,由(1)知:△AEM ≌△EFN ,则AE=EF=EC ,分两种情况:分两种情况:当0≤x≤ 522时,如图1,∵AB=MN=10,∴ME =FN =10﹣2x ,∴BF =FN ﹣BN =10﹣2x ﹣2x =10﹣22x ,∴y =11(1022)222BF EN x x ⋅=-⋅=﹣2x 2+52x (0≤x ≤522);当52522x <≤时,如图2,过E 作EN ⊥BC 于N ,∴EN=BN=2x ,∴FN=CN=10-2x ,∴BF=BC-2CN=10-2(10-2x )=22x-10,∴y =11(2210)222BF EN x x ⋅=-⋅=2x 2-52x (52522x <≤); 综上,y 与x 之间关系的函数表达式为22522520252252522y x x x y x x x ⎧⎛⎫=-+≤≤⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-<≤ ⎪⎪ ⎪⎝⎭⎩(3)①当0≤x≤ 522时,如图1,∴y =﹣2x 2+52x =﹣2(x ﹣524)2+254,∵﹣2<0,∴当x =524时,y 有最大值是254; 当52522x <≤时,如图2, ∴y =﹣2x 2+52x =2(x ﹣524)2-254,∵2>0,∴当x =52时,y 有最大值是50;即△BEF 面积的最大值是50.【点睛】本题是四边形的综合题,主要考查正方形的性质,全等三角形的判定与性质,勾股定理,三角形面积,角形面积,二次函数的最值等知识点的理解和掌握,二次函数的最值等知识点的理解和掌握,二次函数的最值等知识点的理解和掌握,难度适中,难度适中,熟练掌握正方形中利用辅助线构建全等来解决问题是本题的关键.25.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或317317(,)22+-+.(3)当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】【解析】【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:,分两种情况讨论:①①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=g,得到m 的表达式,利用二次函数求最值问题配方即可.的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--,∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,两点,∴30k b b +=⎧⎨,解得:k 1=⎧⎨,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-,∵//CE y 轴,轴,∴(1,2)E -,∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --, ∴223(23)3MN a a a a a =----=-+,∴232a a -+=,解得:2a =,1a =(舍去),∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,答案第23页,总23页 ∴2223(3)3MN a a a a a =----=-,∴232a a -=, 解得:3172a +=,3172a -=(舍去), ∴317317(,)22M +-+, 综合可得M 点的坐标为(2,1)-或317317(,)22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,∴223(23)3PG m m m m m =----=-+,∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+g ,∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-. 【点睛】本题是二次函数综合题,本题是二次函数综合题,考查了待定系数法求函数解析式,考查了待定系数法求函数解析式,考查了待定系数法求函数解析式,二次函数求最值问题,二次函数求最值问题,二次函数求最值问题,以及二次以及二次函数与平行四边形、三角形面积有关的问题.。
2020年广东省广州市中考数学一模试卷一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)在实数、0、﹣1、﹣中,最小的实数是()A.﹣B.﹣1C.0D.2.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.B.(﹣p2q)3=﹣p5q3C.D.(a+b)2=a2+b24.(3分)如图所示,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为()A.10B.15C.20D.255.(3分)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2B.2.8C.3D.3.36.(3分)菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行7.(3分)不等式组的解集是()A.x<2B.x≥﹣3C.﹣3<x≤2D.x≤28.(3分)如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=()A.B.2C.D.9.(3分)已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+αβ+β2的值为()A.﹣1B.9C.23D.2710.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)二、填空题(本题有6个小题,每小题3分,共18分.)11.(3分)太阳半径约为696 000千米,数字696 000用科学记数法表示为.12.(3分)若a<1,化简=.13.(3分)分式方程的解是.14.(3分)如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是.15.(3分)如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是cm2.16.(3分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC 和CD上,下列结论:①BE+DF=EF;②CE=CF;③∠AEB=75°;④S正方形ABCD=2+,其中正确的序号是.三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)17.(9分)计算4cos45°﹣+(π﹣)0+(﹣1)3.18.(9分)如图,在▱ABCD中,对角线AC、BD交于点O,M为AD中点,连接OM、CM,且CM交BD于点N,ND=1.(1)证明:△MNO~△CND;(2)求BD的长.19.(10分)先化简,再求值:,其中.20.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.(12分)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(6,2),点B坐标为(﹣4,n),直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)分别求出一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.22.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?23.(12分)如图,在△ABC中,∠ACB=90°,点O是BC上一点.(1)尺规作图:作⊙O,使⊙O与AC、AB都相切.(不写作法与证明,保留作图痕迹)(2)若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD、DE,求证:DB2=BC⋅BE.24.(14分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B 两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.25.(14分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)若点F为AB的中点,连接FN、FM(如图②),求证:∠MFN=∠BDC.。
广州市2020年(春秋版)数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·遵化期中) 函数y=的自变量x的取值范围是()A . x>1B . x≥1C . x≥1且x≠0D . x≤12. (2分) (2018七上·翁牛特旗期末) 冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是()A . 3℃B . 8℃C . 11℃D . 17℃3. (2分)(2019·茂南模拟) 如图,BC为⊙O直径,交弦AD于点E,若B点为弧AD中点,则说法错误的是()A . AD⊥BCB . 弧AC=弧CDC . AE=DED . OE=BE4. (2分) (2019七下·博兴期中) 由方程组可得出x与y之间的关系是().A . x+y=1B . x+y=-1C . x+y=7D . x+y=-75. (2分)(2019·茂南模拟) 如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A . 0B . ﹣1C . ﹣2D . 16. (2分)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A . 6B . 7C . 8D . 97. (2分) (2017七下·东城期末) 下列调查方式,你认为最合适的是()A . 了解北京市每天的流动人口数,采用抽样调查方式B . 旅客上飞机前的安检,采用抽样调查方式C . 了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D . 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式8. (2分)(2019·铁西模拟) 某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A . 85B . 86C . 87D . 889. (2分)(2019·福田模拟) 在﹣3,1,0,﹣1这四个数中,最大的数是()A . ﹣3B . ﹣1C . 0D . 110. (2分)(2019·茂南模拟) 如图,在△ABC中,E,F分别是AB,AC的中点.若△ABC的面积是8,则四边形BCEF的面积是()A . 4B . 5C . 6D . 7二、填空题 (共5题;共5分)11. (1分) (2016七上·句容期中) 比较两个数的大小:﹣ ________﹣.12. (1分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是________.13. (1分) (2019八上·陕西月考) 在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b=3 ,c=5,则ab的值为________.14. (1分)(2017·西安模拟) 若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135× sin13°≈________.(精确到0.1)15. (1分)(2017·东平模拟) 如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1 ,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2 ,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是________.三、解答题 (共9题;共78分)16. (5分)计算:… .17. (5分)(2019·泰州)(1)计算:;(2)解方程:.18. (5分)(2019·茂南模拟)如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其为矩形,再将矩形向下平移3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形.说明在变化过程中所运用的图形变换.19. (7分)(2019·茂南模拟) 为了满足广大手机用户的需求,某移动通信公司推出了三种套餐,资费标准如下表所示:套餐资费标准月套餐类型套餐费用套餐包含内容超出套餐后的费用本地主叫市话短信国内移动数据流量本地主叫市话短信国内移动数据流量套餐一18元30分钟100条50兆0.1元/分钟0.1元/条0.5元/兆套餐二28元50分钟150条100兆套餐三38元80分钟200条200兆小莹选择了该移动公司的一种套餐,下面两个统计图都反映了她的手机消费情况.(1)已知小莹2013年10月套餐外通话费为33.6元,则她选择的上网套餐为________套餐(填“一”、“二”或“三”);(2)补全条形统计图,并在图中标明相应的数据;(3)根据2013年后半年每月的消费情况,小莹估计自己每月本地主叫市话通话大约430分钟,发短信大约240条,国内移动数据流量使用量大约为120兆,除此之外不再产生其他费用,则小莹应该选择________套餐最划算(填“一”、“二”或“三”);选择该套餐后,她每月的手机消费总额约为________元.20. (6分)(2019·温州模拟) 车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择 A通道通过的概率是________;(2)求两辆车经过此收费站时,选择不同通道通过的概率.21. (10分)(2019·茂南模拟) 如图,在矩形ABCD中,E是BC上一点,且AE=BC,DF⊥AE,垂足是F,连接DE.求证:(1) DF=AB;(2) DE是∠FDC的平分线.22. (15分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?23. (15分)(2019·茂南模拟) 如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.24. (10分)(2019·茂南模拟) 如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线于点N,作PM⊥AN交双曲线于点M,连接AM,若PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式的解集.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共78分)16-1、17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、第11 页共11 页。
广州市2020版中考数学一模试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列“QQ表情”中属于轴对称图形的是()
A.B.C.D.
2 . A、B两地相距720km,甲车从A地出发行驶120km后,乙车从B地驶往A地,3h后两车相遇,若乙车速度是甲车速度的倍,设甲车的速度为则可列方程
A.B.
C.D.
3 . 点P(-6,1)在双曲线上,则k的值为()
A.-6B.6
C.D.
4 . 如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=a,则∠A2020B2020O=()
C.4040a D.4038a
A.B.
5 . 如图,在菱形ABCD中,E为CD上一点,连接AE、BD,交于点O,若S△AOB:S△DOE=25:9,则CE:BC 等于()
A.2:5B.3:5C.16:25D.9:25
6 . 如图,是的边上一点,且点的坐标为,则
A.B.C.D.
7 . 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1
B.P1=0,P2=1
C.P1=0,P2=
D.P1=P2=
8 . 下列运算正确的是()
D.6a2÷a=6a
A.2a2+3a3=5a5B.6ab﹣4ab=2
C.(﹣a2b)3=﹣a6b3
9 . 在中,无理数有()
A.1个B.2个C.3个D.4个
二、填空题
10 . 如图,转盘的半径为3,阴影部分的弧长为,转动转盘停止转动后,指针指向白色区域的概率是
___________.
11 . 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,CE=1,DE
=3,则⊙O的半径是.
12 . 自2012年9月11日日本实行所谓钓鱼岛“国有化”后,中国民众群情激愤并开始大规模抵制日货,某日本品牌汽车在中国的销售量逐月下降,9月份销售量为1.3万台,十月、十一月一共销售量为1.5万台.设九月份到十一月份平均每月下降的百分率为x,则可列方程为.
13 . 不等式组的解集为________.
14 . 计算20082﹣2007×2008=_____.
15 . 计算﹣的结果等于.
16 . 如图,AC是平行四边形ABCD的对角线,且AC=BC,若∠B=65°,则∠CAD的大小为___度.
17 . 下列四个几何体中,主视图与左视图相同的几何体有________
个.
18 . 据统计,今年琼中绿橙的产值约为28500000元,数据28500000用科学记数法表示为_______.
19 . 在函数中,自变量x的取值范围是.
三、解答题
20 . 某公司为了提倡低碳经济,更好地节约能源,决定购买一批节省能源的10台新机器.现有甲.乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.
(1)求a、b的值;
(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;
(3)在(2)的条件下,若每月产量不低于 2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
21 . 如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,求C′B的长度.
22 . 如图,在⊙中,.求证.
23 . 如图,在足够大的空地上有一段长为a米的旧墙,小明利用旧墙和长为100米的木栏围成中间有一道木栏的长方形菜园,其中,,已知长方形菜园的一边靠墙,设菜园的宽为x米,面积为S平方米.
(1)求S与x的函数关系式,并确定x的取值范围;
(2)若,所围成的长方形菜园的面积为700平方米,求所利用旧墙的长.
24 . 先化简,再求值:÷(1+),其中x=+1.
25 . 如图,在6×6的两张方格纸中,每个小正方形的边长均为1,两张方格纸中分别画有线段AB,CD,线段的端点A,B,C,D均在小正方形的顶点上.
(1)在图1中以AB为边画等腰直角三角形ABE,点E在小正方形顶点上;
(2)在图2中以CD为对角线画菱形CFDG,点F,G均在小正方形顶点上,且菱形CFDG的面积为15.
26 . 如图,在平面直角坐标系xOy中,直线y=x-2与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.
(1)判断原点O与⊙P的位置关系,并说明理由;
(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;
(3)当⊙P与x轴相切时,求出切点的坐标.
27 . 某校校本课程中心为了解该校学生喜欢校本课程的情况,采取抽样调查的办法,通过书法、陶艺、灯谜、足球四门课程的选报情况调查若干名学生的兴趣爱好,要求每位同学只能选择一门自己喜欢的课程,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)在这次调查研究中,一共调查了名学生,喜欢灯谜的人数在扇形统计图中所占的圆心角是度:
(2)请补全频数分布折线统计图;
(3)为了平衡各校本课程的人数,需要从喜欢陶艺课程的甲、乙、丙3人中调整2人到灯谜课程,试用列表或树状图的方法求“甲、乙两人被同时调整到灯谜课程”的概
率.。