(完整版)高中数学概率大题(经典二)
- 格式:doc
- 大小:239.61 KB
- 文档页数:12
【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。
数学必修二概率习题答案数学必修二概率习题答案概率是数学中一个非常重要的概念,它用于描述事件发生的可能性。
在数学必修二中,我们学习了许多与概率相关的知识,包括概率的基本概念、概率的计算方法等。
在这篇文章中,我将为大家提供数学必修二中一些概率习题的答案,并对其中的一些解题思路进行解析。
1. 一副扑克牌中抽取一张牌,求抽到黑桃的概率。
解析:一副扑克牌中共有52张牌,其中有13张黑桃牌。
因此,抽到黑桃牌的概率为13/52,即1/4。
2. 从1到100中随机抽取一个数,求抽到质数的概率。
解析:在1到100之间,一共有25个质数。
因此,抽到质数的概率为25/100,即1/4。
3. 有一个装有5个红球和3个蓝球的袋子,从中任取两个球,求取到两个红球的概率。
解析:首先,计算取第一个球时取到红球的概率。
由于袋子中共有8个球,其中5个是红球,因此取到红球的概率为5/8。
当第一个球取到红球后,袋子中还剩下4个红球和3个蓝球。
因此,取第二个球时取到红球的概率为4/7。
根据概率的乘法原理,取到两个红球的概率为(5/8) * (4/7) = 20/56,即5/14。
4. 有一个盒子,里面有4个红球和6个白球。
从盒子中连续取出3个球,求取到3个红球的概率。
解析:首先,计算取第一个球时取到红球的概率。
由于盒子中共有10个球,其中4个是红球,因此取到红球的概率为4/10。
当第一个球取到红球后,盒子中还剩下3个红球和6个白球。
因此,取第二个球时取到红球的概率为3/9。
同样地,取第三个球时取到红球的概率为2/8。
根据概率的乘法原理,取到3个红球的概率为(4/10) * (3/9) * (2/8) = 24/720,即1/30。
通过以上习题的解析,我们可以看出,概率的计算涉及到对事件发生的可能性进行分析和计算。
在解题过程中,我们需要根据具体情况确定事件的样本空间和有利结果的个数,然后利用概率的定义和计算方法来求解。
在实际生活中,概率的概念和计算方法也有广泛的应用,例如在统计学、金融学、生物学等领域。
《第8章概率》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列事件中,不可能事件是()。
A、抛一枚硬币,正面朝上B、明天会下雨C、地球围绕太阳转D、掷一枚骰子,得点数为72、从一个装有3个红球和2个白球的袋中随机取出两个球,则取出的两球颜色相同的概率是多少?A. 1/10B. 3/10C. 2/5D. 1/23、袋中有5个红球和3个蓝球,现在从袋中随机抽取一个球,抽出红球的概率是()A、4/8B、5/8C、3/8D、1/24、从装有2个红球和2个白球的袋子中随机取出2个球,取出的两个球颜色相同的情况有()种。
A. 1B. 2C. 3D. 45、someone is rolling two fair six-sided dice. What is the probability that the sum of the two dice is 7 given that the two dice show the same number?A. 1/6B. 1/9C. 1/16D. 1/126、某班级有40名学生,其中有20名喜欢篮球,15名喜欢足球,10名既喜欢篮球又喜欢足球。
以下关于这个班级学生喜好篮球或足球的描述正确的是()A、喜欢篮球或足球的学生有35名B、喜欢篮球或足球的学生有25名C、既不喜欢篮球也不喜欢足球的学生有5名D、喜欢篮球的学生中至少有5人同时喜欢足球7、已知一袋中有4个红球和6个白球,从中任取2个球,则取出的2个球都是红球的概率是()。
A、1/15B、2/15C、1/38、一个袋子里装有5个红球和6个蓝球,从中连续摸出两个球,不放回。
若第一次摸出的是红球,则第二次摸出蓝球的概率是多少?A.511B.16C.611D.3091二、多选题(本大题有3小题,每小题6分,共18分)1、设随机变量(X)的概率分布列为:[X012 P0.20.50.3]则下列哪些选项正确?A.(E(X)=1.1)B.(D(X)=0.69)C.(P(0<X<2)=0.5)D.(P(X≥1)=0.8)2、某学校有男生和女生共500人,为了研究学生在某些方面的共同点,学校决定采用分层抽样进行调查。
概率高中练习题及讲解### 概率高中练习题及讲解#### 练习题一:掷骰子问题题目:一个公平的六面骰子被掷两次,求至少出现一次6点的概率。
解题思路:1. 首先确定总的可能结果数,即掷两次骰子的所有组合。
2. 然后确定至少出现一次6点的组合数。
3. 使用古典概型概率公式求解。
解答:- 总的可能结果数为 \(6 \times 6 = 36\) 种。
- 至少出现一次6点的组合数为 \(6 + 6 - 1 = 11\) 种(第一次出现6点,第二次出现6点,以及第一次和第二次都出现6点的组合)。
- 概率 \( P = \frac{11}{36} \)。
#### 练习题二:生日问题题目:在一个有30人的班级中,求至少有两人生日相同的概率。
解题思路:1. 考虑一年有365天,忽略闰年。
2. 使用生日问题的经典解法,即计算所有人都有不同生日的概率,然后用1减去这个概率。
解答:- 所有人都有不同生日的概率为 \( \frac{365}{365} \times\frac{364}{365} \times ... \times \frac{336}{365} \)。
- 至少有两人生日相同的概率为 \( 1 - \frac{365 \times 364\times ... \times 336}{365^{30}} \)。
#### 练习题三:独立事件问题题目:一个袋子里有5个红球和5个蓝球。
第一次随机取出一个球,不放回,然后第二次再取出一个球。
求第二次取出红球的概率。
解题思路:1. 确定第一次取出球后,第二次取球的总可能数和有利结果数。
2. 使用条件概率公式求解。
解答:- 第一次取出红球的概率为 \( \frac{5}{10} = 0.5 \),此时第二次取红球的概率为 \( \frac{4}{9} \)。
- 第一次取出蓝球的概率也为 \( 0.5 \),此时第二次取红球的概率为 \( \frac{5}{9} \)。
- 总概率为 \( 0.5 \times \frac{4}{9} + 0.5 \times \frac{5}{9} = \frac{9}{18} = 0.5 \)。
高中数学必修二第十章概率知识点总结归纳完整版单选题1、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为()A.0.8B.0.7C.0. 56D.0. 38答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.2、以下现象中不是随机现象的是().A.在相同的条件下投掷一枚均匀的硬币两次,正反两面都出现B.明天下雨C.连续两次抛掷同一骰子,两次都出现2点D.平面四边形的内角和是360°答案:D分析:根据随机现象的定义进行判断即可.因为平面四边形的内角和是360°是一个确定的事实,而其他三个现象都是随机出现的,所以选项D不符合题意,故选:D3、掷一枚骰子一次,设事件A:“出现偶数点”,事件B:“出现3点或6点”,则事件A,B的关系是A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥答案:B事件A={2,4,6},事件B={3,6},事件AB={6},基本事件空间Ω={1,2,3,4,5,6},所以P(A)=36=12,P(B)=2 6=13,P(AB)=16=12×13,即P(AB)=P(A)P(B),因此,事件A与B相互独立.当“出现6点”时,事件A,B同时发生,所以A,B不是互斥事件.故选B.4、甲、乙两人练习射击,甲击中目标的概率为0.9,乙击中目标的概率为0.7,若两人同时射击一目标,则他们都击中的概率是()A.0.3B.0.63C.0.7D.0.9答案:B分析:结合相互独立事件直接求解即可.设甲击中为事件A,乙击中为事件B,则P(AB)=P(A)⋅P(B)=0.9×0.7=0.63.故选:B5、分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6答案:C分析:结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C6、下列命题中正确的是()A.事件A发生的概率P(A)等于事件A发生的频率f n(A)B.一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C.掷两枚质地均匀的硬币,事件A为“一枚正面朝上,一枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D.对于两个事件A、B,若P(A∪B)=P(A)+P(B),则事件A与事件B互斥答案:C解析:根据频率与概率的关系判断即可得A选项错误;根据概率的意义即可判断B选项错误;根据古典概型公式计算即可得C选项正确;举例说明即可得D选项错误.解:对于A选项,频率与实验次数有关,且在概率附近摆动,故A选项错误;对于B选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是16,表示一次实验发生的可能性是16,故骰子掷6次出现3点的次数也不确定,故B选项错误;对于C选项,根据概率的计算公式得P(A)=12×12×2=12,P(B)=12×12=14,故P(A)=2P(B),故C选项正确;对于D选项,设x∈[−3,3],A事件表示从[−3,3]中任取一个数x,使得x∈[1,3]的事件,则P(A)=13,B事件表示从[−3,3]中任取一个数x,使得x∈[−2,1]的事件,则P(A)=12,显然P(A∪B)=56=13+12=P(A)+P(B),此时A事件与B事件不互斥,故D选项错误.小提示:本题考查概率与频率的关系,概率的意义,互斥事件等,解题的关键在于D 选项的判断,适当的举反例求解即可.7、先后两次抛掷同一个骰子,将得到的点数分别记为a ,b ,则a ,b ,4能够构成等腰三角形的概率是( ) A .16B .12C .1336D .718 答案:D分析:利用乘法原理求出基本事件总数,然后按照分类讨论的方法求出a ,b ,4能够构成等腰三角形的基本事件数,然后利用古典概型的概率公式求解即可. 由乘法原理可知,基本事件的总数是36, 结合已知条件可知,当a =1时,b =4符合要求,有1种情况; 当a =2时,b =4符合要求,有1种情况; 当a =3时,b =3,4符合要求,有2种情况; 当a =4时,b =1,2,3,4,5,6符合要求,有6种情况; 当a =5时,b =4,5符合要求,有2种情况; 当a =6时,b =4,6符合要求,有2种情况, 所以能构成等腰三角形的共有14种情况, 故a ,b ,4能够构成等腰三角形的概率P =1436=718. 故选:D.8、当P(A)>0时,若P(B|A)+P(B ̅)=1,则事件A 与B 的关系是( ) A .互斥B .对立C .相互独立D .无法判断 答案:C分析:根据条件概率的公式,化简原式,再根据相互独立事件的性质即可得出结论. ∵P(B|A)+P(B̅)=P(B|A)+1−P(B)=1, ∴P(B|A)=P(B),即P(AB)P(A)=P(B),∴P(AB)=P(A)P(B),∴事件A与B相互独立.故选:C.多选题9、对于事件A,B,下列命题正确的是()A.如果A,B互斥,那么A与B也互斥B.如果A,B对立,那么A与B也对立C.如果A,B独立,那么A与B也独立D.如果A,B不独立,那么A与B也不独立答案:BCD分析:A.利用互斥事件的定义判断;B.利用对立事件的定义判断;C.利用相互独立事件的定义判断;D.利用相互独立事件的定义判断.A.如果A,B互斥,由互斥事件的定义得A与B不一定互斥,故错误;B.如果A,B对立,由对立事件的定义得A与B也对立,故正确;C.如果A,B独立,由相互独立事件的定义得A与B也独立,故正确;D.如果A,B不独立,由相互独立事件的定义得A与B也不独立,故正确;所以答案是:BCD10、给出下列四个命题,其中正确的命题有A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率答案:CD解析:根据概率和频率定义,逐项判断,即可求得答案.对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是9,符合频率定义,故C正确;50对于D,频率是概率的估计值,故D正确.故选:CD.小提示:本题考查了频率和概率区别,解题关键是掌握频率和概率的定义,考查了分析能力,属于基础题.11、4支足球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是12.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.下列结论中正确的是()A.恰有四支球队并列第一名为不可能事件B.有可能出现恰有三支球队并列第一名C.恰有两支球队并列第一名的概率为14D.只有一支球队名列第一名的概率为12答案:ABD分析:4支足球队进行单循环比赛总的比赛共有C42=6场比赛,比赛的所有结果共有26=64种;选项A,这6场比赛中不满足4支球队得分相同的的情况;选项B,举特例说明即可;选项C,在6场比赛中,从中选2支球队并列第一名有C42=6种可能,再分类计数相互获胜的可能数,最后由古典概型计算概率;选项D,只有一支球队名列第一名,则该球队应赢了其他三支球队,由古典概型问题计算即可.4支足球队进行单循环比赛总的比赛共有C42=6场比赛,比赛的所有结果共有26=64种;选项A,这6场比赛中若4支球队优先各赢一场,则还有2场必然有2支或1支队伍获胜,那么所得分值不可能都一样,故是不可能事件,正确;选项B,其中(a,b),(b,c),(c,d),(d,a),(a,c),(d,b)6场比赛中,依次获胜的可以是a,b,c,a,c,b,此时3队都获得2分,并列第一名,正确;选项C,在(a,b),(b,c),(c,d),(d,a),(a,c),(d,b)6场比赛中,从中选2支球队并列第一名有C42=6种可能,若选中a,b,其中第一类a赢b,有a,b,c,d,a,b和a,b,d,c,a,b两种情况,同理第二类b赢a,也有两种,故恰有两支球队并列第一名的概率为6×464=38,错误;选项D,从4支球队中选一支为第一名有4种可能;这一支球队比赛的3场应都赢,则另外3场的可能有23=8种,故只有一支球队名列第一名的概率为864×4=12,正确.故选:ABD小提示:本题考查利用计数原理解决实际问题的概率问题,还考查了事件成立与否的判定,属于较难题.填空题12、为防控新冠疫情,很多公共场所要求进人的人必须佩戴口罩.现有3人在一次外出时需要从蓝、白、红、黑、绿5种颜色各1只的口罩中随机选3只不同颜色的口罩,则蓝、白口罩同时被选中的概率为____________.答案:310##0.3分析:利用列举法和古典概型的概率计算公式可得答案.从蓝、白、红、黑、绿5种颜色各1只的口罩中选3只不同颜色的口罩,样本点列举如下:(蓝,白,红),(蓝,白,黑),(蓝,白,绿),(蓝,红,黑),(蓝,红,绿),(蓝,黑,绿),(白,红,黑),(白,红,绿),(白,黑,绿),(红,黑,绿),共有10个样本点,其中蓝、白色口罩同时被选中的样本点有(蓝,白,红),(蓝,白,黑),(蓝,白,绿),共3个样本点,所以蓝、白色口罩同时被选中的概率为310.所以答案是:310.13、甲乙丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.则n次传球后球在甲手中的概率p n=______.答案:13[1+(−1)n⋅12n−1]分析:记A n表示事件“经过n次传球后,球再甲的手中”,设n次传球后球再甲手中的概率为p n,得到p1=0,A n+1=A n⋅A n+1+A n⋅A n+1,化简整理得p n+1=−12p n+12,n=1,2,3,⋯,即p n+1−13=−12(p n−13),结合等比数列的通项公式,即可求解.解:记A n表示事件“经过n次传球后,球再甲的手中”,设n次传球后球再甲手中的概率为p n,n=1,2,3,⋯,n,则有p1=0,A n+1=A n⋅A n+1+A n⋅A n+1,所以p n+1=P(A n⋅A n+1+A n⋅A n+1)=P(A n⋅A n+1)+P(A n⋅A n+1)=P(A n)⋅P(A n+1|A n)+P(A n)⋅P(A n+1|A n)=(1−p n)⋅12+p n⋅0=12(1−p n),即p n+1=−12p n+12,n=1,2,3,⋯,所以p n+1−13=−12(p n−13),且p1−13=−13,所以数列{p n−13}表示以−13为首项,−12为公比的等比数列,所以p n−13=−13×(−12)n−1,所以p n=−13×(−12)n−1+13=13[1+(−1)n⋅12n−1].即n次传球后球在甲手中的概率是13[1+(−1)n⋅12n−1].所以答案是:13[1+(−1)n⋅12n−1].14、若随机事件A、B互斥,A、B发生的概率均不等于0,且分别为P(A)=2−a,P(B)=3a−4,则实数a 的取值范围为_____.答案:(43,3 2 ]解析:根据已知条件和随机事件的概率范围及互斥事件的性质,列出不等式组,即可求出实数a的取值范围. 因为随机事件A、B互斥,A、B发生的概率均不等于0,所以有:{0<P(A)<1 0<P(B)<10<P(A)+P(B)≤1,即{0<2−a<10<3a−4<10<2−a+3a−4≤1,解得43<a≤32,所以答案是:(43,3 2 ]解答题15、2020年1月26日4点,篮球运动员湖人队名宿科比·布莱恩特在加州坠机身亡,享年41岁.对于很多篮球迷来说是巨大的悲痛,也是对这个世界最大的损失,但是科比留给我们的是他对比赛的积极备战的态度,毫无保留的比赛投入,夺冠时的疯狂庆祝;永不言弃的精神是科比的人生信条,他的这种精神被称为“曼巴精神”,热情、执着、严厉、回击和无惧就是“曼巴精神”的内涵所在.现如今这种精神一直鼓舞着无数的运动员和球迷们.这种精神也是高三的所有学子在学习疲惫或者迷茫时的支柱.在美国NBA 篮球比赛中,季后赛和总决赛采用的赛制是“7场4胜制”,即先赢4场比赛的球队获胜,此时比赛结束.比赛时两支球队有主客场之分,顺序是按照常规赛的战绩排名的,胜率最高的球队先开始主场比赛,且主客场安排依次是“主主客客主客主”,且每场比赛结果相互独立.在NBA 2019~2020赛季总决赛中,詹姆斯和戴维斯带领的洛杉矶湖人队以4:2战胜迈阿密热火队,获得队史第17个NBA 总冠军,詹姆斯也荣获职业生涯的第4个FMVP .如果在总决赛开打之前,根据大数据和NBA 专家的预测,以常规赛战绩排名,湖人队先开始主场比赛,且湖人队在主场赢球概率为34,客场赢球概率为12(说明:篮球比赛中没有平局,只有赢或者输),根据上述预测:(1)分别求出只进行4场比赛和湖人队4:1获胜的概率; (2)如果湖人队已经取得2:0的开局,求最终夺冠的概率. 答案:(1)932;(2)5964.分析:(1)4场比赛包括湖人队4:0获胜或者0:4失败;湖人队4:1获胜,则前4场比赛中两个主场胜一场输一场,两个客场全胜或两个主场全胜,两个客场胜一场输一场,第5场胜,然后利用相互独立事件的概率乘法公式与互斥事件的概率加法公式求解即可(2)湖人队最后夺冠的情况有4:0,4:1,4:2,4:3,然后利用相互独立事件的概率乘法公式与互斥事件的概率加法公式求解即可(1)记事件A 为“只进行4场比赛”,事件B 为“湖人队4:1获胜”,则 由题意知,4场比赛包括湖人队4:0获胜或者0:4失败, P A =34×34×12×12+14×14×12×12=532,湖人队4:1获胜,则前4场比赛中两个主场胜一场输一场,两个客场全胜或两个主场全胜,两个客场胜一场输一场,第5场胜,P B =34×14×12×12×34×2+34×34×12×12×34×2=932. (2)湖人队最后夺冠的情况有4:0,4:1,4:2,4:3, 4:0夺冠的概率:P 1=12×12=14, 4:1夺冠的概率:P 2=12×12×34×2=38,4:2夺冠的概率:P3=12×12×14×12×2+12×12×34×12=532,4:3夺冠的概率:P4=12×12×14×12×34×3+12×12×34×12×34=964,所以湖人队最终夺冠的概率为P1+P2+P3+P4=5964.。
高三数学概率练习题及答案2023概率是数学中一个重要的分支,它研究的是不确定事件的可能性。
在高三数学学习中,概率也是一个重要的内容。
为了帮助各位高三学生巩固概率知识,我整理了一些概率练习题及其答案。
练习题一:1.一个有12个红球和8个蓝球的袋子,从中随机抽取4个球,求抽到2个红球2个蓝球的概率。
2.在一批电脑中,有60%的电脑工作正常,40%的电脑存在故障。
如果从中随机抽取3台电脑,求至少有2台工作正常的概率。
3.一副扑克牌共有52张牌,其中黑桃、红桃、梅花和方片各有13张。
从中随机抽取5张牌,求其中至少有3张黑桃的概率。
练习题二:1.一个班级有40个学生,其中20个学生喜欢篮球,15个学生喜欢足球,10个学生既喜欢篮球又喜欢足球。
从中随机抽取一个学生,求该学生既喜欢篮球又喜欢足球的概率。
2.一家手机厂商共有1000部手机,其中100部属于次品。
从中抽取5部手机,求至少有1部次品的概率。
3.在一次模拟考试中,某班级参加考试的学生共有50人。
已知这些学生中80%能取得优异成绩,60%能取得及格成绩。
从中随机抽取3个学生,求至少有2个学生能取得优异成绩的概率。
练习题三:1.甲、乙、丙三个人相继投掷一颗骰子,求他们得到的点数之和为9的概率。
2.某商品的包装中有10个零件,其中4个是次品。
从中无放回地抽取3个零件,求其中至少2个是次品的概率。
3.在一场抽奖活动中,共有1000人参与,其中10人可以获奖。
从中随机抽取5人,求至少有1人获奖的概率。
答案解析:练习题一:1.计算红球的概率:P(红球) = 红球个数/总球数 = 12/20。
计算蓝球的概率:P(蓝球) = 蓝球个数/总球数 = 8/20。
计算抽到2个红球2个蓝球的概率:P(2个红球2个蓝球) = C(12,2) * C(8,2) / C(20,4)。
2.计算正常电脑的概率:P(正常) = 60% = 0.6。
计算故障电脑的概率:P(故障) = 40% = 0.4。
高2数学试题概率及答案一、选择题(每题3分,共15分)1. 一个袋子里有5个红球和3个蓝球,随机取出一个球,下列哪个概率是正确的?A. 取出红球的概率是1/3B. 取出蓝球的概率是1/2C. 取出红球的概率是5/8D. 取出蓝球的概率是3/82. 抛一枚公正的硬币两次,下列哪个事件的概率是1/4?A. 两次都是正面B. 两次都是反面C. 至少一次是正面D. 至少一次是反面3. 一个班级有30个学生,其中10个是男生,20个是女生。
随机选择一个学生,下列哪个概率是正确的?A. 选择男生的概率是1/3B. 选择女生的概率是2/5C. 选择男生的概率是1/2D. 选择女生的概率是3/54. 一个骰子有6个面,每个面出现的概率相等。
投掷一次骰子,下列哪个事件的概率是1/6?A. 得到1点B. 得到2点C. 得到3点D. 所有选项都是1/65. 一个盒子里有3个白球和2个黑球,随机取出两个球,下列哪个组合的概率是1/5?A. 两个都是白球B. 两个都是黑球C. 一个白球和一个黑球D. 没有可能的组合二、填空题(每题2分,共10分)6. 如果一个事件的概率是0.6,那么它的对立事件的概率是________。
7. 一个袋子里有7个球,其中2个是红球,5个是蓝球。
如果随机取出一个球,再放回去,然后再取出一个球,两次取出的都是红球的概率是________。
8. 抛一枚公正的硬币三次,至少出现一次正面的概率是________。
9. 一个袋子里有4个白球和6个黑球,随机取出3个球,取出的球都是同一种颜色的概率是________。
10. 如果一个事件的概率是p,那么它的必然事件的概率是________。
三、解答题(每题5分,共20分)11. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
求以下事件的概率:- 随机取出一个球,是红球的概率。
- 随机取出两个球,两个都是红球的概率。
12. 一个班级有50个学生,其中25个是男生,25个是女生。
一、选择题1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( ) A .2144B .1223C .1225D .21112.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .123.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为( )A .316B .34C .1316D .144.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( ) A .2pB .2p C .1p D .12p 5.设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生; (Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( ) A .Ⅰ和ⅡB .Ⅱ和ⅢC .Ⅲ和ⅣD .Ⅳ和Ⅰ6.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥7.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭8.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 9.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .71210.有3位男生和2位女生在周日去参加社区志愿活动,从该5位同学中任取3人,至少有1名女生的概率为( ) A .110B .25C .35D .91011.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是( ) A .1315B .1115C .23D .3512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为( ) A .0.24B .0.36C .0.6D .0.8413.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:1日2日3日4日5日10时观展人数3256427245672737235513时观展人数5035653771494693370816时观展人数61006821658048663521通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为()A.12B.25C.35D.34二、解答题14.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A;(2)记事件B为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A-=.15.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)50,60,[)60,70,…[]90,100分成5组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的平均数;(3)已知满意度评分值在[)50,60内的男生数与女生数的比为3:2,若在满意度评分值为[)50,60的人中随机抽取2人进行座谈,求恰有1名女生的概率.16.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.17.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.18.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.附:临界值表参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.19.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?20.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.21.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:男居民女居民合计a 2560满意35(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.(1)设在一次游戏中,摸出红球的个数为X,求X分布列;(2)若在一次游戏中,摸出的红球不少于2个,则获奖.求一次游戏中,获奖的概率. 25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案. 【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则()()()()()1110.610.80.92P C P A P B =-=--⨯-=; 则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==. 故选:B. 【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.2.D解析:D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21Nn n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题.3.C解析:C【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果. 【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开, 这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616-=, 故选:C . 【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.4.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b , 则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.5.B解析:B 【分析】利用互斥事件、对立事件的定义直接求解. 【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A,B,C中最多有一个发生;(Ⅲ)A,B,C中至少有两个发生(Ⅳ)A,B,C最多有两个发生;在A中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A中的两个事件不能相互为对立事件;在B中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B中的两个事件相互为对立事件;在C中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C中的两个事件不能相互为对立事件;在D中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D中的两个事件不能相互为对立事件.故选:B.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.6.B解析:B【分析】根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】A为三件产品全不是次品,指的是三件产品都是正品,B为三件产品全是次品,C为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A与B是互斥事件;A与C是包含关系,不是互斥事件;B与C是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.7.C解析:C【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫⎪⎝⎭,因此,甲获胜的概率为22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.8.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.9.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.10.D解析:D 【分析】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,列举出所有的基本事件,并确定事件“从这5位同学中任取3人,至少有1名女生”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,从这5位同学中任取3人,所有的基本事件有:ABC 、ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共10种,其中,事件“从这5位同学中任取3人,至少有1名女生”包含的基本事件有:ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共9种,因此,所求概率为910P =. 故选:D. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.11.D解析:D 【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项. 【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.12.D解析:D 【分析】先求出对立事件:一次都未投中的概率,然后可得结论. 【详解】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,∴他再次投篮至少投中一次的概率为10.160.84-=.故选:D.【点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.13.C解析:C【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率.【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11 236m C C==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105mPn===.故选:C【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.二、解答题14.(1)35;(2)证明见解析.【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A的基本事件有6个,即可求解()P A;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C的基本事件,即可计算出1()()()5P C P B P A-=.【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=. 【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率. 15.(1)0.01;(2)77;(3)35. 【分析】(1)由各组的频率和为1,列方程可求出x 的值; (2)由平均数的公式直接求解即可;(3)先计算满意度评分值在[)50,60内有1000.005105⨯⨯=人,按比例男生3人女生2人,从5人中选2人,用列举法列出所有情况,利用概率公式求解即可. 【详解】解:(1)由()0.0050.020.0350.030101x ++++⨯=,解得0.01x =;(2)这组数据的平均数为550.05650.2750.35850.3950.177⨯+⨯+⨯+⨯+⨯=; (3)满意度评分值在[)50,60内有1000.005105⨯⨯=人,男生数与女生数的比为3:2,故男生3人,女生2人,记为12312,,,,A A A B B ,记“满意度评分值为[)50,60的人中随机抽取2人进行座谈,恰有1名女生”为事件A ,从5人中抽取2人有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B ,12B B ,所以总基本事件个数为10个,A 包含的基本事件:11A B ,12A B ,21A B ,22A B ,31A B ,32A B ,共6个,所以 ()63105P A ==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1;②直方图中纵轴表示频率除以组距,故每组样本中的频率为组距乘以小长方形的高,即矩形的面积;③直方图中每组样本的频数为频率乘以总数; ④最高的小矩形底边中点横坐标即是众数; ⑤中位数的左边和右边小长方形面积之和相等;⑥平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 16.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:(2)设“小明同学从A 类和B 类科目中均至少选择1门科目”为事件C ,()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题.17.(Ⅰ)0.72;(Ⅱ)0.26;(Ⅲ)0.98. 【分析】(Ⅰ)由相互独立事件概率的乘法公式即可得解;(Ⅱ)由相互独立事件概率的乘法公式、互斥事件概率的加法公式,运算即可得解; (Ⅲ)由互斥事件概率加法公式即可得解. 【详解】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (Ⅰ)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (Ⅱ)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(Ⅲ)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.【点睛】本题考查了对立事件的概率及概率的加法公式、乘法公式的应用,考查了运算求解能力,属于中档题.18.(1)见解析;(2)0.4 【分析】(1)根据独立性检验求出()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率. 【详解】(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯ ∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)抽样比为616010=,样本中喜爱的观众有40×110=4名,不喜爱的观众有6﹣4=2名.记喜爱该演讲的4名男性观众为a,b,c,d,不喜爱该演讲的2名男性观众为1,2,则基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).其中选到的两名观众都喜爱该演讲的事件有6个,故其概率为P(A)=60.4 15=【点睛】本题主要考查独立性检验和古典概型,意在考查学生对这些知识的理解能力,掌握水平和应用能力.19.(1)0.05;(2)0.45;(3)1200.【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果.【详解】把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=120=0.05.(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=920=0.45.(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=220=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义20.(1)0.016;(2)约为74.1;(3)35.。
高中数学必修二第十章概率知识总结例题单选题1、打靶3次,事件A i表示“击中i发”,其中i=0、1、2、3.那么A=A1∪A2∪A3表示()A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确答案:B分析:利用并事件的定义可得出结论.A=A1∪A2∪A3所表示的含义是A1、A2、A3这三个事件中至少有一个发生,即可能击中1发、2发或3发.故选:B.2、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.3、某居民小区内一条街道的一侧并排安装了5盏路灯,在满足晚上不同时间段照明的前提下,为了节约用电,小区物业通过征求居民意见,决定每天24:00以后随机关闭其中3盏灯,则2盏亮着的路灯不相邻的概率为()A.0.3B.0.5C.0.6D.0.8答案:C分析:把问题转化为亮的2盏插空到不亮的3盏之间,计算出2盏亮的灯相邻和不相邻的所有可能数,再根据古典概型的概率公式计算即可.5盏路灯关闭其中3盏灯,则2盏亮着的路灯不相邻,相当于把亮的2盏插空到不亮的3盏之间,那么亮的2盏不相邻的情况共有C42=6种,相邻的情况共有4种,=0.6,因此2盏亮着的路灯不相邻的概率为610故选:C.4、天气预报说,今后三天中,每一天下雨的概率均为40%,现采用随机模拟方法估计这三天中恰有两天下雨的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示下雨,5,6,7,8,9,0表示不下雨.经随机模拟产生了如下20组随机数:907 966 195 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计今后三天中恰有两天下雨的概率为()A.0.40B.0.30C.0.25D.0.20答案:D分析:由题意知:在20组随机数中表示三天中恰有两天下雨通过列举得到共4组随机数,根据概率公式得到结果.由题意知:在20组随机数中恰有两天下雨的有可以通过列举得到:271 932 812 393 共4组随机数∴所求概率为4=0.2020故选:D5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P =0.42×0.32+C 21×0.6×0.4×C 21×0.7×0.3+ 0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A .小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、已知集合M ={−1,0,1,−2},从集合M 中有放回地任取两元素作为点P 的坐标,则点P 落在坐标轴上的概率为( )A .516B .716C .38D .58 答案:B分析:利用古典概型的概率求解.由已知得,基本事件共有4×4= 16个,其中落在坐标轴上的点为:(−1,0),(0,−1),(0,0),(1,0),(0,1),(−2,0),(0,−2),共7个,∴所求的概率P =716,故选:B .7、从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A .“恰好有一个黑球”与“恰好有两个黑球”B .“至少有一个黑球”与“至少有一个红球”C .“至少有一个黑球”与“都是黑球”D .“至少有一个黑球”与“都是红球”答案:A分析:根据互斥事件和对立事件的定义直接判断.对于A :“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,故A 中的两事件互斥而不对立;对于B :“至少有一个黑球”与“至少有一个红球” 能同时发生,故B 中的两事件不互斥;对于C :“至少有一个黑球”与“都是黑球”能同时发生,故C 中的两事件不是互斥事件;对于D :“至少有一个黑球”与“都是红球” 互斥并且对立.故选:A8、若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,则实数a的取值范围是A.(1,2)B.(54,32)C.(54,43)D.(54,43]答案:D分析:由随机事件A、B互斥,A、B发生的概率均不等于0,知{0<P(A)<1 0<P(B)<1P(A)+P(B)⩽1,由此能求出实数a的取值范围.∵随机事件A、B互斥,A、B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,∴{0<P(A)<1 0<P(B)<1P(A)+P(B)⩽1,即{0<2−a<10<4a−5<13a−3⩽1,解得54<a⩽43,即a∈(54,43].故选:D.小提示:本题考查互斥事件的概率的应用,属于基础题.解题时要认真审题,仔细解答.多选题9、某学校共3000名学生,为了调查本学校学生携带手机进校园情况,对随机抽出的500名学生进行调查,调查中使用了2个问题,问题1:你生日的月份是否为奇数?问题2:你是否携带手机?调查人员给被调查者准备了一枚质地均匀的硬币,被调查者背对着调查人员掷一次硬币,如果正面朝上,则回答问题1;如果反面朝上,则回答问题2.共有175人回答“是”,则下列说法正确的有()A.估计被调查者中约有175人携带手机B.估计本校学生约有600人携带手机C.估计该学校约有20%的学生携带手机D.估计该学校约有10%的学生携带手机答案:BC分析:先根据正反面的等可能性和奇数月份的等可能性计算回答第一个问题且回答是的人数,即得到500名学生中带手机的学生人数及比例,即得到结果.随机抽取的500名学生中,回答第一个问题的概率为12,生日月份为奇数的概率也是12, 所以回答第一个问题且回答是的人数为500×12×12=125, 所以回答第二个问题且回答是的人数为175−125=50,所以随机抽取的500名学生中,带手机的学生人数的比例为50250=20%,故该学校3000名学生中,带手机的学生人数为3000×20%=600.所以BC 正确.故选:BC.10、下列说法错误的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%答案:ABC分析:根据频率与概率的概念分析可得答案.对于A ,甲、乙二人比赛,甲胜的概率为35,是指每场比赛,甲胜的可能性为35,则比赛5场,甲可能胜3场、2场、1场、0场,故A 错误;对于B ,治愈率为10%,是指每个人治愈的可能性是10%,不是说前9个病人没有治愈,则第10个病人一定治愈,故B 错误;对于C ,随机试验的频率是变化的,概率是频率的稳定值,是固定的,故C 错误;对于D ,天气预报中,预报明天降水概率为90%,是指降水的可能性是90%,故D 正确.故选:ABC11、下面结论正确的是( )A .若P(A)+P(B)=1,则事件A 与B 是互为对立事件B .若P(AB)=P(A)P(B),则事件A 与B 是相互独立事件C.若事件A与B是互斥事件,则A与B̅也是互斥事件D.若事件A与B是相互独立事件,则A与B̅也是相互独立事件答案:BD解析:根据互斥事件、对立事件的知识判断AC两个选项的正确性,根据相互独立事件的知识判断BD两个选项的正确性.对于A选项,要使A,B为对立事件,除P(A)+P(B)=1还需满足P(AB)=0,也即A,B不能同时发生,所以A 选项错误.对于C选项,A包含于B,所以A与B不是互斥事件,所以C选项错误.对于B选项,根据相互独立事件的知识可知,B选项正确.对于D选项,根据相互独立事件的知识可知,D选项正确.故选:BD小提示:本小题主要考查互斥事件和对立事件,考查相互独立事件,属于基础题.填空题12、将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.答案:19分析:分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.根据题意可得基本事件数总为6×6=36个.点数和为5的基本事件有(1,4),(4,1),(2,3),(3,2)共4个.∴出现向上的点数和为5的概率为P=436=19.所以答案是:19.小提示:本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.13、已知事件A,B,且P(A)=0.5,P(B)=0.2,如果A与B互斥,令m=P(AB);如果A与B相互独立,令n= P(A B̅),则n−m=___________.答案:0.4##25分析:利用互斥事件的概念及独立事件概率公式即得.∵A 与B 互斥,∴m =P (AB )=0,∵A 与B 相互独立,∴n =P (A B̅)=P (A )P (B ̅)=(1−0.5)×(1−0.2)=0.4, ∴n −m =0.4.所以答案是:0.4.14、新冠肺炎疫情发生后,我国加紧研发新型冠状病毒疫苗,某医药研究所成立疫苗研发项目,组建甲、乙两个疫苗研发小组,且两个小组独立开展研发工作.已知甲小组研发成功的概率为23,乙小组研发成功的概率为12.在疫苗研发成功的情况下,是由甲小组研发成功的概率为__________. 答案:45##0.8 分析:根据对立事件,相互独立事件及条件概率公式直接计算即可.设事件A 为“疫苗研发成功”,即甲、乙两个小组至少有一个小组研发成功,其概率为:P (A )=1−(1−23)×(1−12)=56, 事件B 为“甲小组研发成功”,则P (B )=P (AB )=23,所以P (B |A )=P (AB )P (A )=2356=45, 所以答案是:45.解答题15、某校社团活动深受学生欢迎,每届高一新生都踊跃报名加入.现已知高一某班60名同学中有4名男同学和2名女同学参加摄影社,在这6名同学中,2名同学初中毕业于同一所学校,其余4名同学初中毕业于其他4所不同的学校.现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).(1)在该班随机选取1名同学,求该同学参加摄影社的概率;(2)求从这6名同学中选出的2名同学代表至少有1名女同学的概率;(3)求从这6名同学中选出的2名同学代表来自不同的初中学校的概率.答案:(1)110;(2)35;(3)1415. 分析:(1)首先找到该班全部同学的数量和参加摄影社的同学的数量,然后计算比值即为所求概率;(2)设A ,B ,C ,D 表示参加摄影社的男同学,a ,b 表示参加摄影社的女同学,列出所有满足的情况,根据古典概型的计算方式求解;(3)用1,2,3,4表示这6名同学中选出的4同学代表来自不同的初中学校的同学,用e ,f 表示2名来自同一个学校的2名同学,根据古典概型的计算方式求解.解:(1)依题意,该班60名同学中共有6名同学参加摄影社,所以在该班随机选取1名同学,该同学参加摄影社的概率为660=110.(2)设A ,B ,C ,D 表示参加摄影社的男同学,a ,b 表示参加摄影社的女同学,则从6名同学中选出的2名同学代表共有15种等可能的结果:AB ,AC ,AD ,Aa ,Ab ,BC , BD ,Ba ,Bb ,CD ,Ca ,Cb ,Da ,Db ,ab ,其中至少有1名女同学的结果有9种:Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,Da ,Db ,ab ,根据古典概率计算公式,从6名同学中选出的2名同学代表至少有1名女同学的概率为P =915=35.(3)用1,2,3,4表示这6名同学中选出的4同学代表来自不同的初中学校的同学,用e ,f 表示2名来自同一个学校的2名同学.从6名同学中选出2名,有:12,13,14,1e ,1f ,23,24,2e ,2f ,34,3e ,3f ,4e ,4f ,ef 共15种不同情况,其中2名同学代表来自不同的初中学校12,13,14,1e ,1f ,23,24,2e ,2f ,34,3e ,3f ,4e ,4f 有14种,所以从这6名同学中选出的2名同学代表来自不同的初中学校的概率P =1415.。
一、选择题1.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是( ) A .16B .13C .12D .232.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合{}1,2,3,4中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为( ) A .23B .112C .16D .133.袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( )A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C .至少有1个白球和至少有2个白球D .至少有1个白球和至少有1个黑球4.设集合{0,1,2}A =,{0,1,2}B =,分别从集合A 和B 中随机抽取一个数a 和b ,确定平面上的一个点(,)P a b ,记“点(,)P a b 满足a b n +=”为事件n C (04,)n n N ≤≤∈,若事件n C 的概率最大,则n 的可能值为( ) A .2B .3C .1和3D .2和45.下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.16.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .7127.素数分布是数论研究的核心领域之一,含有众多著名的猜想.19世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数k ,存在无穷多个素数对(2)p p k +,.其中当1k =时,称(2)p p +,为“孪生素数”,2k =时,称(4)p p +,为“表兄弟素数”.在不超过30的素数中,任选两个不同的素数p 、q (p q <),令事件(){A p q =,为孪生素数},(){B p q =,为表兄弟素数},{()|4}C p q q p =-≤,,记事件A 、B 、C 发生的概率分别为()P A 、()P B 、(C)P ,则下列关系式成立的是( ) A .()()()P A P B P C = B .()()()P A P B P C += C .()()()P A P B P C +> D .()()()P A P B P C +<8.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( ) A .0.015 B .0.005C .0.985D .0.9959.如果从1,2,3,4,5中任取2个不同的数,则这2个数的和能被3整除的概率为( ) A .25 B .310C .15D .1210.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .1411.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( ) A .335B .338C .217D .以上都不正确12.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为( ) A .12B .25C .35D .3413.某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率( ) A .78B .67C .37D .13二、解答题14.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数; (2)估计苗埔中树苗的平均高度;(3)在样本中从205cm 及以上的树苗中按分层抽样抽出5株,再从5株中抽出两株树苗,其中含有215cm 及以上树苗的概率.15.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表: 锻炼时长(小时) 5 6 7 8 9 男生人数(人) 1 2 4 3 4 女生人数(人)38621(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)16.新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动.开学后,某校采用分层抽样的方法从高中三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查. 已知该校高一年级共有学生660人,高三年级共有540人,抽取的样本中高二年级有50人. 下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.x y z的值(2)求频率分布表中实数,,(3)已知日睡眠时间在区间[6,6.5)内的5名高二学生中,有2名女生,3名男生,若从中任选3人进行面谈,求选中的3人恰好为两男一女的概率.17.某学习研究机构调研数学学习成绩对物理学习成绩的影响,随机抽取了100名学生的数学成绩和物理成绩(单位:分).率;(2)完成下面的2×2列联表.附()()()()()22n ad bcKa b c d a c b d-=++++18.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行、第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.3名队员都淘汰的概率;(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?19.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.20.城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.21.某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为()0.60.8p p ≤≤.(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率.该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活. ①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元,该农户为了获利期望不低于10万元,问至少要引种B 种树苗多少棵?22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.5月4日,修水第二届“放肆青春放肆跑”全民健身彩跑活动在信华城举行,全程约5.4km,共有2500余名参与者.某单位为了解员工参加彩跑活动是否与性别有关,从单位随机抽取30名员工进行问卷调查,得到了如下22⨯列联表:已知在这30人中随机抽取1人抽到参加彩跑活动的员工的概率是8 15.(1)完成答题卡上的22⨯列联表,并判断能否有90%的把握认为参加彩跑活动与性别有关?(2)已知参加彩跑的女性中共有4人跑完了全程,若从参加彩跑的6名女性中任选两人,求选出的两人均跑完了全程的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.(Ⅰ)求小明同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.求小明同学至少答对2道题的概率.25.从4名男生和2名女生中任选2人参加抗疫志愿服务活动.(1)设X 表示所选2人中男生的人数,求X 的分布列和数学期望E (X );(2)已知选出了A ,B 这两人参加此次服务活动,A 的服务满意率为0.87,B 的服务满意率为0.91,用“Y A =1,Y B =1,”分别表示对A ,B 的服务满意,“Y A =0,Y B =0,”分别表示对A ,B 的服务不满意,写出方差D (Y A ),D (Y B )的大小关系.(只需写出结论) 26.某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为[)40,50,[)50,60,……[90,100].(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(结果保留两位有效数字)(2)现从评分在[)40,60的调查用户中随机抽取2人,求2人评分都在[)40,50的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设,,B C D 直接受A 感染为事件B 、C 、D ,分析题意得出()1P B =,1()2P C =,1()3P D =,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +,利用公式求得结果.【详解】根据题意得出:因为直接受A 感染的人至少是B , 而C 、D 二人也有可能是由A 感染的, 设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=, 所以B 、C 、D 中直接受A 传染的人数为2的概率为12, 故选:C. 【点睛】该题考查的是有关概率的问题,涉及到的知识点有随机事件发生的概率,相互独立事件同时发生的概率公式和互斥事件有一个发生的概率公式,属于简单题目.2.D解析:D 【分析】讨论十位上的数为4,十位上的数为3,共8个,再计算概率得到答案. 【详解】当十位上的数为4时,共有236A =个;当十位上的数为3时,共有222A =个,共8个.故34881243p A ===. 故选:D . 【点睛】本题考查了概率的计算,分类讨论是解题的关键.3.B解析:B 【分析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系; 【详解】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件, ②至少有1个白球和全是黑球是对立事件; ③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件, 故选B . 【点睛】本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.4.A解析:A 【分析】列出所有的基本事件,分别求出事件0C 、1C 、2C 、3C 、4C 所包含的基本事件数,找出其中包含基本事件数最多的,可得出n 的值. 【详解】所有的基本事件有:()0,0、()0,1、()0,2、()1,0、()1,1、()1,2、()2,0、()2,1、()2,2,事件0C 包含1个基本事件,事件1C 包含2个基本事件,事件2C 包含3个基本事件,事件3C 包含2个基本事件,事件4C 包含1个基本事件,所以事件2C 的概率最大,则2n =,故选A . 【点睛】本题考查古典概型概率的计算,解题的关键在于列举所有的基本事件,常用枚举法与数状图来列举,考查分析问题的能力,属于中等题.5.D解析:D 【分析】由概率的意义可判断AB 错误,由随机抽样的概念得到D 正确. 【详解】一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到的奖票的概率都是0.1,所以C 不正确;D 正确. 故答案为D. 【点睛】本题考查了概率的意义以及随机抽样法的概念,性质,属于基础题.6.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.7.D解析:D 【分析】根据素数的定义,一一列举出不超过30的所有素数,共10个,根据组合运算,得出随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,从而可列举出事件A 、B 、C的所有基本事件,最后根据古典概率分别求出(),()P A P B 和(C)P ,从而可得出结果. 【详解】解:不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,事件A 发生的样本点为(3)5,、(57),、(1113),、(1719),共4个, 事件B 发生的样本点为(37),、(711),、(1317),、(1923),共4个, 事件C 发生的样本点为(2)3,、(25),、(3)5,、(37),、(57),、 (711),、(1113),、(1317),、(1719),、(1923),,共10个,∴4()()45P A P B ==,102()459P C ==, 故()()()P A P B P C +<.故选:D. 【点睛】关键点点睛:本题考查与素数相关的新定义,考查古典概型的实际应用和利用列举法求古典概型,考查组合数的计算,解题的关键在于理解素数的定义,以及对题目新定义的理解,考查知识运用能力.8.D解析:D 【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案. 【详解】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=, 故选:D. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.9.A解析:A 【分析】从5个数中任取两个不同数,取法为2510C =,列举和能被3整除的情况有4种,利用古典概型得解 【详解】从1,2,3,4,5中任取两个数,取法总数为2510C =这2个数的和能被3整除的情况有:()()()()1,21,52,44,5,,, ∴这2个数的和能被3整除的概率为:42105= 故选:A 【点睛】本题考查古典概型求概率,属于基础题.10.C解析:C 【分析】根据题意,结合排列组合,利用插空法和特殊位置法,先排丙,再插甲乙,即可得解. 【详解】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法.故概率6672841360P A +==. 故选:C. 【点睛】本题考查了排列组合,考查了插空法和特殊位置法,在解题过程中注意各种情况的不重不漏,有一定的计算量,属于较难题.11.A解析:A 【解析】设事件A 表示“抽到的两张都是假钞”,事件B 表示“抽到的两张至少有一张假钞”, 则所求的概率即P(A|B).又()()()211244164222020,C C C C P AB P A P B C C +===, 由公式()()()24211441663|641635P AB C P A B P B C C C ====++⨯. 本题选择A 选项.点睛:条件概率的求解方法:(1)利用定义,求P (A )和P (AB ),则()()(|)n AB P B A n A =.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得()()(|)n AB P B A n A =.12.C解析:C 【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C ==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率. 【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日, 从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11236m C C ==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105m P n ===. 故选:C 【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.13.B解析:B 【分析】易得出8人乘车,每车4人的乘车方法是48C ,然后考虑从3名教师中选2人,从5名学生中选2人乘同一辆车,注意有两辆车,求出方法后可得概率. 【详解】8人乘车,每车4人的乘车方法是4870C =,从3名教师中选2人,从5名学生中选2人乘同一辆车的方法娄得2235260C C ⨯=,∴所求概率为606707P ==. 故选:B . 【点睛】本题考查古典概型,解题关键是求出事件“恰有两名教师在同一车上”的方法数,易错点是不考虑两辆车.二、解答题14.(1)0.025a =,众数为190,中位数为190;(2)189.8cm ;(3)25. 【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值,利用最高矩形底边的中点值为众数可求得样本的众数,利用中位数左边矩形的面积和为0.5可求得样本的中位数;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全加可得样本的平均数,即为所求;(3)计算可知5株中在株高205215-这一组抽取的有4株,记为1a 、2a 、3a 、4a ,在株高215225-抽取1株,记为b ,列举出所有的基本事件,并确定事件“抽取的2株中含有215cm 及以上树苗”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由频率分布直方图中所有矩形的面积之和为1可得()0.00150.0110.02250.030.0080.0015101a ++++++⨯=,解得0.025a =.众数为1851952+=190, 设中位数为x ,因为()0.00150.01100.0225100.350.5++⨯=<,()0.00150.01100.02250.030100.650.5+++⨯=>,则185195x <<, ()()0.00150.01100.0225100.0301850.5x ++⨯+⨯-=,解得190x =;(2)1600.0151700.111800.2251900.32000.252100.082200.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯()189.8cm =.因此,估计苗埔中树苗的平均高度为189.8cm ; (3)在株高205215-这一组应抽取:0.08540.080.02⨯=+株,在株高215225-这一组应抽取:0.02510.080.02⨯=+株,用1a 、2a 、3a 、4a 表示在株高205215-这一组的4株,用b 表示在株高215225-这一组的1株,从中抽调2株的抽法:12a a 、13a a 、14a a 、1a b 、23a a 、24a a 、2a b 、34a a 、3a b 、4a b ,共10个基本事件,设抽取2株中含有株高215225-这一组1株为A 事件,A 包含4个基本事件,()42105P A ∴==. 【点睛】方法点睛:计算古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用. 15.(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s > 【分析】(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可; (Ⅲ)根据数据的离散程度结合方差的性质得出2212s s > 【详解】(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种 故选到男生和女生各1人的概率63105P == (Ⅲ)2212s s > 【点睛】关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.16.(1)600人;(2)8;0.16;10;(3)35. 【分析】(1)利用样本中高二年级人数与高二年级总人数之比=样本中高一年级、高二年级人数之和与高一、高二年级总人数之和之比求解;(2)先根据频率分布表求出z 的值,再根据高二年级学生样本人数计算出x ,从而得到其频率y 的值;(3)记5名高二学生中女生为1a ,2a ,男生为123,,b b b ,先列出从这5名高二学生中任选3人进行面谈的所有可能情况,以及恰好有两男一女的情况数,然后根据古典概率模型概率的计算公式求解. 【详解】解:(1)设该校高二学生的总数为n ,由题意5015050660540n -=+,解得=600n ,所以该校高二学生总数为600人.(2)由题意0.2050z=,解得10z =, 50(57128)8x z =-++++=,0.1650xy ==. (3)记“选中的3人恰好为两男一女”为事件A ,记5名高二学生中女生为1a ,2a ,男生为1b ,2b ,3b ,从中任选3人有以下情况: 121,,a a b ;122,,a a b ;123,,a a b ;112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ;123,,b b b ,共10种情况,基本事件共有10个,它们是等可能的,事件A 包含的基本事件有6个,分别为:112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ,故63()105P A ==,所以选中的3人恰好为两男一女的概率为35.(1)解决分层抽样问题时,常用的公式有:①nN=样本容量该层抽取的个体数总体个数该层个体数;②总体中某两层的个数比等于样本中这两层抽取的个体数之比;(2)求解古典概率模型时,基本步骤如下:①利用列举法、列表法、树状图等方法求出基本事件总数n;②求出事件A所包含的基本事件个数m;③代入公式mPn=,求出概率值.17.(1)0.42;(2)见解析;(3)有99%把握认为学生的数学成绩对物理成绩有影响.【分析】(1)先求得“数学考分不低于60分,且物理考分不低于50分的学生”的人数,再由古典概率公式可求得所求的概率;(2)由已知的数据可得出2×2列联表;(3)由(2)中的数据,计算210.5306>6.6354K≈,可得结论.【详解】(1)数学考分不低于60分,且物理考分不低于50分的学生有:12+16+6+842=人,所以“数学考分不低于60分,且物理考分不低于50分”的概率为420.42100P==;(2)2×2列联表如下表所示:(3)由(2)中的数据,得:()210010.5306>6.63544852442102246436K⨯-⨯⨯⨯=≈⨯⨯,所以有99%把握认为学生的数学成绩对物理成绩有影响.【点睛】关键点点睛:本题考查求古典概率,独立性检验的问题,关键在于对数据处理,准确地运用相应的公式,并且理解其数据的实际意义.18.(1)0.045;(2)甲队队员获胜的概率更大一些.【分析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论. 【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为0.50.60.50.30.045⨯⨯⨯= (2)第3局比赛甲队队员获胜可分为3个互斥事件 (i )甲队1号胜乙队3号,概率为0.50.30.20.03⨯⨯=;(ii )甲队2号胜乙队2号,概率为0.50.70.50.50.60.50.325⨯⨯+⨯⨯=; (iii )甲队3号胜乙队1号,概率为0.50.40.80.16⨯⨯= 故第3局甲队队员胜的概率为0.030.3250.160.515++=. 则第3局乙队队员胜的概率为10.5150.485-= 因为0.5150.485>,故甲队队员获胜的概率更大一些. 【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论. 19.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题. 20.(1)32;(2)815. 【详解】试题分析:(1)根据15名乘客中候车时间少于10分钟频数和为8,可估计这60名乘客中候车时间少于10分钟的人数;(2)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案. 试题(1)候车时间少于10分钟的概率为2681515+=, 所以候车时间少于10分钟的人数为8603215⨯=人. (2)将第三组乘客编号为1234,,,a a a a ,第四组乘客编号为12,b b .从6人中任选两人包含以下基本事件:1213141112(,),(,),(,),(,),(,)a a a a a a a b a b ,23242122(,),(,),(,),(,)a a a a a b a b ,343132(,),(,),(,)a a a b a b ,4142(,),(,)a b a b ,12()b b ,,10分其中两人恰好来自不同组包含8个基本事件,所以,所求概率为815. 考点:频率分布表;古典概型及其概率计算公式.21.(1)分布列见解析,()20.7E X p =+;(2)①0.92;②277棵. 【分析】(1)根据题意得出随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望; (2)①由(1)知当0.8p =时,()E X 最大,然后分一棵B 种树苗自然成活和非自然成活两种情况,可求得所求事件的概率;②记Y 为n 棵树苗的成活棵数,由题意可知(),0.92Y B n ~,利用二项分布的期望公式得出()0.92E Y n =,根据题意得出关于n 的不等式,解出n 的取值范围即可得解. 【详解】(1)依题意,X 的所有可能值为0、1、2、3, 则()()2200.310.30.60.3P X p p p ==-=-+,()()()2210.710.3210.10.80.7P X p p p p p ==-+⨯-=-+,()()22220.710.3 1.1 1.4P X p p p p p ==⨯-+=-+, ()230.7P X p ==.所以,随机变量X 的分布列为:。
高中数学概率大题(经典二)一.解答题(共10小题)1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ).5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班 6 6.5 7 7.5 8B班 6 7 8 9 10 11 12C班 3 4.5 6 7.5 9 10.5 12 13.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5P 0.4 0.2 0.2 0.1 0.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.7.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.8.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.9.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999104.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).10.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.11.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.12.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.13.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.14.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)15.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.16.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.17.设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.18.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.19.某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.20.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).参考答案与试题解析一.解答题(共10小题)1.(2005•湖北)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).【解答】解:因为该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.所以寿命为1~2年的概率应为p1﹣p2.其分布列为:寿命0~1 1~2 2~P 1﹣PP1﹣P2P21(I)一只灯泡需要不需要换,可以看做一个独立重复试验,根据公式得到在第一次更换灯泡工作中,不需要换灯泡的概率为p15,需要更换2只灯泡的概率为C52p13(1﹣p1)2;(II)在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1﹣p1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p1﹣p2.故所求的概率为p3=(1﹣p1)2+p1﹣p2.(III)由(II)当p1=0.8,p2=0.3时,在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡的概率p3=(1﹣p1)2+p1(p1﹣p2)=0.54.在第二次灯泡更换工作,至少换4只灯泡包括换5只和换4只两种情况:①换5只的概率为p35=0.545=0.046;②换4只的概率为C51p34(1﹣p3)=5×0.544(1﹣0.54)=0.196,故至少换4只灯泡的概率为:p4=0.046+0.196=0.242.即满两年至少需要换4只灯泡的概率为0.242.2.(2004•安徽)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.【解答】解:由题意知每次取1件产品,∴至少需2次,即ξ最小为2,有2件次品,当前2次取得的都是次品时,ξ=4,∴ξ可以取2,3,4当变量是2时,表示第一次取出正品,第二次取出也是正品,根据相互独立事件同时发生的概率公式得到P(ξ=2)=×=;P(ξ=3)=××+××=;P(ξ=4)=1﹣﹣=.∴ξ的分布列如下:ξ 2 3 4PEξ=2×P(ξ=2)+3×P(ξ=3)+4×P(ξ=4)=.3.(2013•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.【解答】解:(I)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以与相互独立,由于P(A)=P(B)==,故P ()=P()=1﹣,因此学生甲收到活动信息的概率是1﹣(1﹣)2=(II)当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1当k<n时,整数m满足k≤m≤t,其中t是2k和n中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k位”所包含的基本事件总数为()2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为P(X=m)==当k≤m<t时,P(X=M)<P(X=M+1)⇔(m﹣k+1)2≤(n﹣m)(2k﹣m)⇔m≤2k﹣假如k≤2k﹣<t成立,则当(k+1)2能被n+2整除时,k≤2k﹣<2k+1﹣<t,故P(X=M)在m=2k﹣和m=2k+1﹣处达到最大值;当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[]处达到最大值(注:[x]表示不超过x的最大整数),下面证明k≤2k﹣<t因为1≤k<n,所以2k﹣﹣k=≥=≥0而2k﹣﹣n=<0,故2k﹣<n,显然2k﹣<2k 因此k≤2k﹣<t综上得,符合条件的m=2k﹣[]4.(2007•安徽)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ).【解答】解:(Ⅰ)由题意知以ξ表示笼内还剩下的果蝇的只数,ξ的可能取值是0,1,2,3,4,5,6得到ξ的分布列为:ξ0 1 2 3 4 5 6P∴数学期望为Eξ=(1×6+2×5+3×4)=2.(II)所求的概率为P(ξ≥Eξ)=P(ξ≥2)=.5.(2016•北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班 6 6.5 7 7.5 8B班 6 7 8 9 10 11 12C班 3 4.5 6 7.5 9 10.5 12 13.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K==,故C班有学生8÷=40人,(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,共有5×8=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ1.6.(2016•东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5P 0.4 0.2 0.2 0.1 0.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200 250 300P 0.4 0.4 0.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).7.(2016•山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==8.(2016•天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2P∴EX=0×+1×+2×=1.9.(2015•鄂州校级模拟)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999104.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为ξ,由题意知ξ~B(104,p).(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000a﹣(10000ξ+50000),盈利的期望为Eη=10000a﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15元.10.(2015•新课标II)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.。