天津大学化工原理伯努利方程的应用概要
- 格式:pptx
- 大小:306.06 KB
- 文档页数:24
化工原理伯努利方程伯努利方程是流体力学中的一个重要方程,描述了流体在不同位置的速度、压力和高度之间的关系。
它是根据能量守恒定律得到的,并且适用于连续、稳定、摩擦小的流体流动。
伯努利方程的表达式为:P + 1/2ρv^2 + ρgh = constant其中,P代表流体的压力,ρ代表流体的密度,v代表流体的速度,g代表重力加速度,h代表流体在其中一点的高度。
在伯努利方程中,P + 1/2ρv^2项代表了流体的动能或者压力能,ρgh项代表了流体的势能。
考虑一个水流通过管道的情况。
假设水流在管道的其中一点1的速度为v1,压力为P1,高度为h1;在另一点2的速度为v2,压力为P2,高度为h2、根据伯努利方程,我们可以得到以下等式:P1 + 1/2ρv1^2 + ρgh1 = P2 + 1/2ρv2^2 + ρgh2可以看出,这个方程说明了当流体流动时,速度越大,压力越小;而当速度较小时,压力较大。
这是因为伯努利方程通过流体的动能和流体的势能之间的转换关系,描述了流体在流动过程中的能量变化。
伯努利方程在实际应用中有着广泛的应用。
例如,在气象学中,它用于解释风的形成和气候变化等现象。
在流体力学中,它用于计算液体的流速和压力分布等问题,如管道流动、喷嘴流动等。
伯努利方程也有一些限制和假设。
首先,它假设流体是理想流体,即没有黏性和湍流的影响。
其次,它假设流体是连续、稳定的,没有明显的扰动和压力波动。
此外,在应用伯努利方程时,需要注意选择起始点和终止点,并确保考虑到所有影响因素,如摩擦损失、管道的形状等。
总之,伯努利方程是流体力学中的一条重要定律,描述了流体在不同位置的速度、压力和高度之间的关系。
它在实际应用中具有广泛的用途和重要性,但也需要考虑到一些假设和限制。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
伯努利方程原理及其应用伯努利方程是流体力学中的重要原理之一,描述了沿着流体流动方向的速度、压力和高度之间的关系。
该方程是瑞士科学家丹尼尔·伯努利在18世纪中叶所提出的,并以他的名字命名。
伯努利方程原理基于流体的连续性和能量守恒定律,可以用来解决许多与流动相关的问题。
其基本形式可以表示为:P + 1/2ρv^2 + ρgh =常数其中,P表示压力,ρ表示流体的密度,v表示流体的速度,h表示流体的高度,g表示重力加速度。
此方程表明,在沿着流体流动方向的区域中,压力、速度和高度之间存在一种平衡关系,当一方发生变化时,其他两方也会随之发生相应的变化。
伯努利方程的应用非常广泛,下面我们将介绍其在多个领域中的具体应用。
1.液体流动伯努利方程可以应用于液体在管道和河流中的流动问题。
例如,在水力工程中,可以根据伯努利方程来计算水的压力和速度,从而确定水流是否顺畅。
此外,伯努利方程还可以应用于液体泵抽水的计算和涡轮机工作原理的分析,以及血液在动脉和静脉中的流动研究等。
2.汽车空气动力学伯努利方程在汽车设计中有重要的应用。
例如,在高速行驶时,汽车前进方向上的气流速度会增加,根据伯努利方程,气流速度增加就意味着压力降低。
这就解释了为什么汽车行驶时,车顶、车窗等地方的压力较低,从而产生了吸力,有利于汽车行驶稳定。
3.飞行器气动力学伯努利方程在飞行器气动力学中的应用非常重要。
在飞行过程中,飞机可以通过改变机翼形状和改变进气口的面积来调节气流速度和压力的分布,从而实现升力和稳定性的控制。
伯努利方程提供了一种描述飞行器气动表现的重要工具。
4.涡旋产生与气旋的形成伯努利方程也可以解释涡旋的产生和气旋的形成。
当流体经过结构物表面或物体尖部时,流体速度会增加,从而使压力降低。
这种速度增加和压力降低导致了涡旋产生。
类似地,大气中气流速度和气压的变化也会导致气旋的形成。
伯努利方程的应用还远不止于上述几个领域,例如喷射器的工作原理、风力发电工程中的风能转换等。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程发展和原理应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z1++=z2+++h w总流伯努利方程的物理意义和几何意义:Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头;hw----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。
新一代差压式流量测量仪表,其基本测量原理是以能量守恒定律——伯努力方程和流动连续性方程为基础的流量测量方法。
伯努利方程原理以及在实际生活中的运用67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。
在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。
伯努利方程p+ρgh+(1/2)*ρv²=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。
它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。
伯努利方程的常量,对于不同的流管,其值不一定相同。
相关应用(1)等高流管中的流速与压强的关系根据伯努利方程在水平流管中有p+(1/2)*ρv²=常量故流速v大的地方压强p就小,反之流速小的地方压强大。
在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。
下面就是一些实例伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
三、伯努利方程的应用:1.飞机为什么能够飞上天?因为机翼受到向上的升力。
飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。
由伯努利方程可知,机翼上方的压强小,下方的压强大。
这样就产生了作用在机翼上的方向的升力。
2.喷雾器是利用流速大、压强小的原理制成的。
让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。
3.汽油发动机的汽化器,与喷雾器的原理相同。
汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
化工原理伯努利实验化工原理伯努利实验是一个非常经典的实验,它主要涉及伯努利方程的应用和实践。
伯努利方程是流体动力学中的一个基本方程,它描述了流体在管道中流动时的速度、压力和能量之间的关系。
通过这个实验,我们可以深入了解流体流动的基本规律和伯努利方程的应用。
一、实验原理伯努利方程是建立在牛顿第二定律和能量守恒定律基础上的一个基本方程。
它认为,在不可压缩流体的流动过程中,流体的速度、压力和高度之间存在一定的关系。
具体来说,伯努利方程可以表示为:Z1+p1/ρg+v1²/2g=Z2+p2/ρg+v2²/2g其中,Z表示流体的位置高度(单位为米),p表示流体的压力(单位为牛顿),ρ表示流体的密度(单位为千克/立方米),g表示重力加速度(单位为米/秒²)。
v表示流体的速度(单位为米/秒)。
二、实验设备实验所需的设备包括:一根管道、一个水泵、一个流量计、一个压力计、一个水位计和一个秒表。
三、实验步骤1.首先,将管道放置在一个水位计上,并将管道的一端连接到水泵上。
将流量计和压力计连接到管道上。
2.开启水泵,让水流通过管道流动。
使用秒表测量水流的时间。
3.在管道的不同位置(如A、B、C三处)分别测量水的速度、压力和水位高度。
使用流量计可以计算出不同位置的流量。
4.根据测量结果,将数据记录在表格中,包括位置高度、速度、压力、流量和时间等参数。
5.根据伯努利方程,计算出不同位置处的伯努利数(伯努利数=速度的平方/重力加速度乘以位置高度)。
将结果记录在表格中。
6.分析实验数据,了解伯努利方程在不同流动条件下的适用性。
同时,观察不同位置处的水流状态和能量变化情况。
7.重复实验,改变水泵的转速和水泵到管道的距离等参数,观察这些变化对伯努利数和能量分布的影响。
8.整理实验数据,进行误差分析,并撰写实验报告。
四、实验结果与分析通过实验,我们可以得到不同位置处的水流速度、压力、流量和伯努利数等数据。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 发展和原理 应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z 1+g p ρ1+g v 2121α=z 2+gp ρ2+g v 2222α+h w总流伯努利方程的物理意义和几何意义:Z ----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;gpρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;g2v 2α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw ----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
伯努利方程原理以及在实际生活中的运用2011444367 陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。
在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。
伯努利方程p+ρgh+(1/2)*ρv ²=c 式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。
它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。
伯努利方程的常量,对于不同的流管,其值不一定相同。
相关应用(1)等高流管中的流速与压强的关系根据伯努利方程在水平流管中有p+(1/2)*ρv ²=常量故流速v大的地方压强p就小,反之流速小的地方压强大。
在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。
下面就是一些实例伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
三、伯努利方程的应用:1.飞机为什么能够飞上天?因为机翼受到向上的升力。
飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。
由伯努利方程可知,机翼上方的压强小,下方的压强大。
这样就产生了作用在机翼上的方向的升力。
2.喷雾器是利用流速大、压强小的原理制成的。
让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。
3.汽油发动机的汽化器,与喷雾器的原理相同。
汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
伯努利方程原理及其应用伯努利方程原理是流体力学中的一个重要定理,描述了流体在不同位置的压力、速度和高度之间的关系。
它是基于质量守恒和动量守恒定律得出的。
伯努利方程的应用非常广泛,涉及许多领域,如水力工程、航空航天工程、血液循环等。
P + 1/2ρv² + ρgh = 可以称之为 Bernoulli's Principle 分成三个代表量就是 (pressure), (velocity) and (height)其中,P代表流体的压力,ρ代表流体的密度,v代表流体的流速,g代表重力加速度,h代表流体的高度。
这个方程的意义是,当流体在稳定非粘性的情况下沿着流线流动时,流体在不同位置上的压力、速度和高度之间是相互关联的。
1.水力工程:伯努利方程可以用来研究液体在管道流动中的压力和速度变化。
在水力工程中,通过伯努利方程可以计算水管中的液体流速、压力等参数,从而确定水力机械设备的设计和运行参数。
2.航空航天工程:伯努利方程可以用来研究气体在飞行器周围的流动。
当气体流动速度增加时,伯努利方程能够说明气体的压力减小。
这一原理被应用在飞机的翼型设计中,通过加速飞行器周围的气流,可以产生升力,从而使飞机升起。
3.血液循环:伯努利方程可以用来研究血液在血管中的流动。
血液在动脉和静脉中的流速和压力变化可以通过伯努利方程来描述。
在生理学中,伯努利方程被用来分析血管疾病的发生机制,如动脉瘤、血栓形成等。
4.分离气体传输:伯努利方程在管道气体输送过程中也有重要应用。
通过伯努利方程可以计算气体在管道中的流速和压力变化,从而确定管道的设计和运行参数。
此外,伯努利方程还可以应用于喷射器、超声波仪器、气象学中的风场分析等领域。
总的来说,伯努利方程通过描述流体在不同位置的压力、速度和高度之间的关系,为流体力学的研究和应用提供了基础。
通过对伯努利方程进行分析和应用,可以更好地理解和预测流体力学现象的发生和发展。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。