电子科大《信号与系统》考卷汇总
- 格式:ppt
- 大小:1.74 MB
- 文档页数:12
答案+我名字学习中心/函授站 _姓名学号西安电子科技大学网络与继续教育学院2020 学年上学期《信号与系统》期末考试试题(综合大作业)题号一二三总分题分 32 30 38得分考试说明:1、大作业试题于 2020 年 4 月 23 日公布,2020 年 4 月 24 日至 2020 年 5 月 10 日在线上传大作业答卷(一张图片对应一张 A4 纸答题纸),要求拍照清晰、上传完整;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院标准答题纸》手写完成,要求字迹工整、卷面干净。
须知:符号(t)、(k)分别为单位阶跃函数和单位阶跃序列。
LTI 表示线性时不变。
为加法器。
一、单项选择题(共 8 小题,每小题 4 分,共 32 分)__ _ 1、等于 ( )t(A) 1 (B) (C) (D) 0 ( ) t ( ) t__ _ 2、等于 ( )ii(A) 1 (B) 0 (C) (D) ) (k ( ) k___ 3、等于A B C D ( ) t '( ) t ( ) a t1( ) ta__ _4、、波形如图 4 所示,则1 ( )f t2 ( )f t1 2( ) ( )* ( ) f t f t f t (2) f(A) (B) 1 (C) (D) 21232___5、和的波形如图 5 所示,则1 ( )f k2 ( )f k1 2( ) ( )* ( ) f k f k f k ( 1) f(A) 0 (B) 1 (C) 2 (D) 3__ _6、已知则其单边拉普拉斯变换的象函数 ( ) sin2 ( ) f t t t ( ) F s (A) (B) (C) (D)11 s2( 1) 4ss24ss224 s7、已知的频谱函数,则 ( ) f t1( )2jF jj( ) f t(A) (B) (C) (D)2( )te t23tt e2( ) 3tt e ( ) t8、已知则其双边 Z 变换的象函数等于1( ) ( ) 2 ( 1)2kf k k k( ) F zA 不存在BC D122z zzz122z zzz122z zzz二、填空题(共 6 小题,每小题 5 分,共 30 分)。
哈尔滨理工大学2006-2007学年第二学期考试试题 A 卷考试科目: 信号与系统 考试时间:120分钟 试卷总分100分一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题共5小题,每小题2分,总计10分)1、已知()f t ,为求0()f t at -应按下列哪种运算求得正确结果(式中0t 和a 都为正值)? (A )()f at -左移0t ; (B )()f at 左移0t ; (C )()f at -左移0t a; (D )()f at 左移t a; 2、连续时间系统输出()r t 和输入()e t 满足()5()tr t e d ττ-∞=⎰,则该系统是( )(A )线性、时变、非因果 (B )线性、时不变、因果 (C )非线性、时变、非因果 (D )非线性、时不变、非因果 3.连续时间系统输出()r t 和输入()e t 满足()()de t r t dt=,则该系统是( ) (A )线性、时变、非因果 (B )线性、时不变、因果 (C )非线性、时变、非因果 (D )非线性、时不变、非因果4、已知信号()f t 的傅里叶变换为()F j ω,则信号()()2t f t -的傅里叶变换:(A )()()2dFj F j d ωωω-+; (B )()()2dF j F j d ωωω+;(C )()()2dF j F jd ωωω--; (D )()()2dF j F j d ωωω--;5、已知信号()f t 的傅里叶变换为()F j ω,则信号()2tf t 的傅里叶变换:(A )122dF j d ωω⎛⎫ ⎪⎝⎭-; (B )122dF j d ωω⎛⎫ ⎪⎝⎭; (C )()()2dF j F jd ωωω--; (D )()()2dF j F j d ωωω--; 6、连续周期信号的频谱具有( )(A )连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 7、连续非周期信号的频谱具有( )(A )连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 8、系统()()2r t e t =是(A )稳定系统、可逆系统 (B )稳定系统、非可逆系统 (C )非稳定系统、可逆系统 (D )非稳定系统、非可逆系统 9、系统()()5r t e t =-是(A )稳定系统、可逆系统 (B )稳定系统、非可逆系统 (C )非稳定系统、可逆系统 (D )非稳定系统、非可逆系统 二、填空题(每空2分,共20分) 1、()()0j t e t t t dt ωδδ∞--∞--⎡⎤⎣⎦⎰= ;2、()sin 6t t t dt πδ∞-∞⎛⎫+- ⎪⎝⎭⎰= ;3、确定信号()()210060Sa t Sa t +的最低抽样率 ,奈奎斯特间隔 ;4、确定信号()()210080Sa t Sa t +的最低抽样率 ,奈奎斯特间隔 ;哈尔滨理工大学2006-2007学年第二学期考试试题 A 卷5、确定信号()()1T n t t nT δδ∞=-∞=-∑的傅里叶变换 。
电子科技大学2014-2015 学年第 1 学期期末考试A 卷课程名称:信号与系统考试形式:一页纸开卷考试日期:20 15年 1 月 15 日考试时长: 120 分钟课程成绩构成:平时 10 %,半期考试 20 %,实验 10 %,期末 60 %本试卷试题由二部分构成,共 5 页。
题号一二合计1234得分得分一、选择填空题(共30分,共 6问,每问5分)1.Consider two signals and , as shown in Figure 1. The Fourier transform of is . Then the Fourier transform ofshould be().(a)(b)(c)(d)Figure 1 The waveforms of and2. The convolution sum ( ).(a) (b) (c) (d) not existed3. Consider a stable discrete-time system, whose system function is a rational function and has only two poles:. The positions of zeros are unknown. The impulse response of the system must be ( ).(a) finite duration (b) right-sided (c) left-sided (d) two sided4.The relation between the input and the output of a causal continuous-time LTI system is described by the differential equation . The system is ().(a) Low-pass filter (b) Band-pass filter (c) High-pass filter (d) Band-stop filter5.The Fourier transform of the signal is shown in Figure 2.The signal may beFigure 2(a) real and even (b) real and odd(c) pure imaginary and odd (d) pure imaginary and even6. The Laplace Transform of is ().(a) , (b) ,(c) , (d) ,二、计算题(共70分)得分1.(15 points)Suppose and are both band-limited signals, where.Impulse-train sampling is performed on to obtain , as shown inFigure 3 where .Deduce the value of so that for .Specify the range ofvalues for the sampling period T which ensures that =.32.( 18 points ) Consider an LTI system with unit impulseresponse .The input signal ,where is the unit stepfunction.得分(a) Sketch. (b) Determine the magnitude and phase responseof this system. (c) Determine the output .3(17分)A causal continuous-time LTI system is given in Figure 4.(a)Determine the range of the constant K toensure that the system is stable.(b)If K=2, determine the unit step response.1/S-31/S-2KFigure 44(20 分)Suppose that we are given the following information about a causal discrete-time LTI system:(1)If the input is ,then the output is .(2)The value of the unit impulse response at n=0 is .Solve the following problems:(a) Determine the system function ,and indicate its ROC.(b) Draw a block diagram representation of this system.(c) Determine the unit impulse response .(d) Suppose. Determine the range of real numberso that is the unit impulse response of a stable system.。
………密………封………线………以………内………答………题………无………效……电子科技大学二零 一 一 至二零 一 二 学年第 一 学期期 中 考试SIGNALS AND SYSTEMS 课程考试题 卷 ( 120 分钟) 考试形式: 闭卷 考试日期 20 11 年 月 日课程成绩构成:平时 10 分, 期中 20 分, 实验 10 分, 期末 60 分1(56points).Each of the following questions may have one or two right answers, justify your answers and write it in the blank. (1)()cos 221πδ+∞-∞-=⎰t t dt ( d ).(a) 1 (b) -1 (c) 0.5 (d) -0.5(2) The fundamental period of the signal []23cos sin 32ππ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦x n n n is ( a ). (a) 12N = (b) 6N = (c) 8N = (d) 24N = (3) Let ()1tx t e -= and ()()()14k x t x t t k δ+∞=-∞=*-∑. The Fourier series coefficients of ()x t may be ( a ).(a) {} and Im 0-==k k k a a a (b) {} and Im 0-=-=k k k a a a (c) {} and Re 0-==k k k a a a (d) {} and Re 0k k k a a a -=-=(4) Consider an LTI system with unit impulse response ()h t illustrated in Figure 1, if the input is ()()d t x t dtδ=, the output () 0.5t y t =- is( b ).(a) -1 (b) 1 (c) -0.5 (d) 0.5(5) The convolution integral ()222t te e u t -*=( c ).(a) 2 (b)214te (c)212te (d)()212te u t(6) Which of the following systems is an linear system ( a ). In each example, []y n denotes the system output and []x n is the systeminput.(a) [][][]cos y n n x n = (b) [][]{}cos 3y n x n = (c) [][]()ln y n x n = (d) [][]2y n x n =(7) Which of the following systems are causal and stable system ( ad ). In each example, ()h t denotes the impulse response of thefollowing systems.(a) ()()()13h t t t δδ=-+- (b) ()()()0.5cos 2t h t t e u t =- (c) ()()()13h t t t δδ=+++ (d) ()()()cos 2t h t t e u t -=-(8) Determine the following signals which have finite total energy ( bc ). (a) []()[]1x n n u n =+ (b) ()()23tx t eu t -=+(c) []()[]1cos /32nx n n u n π⎛⎫= ⎪⎝⎭(d) () , tx t e t =-∞<<+∞tFigure 1………密………封………线………以………内………答………题………无………效……(9) Consider a continuous-time LTI system whose frequency response is ()()sin /2Hj ωωω=. If we know the output ()y t to some periodicinput signals are ()0y t =. The fundamental period of the input signal may be ( ac ). (a) 1T = (b) 2T = (c) 0.5T = (d) 3T =2(12points). A continuous-time signal ()32-+x t is illustrated in Figure 2.(a) Determine the signal ()x t . (b) Sketch and label carefully ()x t .3(10 points).Consider an LTI system whose response to the signal ()t x 1 in Figure 3 is the signal ()t y 1 illustrated in Figure 4. Determine the response of the system to the input ()t x 2 depicted in Figure 5 .4(12 points). Consider a continuous-time LTI system whose frequency response ()H j ω is illustrated in Figure 6. If the input signal()1cos 3sin 6ππ=++x t t t , determine the output of the system.12Figure 3ωFigure 6tFigure 2………密………封………线………以………内………答………题………无………效……14(10points). Consider an LTI system whose input []x n and unit impulse response []h n are given by []{}1,0,1,1,0,1x n n =-=-,[]{}2,1,3,2,2,3,4,5h n n ==. Determine the output [][][]n h n x n y *= of this system.《信号与系统》半期考试评分标准说明1.填空题(56分)⑴. (d) ⑵ (a) ⑶ (a) ⑷ (b) ⑸ (c) ⑹ (a) ⑺ (ad) ⑻ (bc) ⑼ (ac) ⑽ (ab) 本部分评分规则:1) 选择题共14个正确答案,1-6题为单选,7-10题为双选; 2) 若只填写了1个答案,正确得4分,错误得0分;3) 若填写了2个答案,2个正确得8分,1个正确、1个错误得4分,2个错误得0分;4) 若填写了3个答案,2个正确、1个错误得4分,1个正确、2个错误得2分,3个错误得0分; 5) 若填写了4个答案,得0分。
信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。
A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。
[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。
A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。
A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。