湖北省宜昌2018届九年级上期中数学试卷含答案解析
- 格式:doc
- 大小:462.50 KB
- 文档页数:27
湖北省宜城市2018届九年级数学上学期期中试题一、选择题 (本大题有10个小题,每小题3分,共30分.) 1.下列方程是一元二次方程的一般形式的是( )A . 52-3=0B .3(-2)2=27C . (-1)2=16D .2+2=82.已知方程02=++c bx ax 的解是1=2,2=﹣3,则方程0112=++++c )x (b )x (a的解是( )A . 1=1,2=﹣4B .1=﹣1,2=﹣4C .1=﹣1,2=4D . 1=1,2=4njy3.对于二次函数y =−3(+1)2-2的图象与性质,下列说法正确的是( )A .对称轴是直线=1,最小值是-2B .对称轴是直线=1,最大值是-2C .对称轴是直线=−1,最小值是-2D .对称轴是直线=−1,最大值是-24.菱形ABCD 的一条对角线长为6,边AB 的长是方程01072=+-x x 的一个根,则菱形ABCD 的周长是( )A .20或8B .8C .20D .1225.下列图形中,既是轴对称图形又是中心对称图形的是( )6.将二次函数y =22的图象向左平移2个单位,再向上平移1个单位,所得图象的表达式是( )A .y=2(﹣2)2+1B .y =2(+2)2+1C .y =2(﹣2)2﹣1D .y =2(+2)2﹣17.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ︵上,且不与M ,N 重合,当P 点在MN ︵上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( )21教育网A .变大B .变小C .不变D .不能确定8. 在平面直角坐标系中,O 为坐标原点,点A 的坐标为(2,0),将OA 绕原点逆时针方向旋转60°得OB ,则点B 的坐标为( )【A .(1,3)B .(1,-3)C .(0,2)D .(2,0)w9.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是⊙O 上的一点(点A ,B 除外),则∠APB 的度数为( )A .45°B .60°C .120°D .60°或120°10. 已知抛物线y =a 2+b +c 的图象如图所示,则|a +b +c |+|a ﹣b +c |+|2a +b |=( )A .2a +3 bB .2c ﹣bC .2a ﹣bD .b -2c二、填空题 (本大题有6个小题,每小题3分,共18分.)11.已知关于的一元二次方程022=--m x x 有实数根,则m 的取值范围是 . 12.若方程0132=+-x x 的两根是1x ,2x ,则()1221x x x ++的值为 .13.公路上行驶的汽车急刹车时,刹车距离s(m )与时间t(s )的函数关系式为s =20t -5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__ __m 才能停下.21*14.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为____.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为 .16.若点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =6,则△ABC 的面积为 .72分.)17.(本题满分6分)先化简,再求值:x x x x x x x ++--⋅+-12112223,其中2+-2017=0.18.(本题满分6分)如图,△ABC 中,∠B =10°,∠ACB =20°,AB =4,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.【版权所有:21教育】(1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE 的度数和AE 的长.19.(本题满分6分)如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30° (1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D , 连接CD (保留作图痕迹,不写作法)(2)在(1)所作的图形中,求AB 与CD 的比值.20.(本题满分6分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资4亿元人民币建设了廉租房16万平方米,2017年计划投资9亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?21.(本题满分7分)如图,二次函数n x x y ++=62的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一 次函数y =+b 的图象经过该二次函数图象上的点A (﹣2,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足n x x ++62≤+b 的的取值范围.22.(本题满分8分)如图,已知正方形ABCD 的边长为6,E ,F分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针 旋转90°,得到△DCM . (1)求证:EF =MF(2)若AE =2,求FC 的长.23.(本题满分10分)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y (g )随销售单价(元/ g )的变化而变化,具体变化规律如下表所示:设该绿茶的月销售利润为w (元)(销售利润=单价×销售量-成本)(1)请根据上表,求出y 与之间的函数关系式(不必写出自变量的取值范围);(2)求w 与之间的函数关系式(不必写出自变量的取值范围),并求出为何值时,w 的值最大? (3)若在第一个月里,按使w 获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?24.(本题满分10分)如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D .E 是AB 延长线上一点,CE 交⊙O 于点F ,连结OC ,AC .2 (1)求证AC 平分∠DAO . (2)若∠DAO =105°,∠E =30°. ①求∠OCE 的度数.②若⊙O 的半径为22,求线段EF 的长.25.(本题满分13分)如图,抛物线经过A (﹣1,0),B (3,0),C (0,23)三点. (1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小, 求点P 的坐标;(3)点M 为轴上一动点,在抛物线上是否存在一点N , 使以A ,C ,M ,N求点N 的坐标;若不存在,请说明理由.2017-2018学年度上学期期中考试题九 年 级 数 学参考答案一、选择题 (本大题有10个小题,每小题3分,共30分.) ABDCDBCADC二、填空题 (本大题有6个小题,每小题3分,共18分.) 11.(m ≥-1); 12. 4; 13. 20;14. 17°; 15. 213; 16. 336336-+或 三、解答题(本大题共9个小题,计72分.) 17.(本题满分6分)解:原式=x x x x x x x +--+⋅+-22)1()1)(1(1)1(=x x +2,………………………3分 ∵2+-2017=0,∴2+=2017. ………………………………………………5分 ∴原式=2017. ………………………………………………………………6分 18.(本题满分6分)解:(1)旋转中心为点A .……………………………………………………………1分 由旋转可知,∠DAE =∠BAC =180°-10°-20°=150°. ……………………………2分 ∴旋转角为150°. ……………………………………………………………………3分 (2)∵∠DAE =∠BAC =150°,∴∠BAE =360°-∠DAE -∠BAC =60°.…………………………………………………4分 由旋转可知,AD =AB ,AE =AC .∵AB =4,点C 为AD 的中点∴221==AD AC .∴AE =2.……………………………………………………………6分19.(本题满分6分)解:(1)如图所示;………………………………………………………………………3分(2)如图2,连接OD ,设⊙O 的半径为r ,∵AC 是⊙O 的直径,∴∠ABC =90°.. 在R t △ACB 中,∠ACB =30°,∴AB =AC =r .………………………………………………………………………………4分 ∵BD 是∠ABC 的平分线,∴∠ABD =∠CBD =45° .∴∠DOC =2∠CBD =90° 在R t △ODC 中,DC ==r .………………………………………………5分∴222==rr CD AB .……………………………………………………………………6分 20.(本题满分6分)解:(1)设每年市政府投资的增长率为,依题意得:4(1+)2=9 ……………………………………………………………………………2分 解得1=0.5=50% 2=-2.5(舍去) …………………………………………………3分 答:每年市政府投资的增长率为50% ……………………………………………………4分 (2)16(1+50%)2=24.…………………………………………………………………5分 答:2017年预计建设了24万平方米的廉租房.…………………………………………6分 21.(本题满分7分)解:(1)∵抛物线n x x y ++=62经过点A (﹣2,0),∴n +-=1240. ∴8=n . ………………………………………………………………1分 ∴抛物线解析式为y =2+6+8. ……………………………………………………………2分 ∴点C 坐标(0,8).∵对称轴=﹣3,B 、C 关于对称轴对称,∴点B 坐标(﹣6,8).……………………………………………………………………3分 ∵y =+b 经过点A 、B ,∴⎩⎨⎧=+-=+-.02,86b k b k 解得⎩⎨⎧-=-=.4,2b k∴一次函数解析式为y =﹣2﹣4. …………………………………………………………5分 (2)由图象可知,满足n x x ++62≤+b 的的取值范围为﹣6≤≤﹣2.………7分 22.(本题满分8分)解:(1)∵△DAE 逆时针旋转90°得到△DCM , ∴∠FCM =∠FCD +∠DCM =180°.∴F 、C 、M 三点共线. ……………………………………………………………………1分 ∴DE =DM ,∠EDM =90°.∴∠EDF +∠FDM =90°,…………………………………………………………………2分 ∵∠EDF =45°,∴∠FDM =∠EDF =45°.∴△DEF ≌△DMF (SAS ),……………………………………………………………3分 ∴EF =MF .………………………………………………………………………………4分 (2)设EF =MF =,∵AE =CM =2,且BC =6,∴BM =BC +CM =6+2=8.……………………………………5分 ∴BF =BM ﹣MF =BM ﹣EF =8﹣.………………………………………………………6分 ∵EB =AB ﹣AE =6﹣2=4.在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2.即42+(8﹣)2=2,……………………………………………………………………7分 ∴解得:=5,即FM =5.∴FC=FM -CM =5-2=3.……………………………………………………………………8分 23.(本题满分10分)解:(1)设b kx y +=w kx b =+,将(70,100),(75,90)代入上式得:701007590k b k b +=⎧⎨+=⎩解得:2240k b =-⎧⎨=⎩,则2402+-=x y ,………………2分 将表中其它对应值代入上式均成立,所以2402+-=x y .………………3分 (2)y x w )50(-=……………………………5分因此,w 与x 的关系式为22234090002(85)2450y x x x =-+-=--+当85x =时,2450=最大w .……………………………………………………………6分(3)由(2)知,第1个月还有30002450550-=元的投资成本没有收回.则要想在全部收投资的基础上使第二个月的利润达到1700元, 即2250=w 才可以,可得方程22(85)24502250x --+=,解得:1275,95x x ==………………7分根据题意295x =不合题意,应舍去.当,240080==y x 时,,………………………8分∵-2<0,∴,当85<x 时,w 随x 的增大而增大,21cnjy当2250≥w ,且销售单价不高于80时,8075≤≤x .………………………………9分 答:当销售单价为8075≤≤x 元时,在全部收回投资的基础上使第二个月的利润不低于1700元.………………10分 24.(本题满分10分)(1)证明:∵直线与⊙O 相切,∴OC ⊥CD . …………………………………………1分 又∵AD ⊥CD ,∴AD //OC . …………………………………………………………………2分 ∴∠DAC =∠OCA . …………………………………………………………………………3分 又∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC .∴AC 平分∠DAO . …………………………………………………………………………4分 (2)解:①∵AD //OC ,∠DAO =105°,∴∠EOC =∠DAO =105°.………………………5分90003402)2402)(50(2-+-=+--=x x x x∵∠E =30°,∴∠OCE =45°. …………………………………………………………………6分 ②作OG ⊥CE 于点G ,可得FG =CG . ……………………………………………………7分 ∵OC =22,∠OCE =45°.∴CG =OG =2.∴FG =2. ……………………………………………………………………………………8分 ∵在Rt △OGE 中,∠E =30°,∴GE =32.………………………………………………9分 ∴EF =GE -FG =32-2. …………………………………………………………………10分 25.(本题满分13分)21·cn ·jy ·com解:(1)设抛物线的解析式为y =a 2+b +c (a ≠0), ∵A (﹣1,0),B (5,0),C (0,23)三点在抛物线上, ∴,解得⎪⎪⎩⎪⎪⎨⎧==-=23121c b a .…………………………………………………2分∴抛物线的解析式为:23212++-=x x y .……………………………………………3分 (2)∵抛物线的解析式为23212++-=x x y , ∴其对称轴为直线:.……………………………………4分连接BC ,设直线BC 的解析式为)0(≠+=k b kx y ,∵B (3,0),C (0,23),∴解得⎪⎪⎩⎪⎪⎨⎧=-=.23,21b k …………………………5分∴直线BC 的解析式为2321+-=x y .……………………………………………………6分 当=1时,12321=+-=y .∴P (1,1);………………………………………………7分 (3)存在.如图2所示,…………………………………………………………………8分 ①当点N 在轴上方时,∵抛物线的对称轴为直线=1,C (0,23),∴N 1(2,23);…………………………9分 ②当点N 在轴下方时,如图,过点N 2作N 2D ⊥轴于点D ,∴△AN 2D ≌△M 2CO . ∴N 2D =OC =23,即N 2点的纵坐标为23-.……………………………………………10分 ∴21-2++23=23-.解得=71+或=71-,…………………………………11分 ∴N 2(71+,23-),N 3(71-,23-).………………………………………12分 综上所述,点N 的坐标为(2,23),(71+,23-),(71-,23-).……13分。
湖北省宜昌市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·宁波期中) 抛物线y=﹣ x2+1的顶点坐标是()A . (0,1)B . (,1)C . (﹣,﹣1)D . (2,﹣1)2. (2分)二次函数y=x2+4x﹣5的图象的对称轴为()A . x=4B . x=-4C . x=2D . x=-23. (2分) (2019九上·呼兰期末) 将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A .B .C .D .4. (2分)(2018·永州) 誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A .B .C .D .5. (2分)如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A . 点AB . 点BC . 点CD . 点D6. (2分)(2020·枣阳模拟) 在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA',则点A'在平面直角坐标系中的位置是在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)(2018·灌南模拟) 如图,在平面直角坐标系xoy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2 ,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4 ,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A . (1007,1008)B . (1008,1007)C . (1006,1007)D . (1007,1006)8. (2分)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A . ac<0B . a-b+c>0C . b=-4aD . 关于x的方程ax2+bx+c=0的根是x1=-1,x2=59. (2分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1 ,边B1C1与CD 交于点O,则四边形AB1OD 的周长是()A . 2B . 3C .D . 1+10. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a<0;②b>0;③c>0;④b2﹣4ac>0,其中正确的个数是()A . 1个B . 2个C . 3个D . 4二、填空题 (共6题;共6分)11. (1分)二次函数的图象经过原点,则a的值为________ .12. (1分)将二次函数y=x2﹣4x+5化为y=(x﹣h)2+k的形式,那么h+k=________13. (1分)下图右侧有一盒拼板玩具,左侧有五块板a、b、c、d、e,如果游戏时可以平移或旋转,但不能翻动盒中任何一块,那么a、b、c、d、e中,________是盒中找不到的?(填字母代号)14. (1分) (2017九上·凉州期末) 如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是________.15. (1分) (2016九上·西青期中) 若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1 , 0)、(x2 , 0),且x1<x2 ,图象上有一点M(x0 , y0)在x轴下方,在下列四个算式中判定正确的是________①a(x0﹣x1)(x0﹣x2)<0;②a>0;③b2﹣4ac≥0;④x1<x0<x2 .16. (1分) (2019八上·武威月考) 请看杨辉三角(1),并观察等式(2):根据前面各式的规律,则的展开式为________.三、解答题 (共13题;共112分)17. (2分)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点.经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)则抛物线的解析式为________;(2)连接AD,点F是抛物线上A、C之间的一点,直线BF交AD于点P,连接PE,当BP+PE的值最小时,写出此时点F的坐标________.18. (10分)(2018·北部湾模拟) 如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N 分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.19. (5分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个格点△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.20. (5分) (1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE <∠A BC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′.求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE <∠45°).求证:DE2=AD2+EC2.21. (10分)已知:抛物线经过、两点,顶点为A.求:(1)抛物线的表达式;(2)顶点A的坐标.22. (10分) (2016九上·广饶期中) 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y= (k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23. (5分)如图,抛物线y=ax2+bx+4的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(﹣1,0).(1)求抛物线的解析式;(2)过点C作CD∥x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1 ,△DEC的面积为S2 ,求S1:S2的值.(3)点F坐标为(6,0),连接DF,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F 匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值.24. (10分)(2018·吉林模拟) 如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.25. (5分) (2019九上·西城期中) 在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.26. (15分) (2016九上·洪山期中) 如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B 的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.(1)求抛物线的解析式;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.27. (10分) (2019九上·西安月考) 已知,如图,二次函数y=-x2+bx+c的图象与 x轴交于 A , B 两点,与 y 轴交于点C(0,5),且经过点(1,8)(1)求该抛物线的解析式,顶点坐标和对称轴;(2)在抛物线上是否存在一点 D ,使△ABD 的面积与△ABC 的面积相等(点 D 不与点 C 重合)?若存在,求出点 D 的坐标;若不存在,请说明理由.28. (15分)(2018·湛江模拟) 如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,请直接写出t的值.29. (10分)(2014·绍兴)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共112分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、24-1、24-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、29-1、29-2、。
湖北省宜昌XX中学九年级(上)期中数学试卷一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=02.下列标志中,可以看作是中心对称图形的是()A.B.C.D.3.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和14.抛物线y=﹣2x2开口方向是()A.向上B.向下C.向左D.向右5.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)6.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=27.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=98.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根9.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°10.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)11.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=360012.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y213.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个 B.2个 C.3个 D.4个15.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.二、解答题:(本大题满分75分,共9小题)16.解方程:(1)x2﹣2x﹣1=0(2)12x2+2x+3=3x+4.17.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.18.已知三角形的两条边a、b满足等式:a2+b2=25,且a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.19.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?20.如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.21.把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.22.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).23.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.24.抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是.(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)湖北省宜昌XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、方程x+3=0是一元一次方程,故本选项错误;B、方程x2﹣3y=0是二元二次方程,故本选项错误;C、方程x2﹣2x+1=0是一元二次方程,故本选项正确;D、方程x﹣=0是分式方程,故本选项错误.故选C.2.下列标志中,可以看作是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.3.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.4.抛物线y=﹣2x2开口方向是()A.向上B.向下C.向左D.向右【考点】二次函数的性质.【分析】根据a的正负判断抛物线开口方向.【解答】解:∵a=﹣2<0,∴抛物线开口向下.故选B.5.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).【解答】解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选B.6.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=2【考点】解一元二次方程-因式分解法.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故选C.7.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B8.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;故选C.9.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°【考点】旋转的性质.【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD 即为旋转角,利用角的和差关系求解.【解答】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB﹣∠AOB=80°﹣45°=35°.故选:D.10.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.11.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【考点】由实际问题抽象出一元二次方程.【分析】设该市投入教育经费的年平均增长率为x,根据:2013年投入资金给×(1+x)2=2015年投入资金,列出方程即可.【解答】解:设该市投入教育经费的年平均增长率为x,根据题意,可列方程:2500(1+x)2=3600,故选:B.12.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.13.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④【考点】旋转的性质.【分析】每次均旋转45°,10次共旋转450°,而一周为360°,用450°﹣360°=90°,可知第10次旋转后得到的图形.【解答】解:依题意,旋转10次共旋转了10×45°=450°,因为450°﹣360°=90°,所以,第10次旋转后得到的图形与图②相同,故选B.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【解答】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确,故选:D.15.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b 应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选:D.二、解答题:(本大题满分75分,共9小题)16.解方程:(1)x2﹣2x﹣1=0(2)12x2+2x+3=3x+4.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)根据公式法即可得到结论;(2)先把方程变形得到12x2﹣x+1=0,然后利用因式分解法解方程.【解答】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2+4=12,∴x=,∴x1=,x2=;(2)12x2﹣x﹣1=0,∴(3x﹣1)(4x+1)=0,∴x1=,x2=﹣.17.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A1、C1的位置,再与点B(即B1)顺次连接即可;(2)根据平面直角坐标系写出点A1的坐标即可.【解答】解:(1)如图所示;(2)A1(﹣1,1).18.已知三角形的两条边a、b满足等式:a2+b2=25,且a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.【考点】根与系数的关系;完全平方公式.【分析】根据根与系数的关系得出a+b和ab的值,再根据a2+b2=25,得出(2m﹣1)2=25+2×4(m﹣1),求出m的值,再把不合题意的值舍去即可.【解答】解∵a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,∴a+b=2m﹣1,ab=4(m﹣1),a>0,b>0,∵a2+b2=25,∴(a+b)2=a2+b2+2ab,∴(2m﹣1)2=25+2×4(m﹣1),∴m1=4,m2=﹣1,∵当m=﹣1时,ab<0,不合题意,舍去,∴m=4.19.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?【考点】二次函数综合题.【分析】(1)根据函数的特征数的定义,写出二次函数,利用配方法即可解决问题.(2)①首先根据函数的特征数的定义,写出二次函数,再根据平移的规律:左加右减,上加下减,即可解决.②根据函数的特征数的定义,首先写出两个函数的解析式,利用配方法写成顶点式,根据平移规律解决问题.【解答】解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+2x﹣1=(x+1)2﹣2,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+1﹣1)2﹣2+1=x2﹣1,∴图象对应的函数的特征数为:[0,﹣1];②∵一个函数的特征数为[4,2],∴函数解析式为:y=x2+4x+2=(x+2)2﹣2,∵一个函数的特征数为[2,4],∴函数解析式为:y=x2+2x+4=(x+1)2+3∴原函数的图象向右平移1个单位,再向上平移5个单位得到.20.如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用矩形的面积公式列出方程求解即可;(2)求出花圃面积与AB长度的函数关系式,根据二次函数的性质和AB长度取值范围求出面积的最大值.【解答】解:(1)设AB的长为x米,根据题意列方程得:﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3,当x=3时,BC=24﹣3x=15>10,不合题意,舍去,当x=5时,BC=24﹣3x=9,如果要围成面积为45米2的花圃,AB的长是5米;(2)设花圃的面积为S,由题意可得:S=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵墙体的最大可用长度a=10m,∴0≤24﹣3x≤10,∴≤x≤8,∵对称轴x=4,开口向下,∴当x=时,花圃面积最大,当x=时,S=46.67m2;21.把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.【考点】旋转的性质;勾股定理.【分析】(1)如图所示,∠3=15°,∠E1=90°,∠1=∠2=75°,所以,可得∠OFE1=∠B+∠1=45°+75°=120°;(2)由∠OFE1=∠120°,得∠D1FO=60°,所以∠4=90°,由AC=BC,AB=6cm,得OA=OB=OC=3cm,所以,OD1=CD1﹣OC=7﹣3=4cm,在Rt△AD1O中,AD1===5cm.【解答】解:(1)如图所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,∵∠C D1E1=30°,∴∠4=90°,又∵AC=BC,AB=6cm,∴OA=OB=3cm,∵∠ACB=90°,∴CO=AB=×6=3cm,又∵CD1=7cm,∴OD1=CD1﹣OC=7﹣3=4cm,∴在Rt△AD1O中,AD1===5cm.22.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设售价应为x元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可;(2)先求出10月份的进价,再根据等量关系:10月份利润达到3388元,列出方程求解即可.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.23.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【考点】几何变换综合题.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.24.抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是(2,1).(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)【考点】二次函数综合题.【分析】(1)利用二次函数图象上点的坐标特征知,点A的坐标满足抛物线的解析式,所以把点A的坐标代入抛物线的解析式,即可求得a的值;由抛物线y=ax2的对称性知,点A、点E 关于y轴对称;(2)根据抛物线与直线的解析式求得点B的坐标为(4,4),则t的最小值是点E的横坐标,t的最大值是点B的横坐标;由于点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,所以D(t,t2),C(,t2);最后由两点间的距离公式求得r=|(t﹣1)2﹣|(2≤t≤4),所以根据二次函数最值的求法来求当r取最大值时t的值;(3)①设D(t,t2).由一次函数、二次函数图象上点的坐标特征求得点C的坐标为(t2﹣,t2).然后根据两点间的距离公式知r=﹣(t﹣2k)2+k+,易知当t=2k时,r取最大值.②根据一次函数y=kx+b中的k的几何意义知k==,即m=kr=﹣(t﹣2k)2+k2+b,显然,当t=2k时,m取最大值.【解答】解:(1)根据题意知,点A(﹣2,1)在抛物线y=ax2上,∴1=(﹣2)2a,解得,a=.∵抛物线y=ax2关于y轴对称,AE∥x轴,∴点A、E关于y轴对称,∴E(2,1).故答案是:,(2,1).(2)∵点A(﹣2,1)在直线y=kx+b(k为正常数)上,k=0.5,∴1=﹣2×0.5+b,解得,b=2,即直线AB的解析式为y=x+2.∵由(1)知,抛物线的解析式y=x2,抛物线y=x2和直线y=x+2(k为正常数)交于点A 和点B,∴,解得,或,∴它们的交点坐标是(﹣2,1),(4,4),即B(4,4).当点D与点E重合时,t=2.当点D与点B重合时,t=4,∴t的取值范围是:2≤t≤4.∵点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,∴D(t,t2),C(,t2),∴r=t﹣=﹣(t﹣1)2+(2≤t≤4).∵在2≤t≤4范围内,r随t的增大而减小,t=2时,r取最大值.∴当t=2时,r最大=4.即当(3)∵点A、B是直线与抛物线的交点,∴kx+b=x2,即x2﹣4kx﹣4b=0,∴x A+x B=4k.∵x A=﹣2,∴x B=4k+2.又∵点D不与B、E重合,∴2<t<4k+2.设D(t,t2),则点C的纵坐标为t2,将其代入y=kx+b中,得x=t2﹣,∴点C的坐标为(t2﹣,t2),∴r=CD=t﹣(t2﹣)=﹣(t﹣2k)2+k+,当t=2k时,r取最大值.∴2<2k<4k+2,解得,k>1.又∵k==,∴m=kr=﹣(t﹣2k)2+k2+b,∴当t=2k时,m的值也最大.综上所述,当r为最大值时m的值也是最大.2017年2月12日。
九年级(上)期中数学试卷一、选择题(本大题共15小题,共45.0分)1.下列方程中是一元二次方程的是()A. B. C. D.2.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A. 1B.C. 0D. 无法确定3.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.4.如图,△OAB绕点O逆时针旋转70°得到△OCD,若∠A=110°,∠D=30°,则∠α的度数是()A.B.C.D.5.关于x的一元二次方程(a+1)x2-4x-1=0有两个不相等的实数根,则a的取值范围是()A. B. 且C. D. 且6.在平面直角坐标系内,点P(-5,2)关于原点的对称点Q的坐标为()A. B. C. D.7.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()A. 是中心对称图形,不是轴对称图形B. 是轴对称图形,不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 以上都不正确8.如图的图案是由一个菱形通过旋转得到的,每次旋转角度是()A.B.C.D.9.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2-2x-3,则b、c的值为()A. ,B. ,C. ,D. ,10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B. 60,2C. 60,D. 60,11.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A. 13B. 11或13C. 11D. 1212.设a,b是方程x2+x-2016=0的两个实数根,则a2+2a+b的值为()A. 2014B. 2015C. 2016D. 201713.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.14.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的百分率为()A. 2B.C.D.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0②b2=4ac③4a-2b+c>0④3a+c>0⑤ax2+bx<a+b其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、计算题(本大题共1小题,共8.0分)16.如图,隧道的截面由抛物线和长方形构成.长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?三、解答题(本大题共8小题,共67.0分)17.用合适的方法解一元二次方程:(x+1)(x-2)=4.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0)、B(4,0)、C(5,2).将△ABC绕着点A按逆时针方向旋转90度得到△A1B1C1(1)请画出△A1B1C1;(2)写出点B1、C1的坐标.19.已知二次函数y=x2-2mx+m-1(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标.20.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆的矩形花圃.(1)若要围成面积为45m2的花圃,AB的长是多少米?(2)能围成面积比45m2更大的花圃吗?若能,请求出最大面积,并说明围法,若不能,请说明理由.21.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BE,(1)求∠BAE的值(用α表示);(2)若∠BCD=150°,∠ABD=60°,判断△ABD的形状并加以证明.22.宜昌市一中因扩招学生人数持续增加,2016年学生人数比2015年增加了a%,预计2017年学生人数比2016年多了400人,这样2017年学生人数就比2015年增加了2a%;(1)求2016年学生人数比2015年多多少人?(2)由于教学楼新建,2017年的教室总面积比2015年增加了2.5a%,因而2017年每个学生人平均面积比2015年增加了,达到了a平方米,求该校2017的教室总面积.23.如图,四边形ABCD、BEFG均为正方形.(1)如图1,连接AG、CE,试判断AG和CE的关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角,(0<β<180),如图2,连接AG,CE相交于点M,连接BM,当角β发生变化时,∠EMB的度数是否发生变化,若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM和BN的数量关系______.24.已知抛物线y=2x2-4x+a(a<0)与y轴相交于点A,顶点M,直线y=x-a分别与x轴、y轴相交于B、C两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(______ ,______ ),N(______ ,______ );(2)如图1,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;(3)在抛物线y=2x2-4x+a(a<0)上是否存在一点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,试说明理由.答案和解析1.【答案】C【解析】解:A、2x+1=0未知数的最高次数是1,故错误;B、y2+x=1含有两个未知数,故错误;C、x2+1=0是一元二次方程,正确;D、是分式方程,故错误.故选:C.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.【答案】B【解析】解:根据题意得:(m-1)+1+1=0,解得:m=-1.故选:B.把x=1代入方程,即可得到一个关于m的方程,即可求解.本题主要考查了方程的解的定义,正确理解定义是关键.3.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.根据轴对称图形与中心对称图形的概念和图形特点求解.掌握好中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.【答案】B【解析】解:由旋转的性质可知:∠D=∠A=110.在△COD中,∠COD=180°-∠C-∠D=40°.∠α=70°-∠COD=70°-40°=30°.故选:B.由旋转的性质可知:∠D=∠A=110°,在△COD中依据三角形内角和定理可求得∠COD的度数,最后依据∠α=70°-∠COD求解即可.本题主要考查的是旋转的性质,求得∠COD的度数是解题的关键.5.【答案】B【解析】解:x的一元二次方程(a+1)x2-4x-1=0有两个不相等的实数根,∴△=b2-4ac=16+4a+4>0,解得a>-5∵a+1≠0∴a≠-1.故选B.在与一元二次方程有关的求值问题中,方程x2-x+a=0有两个不相等的实数根,方程必须满足△=b2-4ac>0,即可求得.本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】A【解析】解:由题意,得P(-5,2)关于原点的对称点Q的坐标为(5,-2),故选:A.关于原点对称的点,横坐标与纵坐标都互为相反数.本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】C【解析】解:∵等腰△ABC沿底边BC翻折,得到△DBC,∴四边形ABDC是菱形,∵菱形既是中心对称图形,又是轴对称图形,∴四边形ABDC既是中心对称图形,又是轴对称图形.故选C.先判断出四边形ABDC是菱形,然后根据菱形的对称性解答.本题考查了中心对称图形,等腰三角形的性质,轴对称图形,判断出四边形ABDC是菱形是解题的关键.8.【答案】C【解析】解:设每次旋转角度x°,则6x=360,解得x=60,每次旋转角度是60°.故选:C.根据所给出的图,6个角正好构成一个周角,且6个角都相等,则每次旋转60°.此题主要考查了利用旋转设计图案,此题是基础题,6个相等的角构成一个周角,每一个角一定为60°.9.【答案】D【解析】解:由题意得新抛物线的顶点为(1,-4),∴原抛物线的顶点为(-1,-1),设原抛物线的解析式为y=(x-h)2+k代入得:y=(x+1)2-1=x2+2x,∴b=2,c=0.故选D.易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.主要考查了函数图象的平移,抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.10.【答案】C【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S=DF×CF=×=.阴影故选:C.先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.11.【答案】B【解析】解:∵x2-8x+15=0,∴(x-3)(x-5)=0,∴x-3=0或x-5=0,即x1=3,x2=5,∵一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选:B.由一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,利用因式分解法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系.此题难度不大,注意分类讨论思想的应用.12.【答案】B【解析】解:∵a是方程x2+x-2016=0的实数根,∴a2+a-2016=0,∴a2=-a+2016,∴a2+2a+b=-a+2016+2a+b=a+b+2016,∵a、b是方程x2+x-2016=0的两个实数根,∴a+b=-1,∴a2+2a+b=-1+2016=2015.故选B.先根据一元二次方程的解的定义得到a2+a-2016=0,即a2=-a+2016,则a2+2a+b可化简为a+b+2016,再根据根与系数的关系得a+b=-1,然后利用整体代入的方法计算.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了一元二次方程的解.13.【答案】D【解析】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.14.【答案】C【解析】解:设平均每次降低成本的百分率为x,根据题意得:100(1-x)(1-x)=81,解得:x=0.1或1.9(不合题意,舍去)即:x=10%故选:C.设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.此题主要考查了一元二次方程的应用,这是一道典型的数量调整问题,数量上调或下调x%后就变为原来的(1±x%)倍,调整2次就是(1±x%)2倍.15.【答案】A【解析】解:∵从图象可知:a>0,c=0,-=1,b=-2a<0,∴abc=0,∴①错误;∵图象和x轴有两个交点,∴b2-4ac>0,∴b2>4ac,∴②错误;∵把x=-2代入y=ax2+bx+c得:y=4a-2b+c>0,∴③正确;∵x=-1时,y>0,∴a-b+c>0,把b=-2a代入得:3a+c>0,选项④正确;∵对称轴为x=1,∴当x=1时,抛物线有最小值,∴a+b+c≤ax2+bx+c,∴ax2+bx>a+b,∴⑤错误;故选A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与偶的关系;再由根的判别式与根的关系,进而对所得结论进行判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.16.【答案】解:(1)把y=4-2=2代入得:2=-x2+4,解得x=±2,∴此时可通过物体的宽度为2-(-2)=4>2,∴能通过;(2)∵一辆货运卡车高4m,隧道的截面由抛物线和长方形构成.长方形的长是8m,宽是2m,∴货车上面有2m,在矩形上面,当y=2时,2=-x2+4,解得x=±2,∵2>2,∴能通过.【解析】(1)可把y=2代入抛物线解析式,求得x的值,进而求得可通过隧道的物体的宽度,与汽车的宽比较,若大于则能通过;(2)利用(1)得到的x的值,与汽车的宽度2比较,若大于则能通过.考查二次函数的应用;根据所给图形判断出汽车过隧道时抛物线上的点距离路面的距离及判断单行道与双行道汽车能否通过的做法的区别是解决本题的关键.17.【答案】解:原方程整理可得:x2-x-6=0,左边因式分解可得(x+2)(x-3)=0,则x+2=0或x-3=0,解得:x=-2或x=3.【解析】整理成一般式后利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可知,B1(1,3),C1(-1,3).【解析】(1)根据图形旋转的性质画出△A1B1C1即可;(2)根据各点在坐标系中的位置写出点B1、C1的坐标即可.本题考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.19.【答案】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2-2mx+m-1,得出:m-1=0,解得:m=1,∴二次函数的解析式为:y=x2-2x;(2)∵m=2,∴二次函数y=x2-2mx+m-1得:y=x2-4x+1=(x-4)2-7,∴抛物线的顶点为:D(4,-7),当x=0时,y=1,∴C点坐标为:(0,1),∴C(0,1)、D(4,-7).【解析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可.此题主要考查了二次函数的综合应用以及配方法求二次函数顶点坐标以等知识,根据数形结合得出是解题关键.20.【答案】解:(1)设花圃的宽AB为xm,长就为(24-3x)m,由题意得(24-3x)x=45,解得:x=3或x=5,当x=3时,24-3x=15>10,舍去,当x=5时,24-3x=9<10,符合题意,答:若要围成面积为45m2的花圃,AB的长是5米;(2)设矩形花圃的面积为y,则y=x(24-3x)=-3x2+24x=-3(x-4)2+48,∵24-3x≤10,解得x≥,∴当x>4时,y随x的增大而减小,∴当x=时,y max=46,答:能围成面积比45m2更大的花圃,当AB的长为时,面积最大,最大面积为46m2.【解析】(1)设花圃的宽AB为xm,长就为(24-3x)m,根据矩形的面积公式列出方程,解方程得出x的值后根据墙的最大可用长度为10m取舍可得;(2)设矩形花圃的面积为y,根据矩形的面积公式列出函数解析式,利用二次函数的性质结合自变量x的范围求出最大值即可得.本题主要考查二次函数的应用,根据矩形的面积公式列出方程和二次函数的解析式,并熟练掌握二次函数的性质是解题的关键.21.【答案】解:(1)连接AE、CE,如图1所示.∵将线段BC绕点B逆时针旋转60°得到线段BE,∴∠CBE=60°,BC=BE,∴△BCE为等边三角形,∴BE=CE.在△ABE和△ACE中,,∴△ABE≌△ACE(SSS),∴∠BAE=∠CAE=∠BAC=α.(2)△ABD为等边三角形.证明:∵△BCE为等边三角形,∴∠BEC=60°.∵△ABE≌△ACE,∴∠BEA=∠CEA=(360°-∠BEC)=150°,又∵∠BCD=150°,∴∠BEA=∠BCD.∵∠CBE=60°,∠ABD=60°,∴∠ABE+∠EBD=60°,∠EBD+∠DBC=60°,∴∠ABE=∠DBC.在△ABE和△DBC中,,∴△ABE≌△DBC(ASA),∴AB=DB.∵∠ABD=60°,∴△ABD为等边三角形.【解析】(1)连接AE、CE,根据旋转可得出∠CBE=60°、BC=BE,结合等边三角形的判定即可得出△BCE为等边三角形,进而可得出BE=CE,由AB=AC和AE=AE 利用全等三角形的判定定理SSS即可证出△ABE≌△ACE,再根据全等三角形的性质即可得出∠BAE=∠CAE=∠BAC,代入数据此题得解;(2)△ABD为等边三角形.由等边三角形的性质可得出∠BEC=60°,由(1)△ABE≌△ACE结合角的计算可得出∠BEA=150°=∠BCD,再由∠CBE=60°=∠ABD即可得出∠ABE=∠DBC,利用全等三角形的判定定理ASA 即可证出△ABE≌△DBC,即找出AB=DB,结合∠ABD=60°即可证出△ABD为等边三角形.本题考查了旋转的性质、全等三角形的判定与性质以及等边三角形的判定与性质,结合边角关系证出△ABE≌△ACE和△ABE≌△DBC是解题的关键.22.【答案】解:(1)设2015年学生人数为x人,则2016年学生数为x(1+a%),则2017年学生数为x(1+2a%),由题意,得:x(1+2a%)-x(1+a%)=400,∴a%x=400.∵2016年学生人数比2015年多的人数为:x(1+a%)-x=a%x=400,答:2016年学生数比2015年多400人;(2)设2015年教室总面积为m平方米,则2017年的教室总面积为m(1+2.5a%)平方米,由题意,得,解得:.经检验,a=10,x=1000,m=1200都是原方程组的解.∴该校2017年的教室总面积为:1200(1+2.5%×10)=1500平方米.答:该校2013年的教室总面积为1500平方米.【解析】(1)设2015年学生人数为x人,则2016年学生数为x(1+a%),则2017年学生数为x(1+2a%),根据2017年学生数比2016年多了400人建立方程求出其解即可;(2)设2015年教室总面积为m平方米,则2017年的教室总面积为m(1+2.5a%)平方米,根据2017年每个学生人平均教室面积比2015年增加了、达到了a平方米,建立方程组求出其解即可.本题主要考查了列分式方程组解实际问题的应用,方程组的解法的运用,解答时设出参数求出其值是解答本题的关键.23.【答案】CM=BN【解析】解:(1)AG=EC,AG⊥EC,理由为:如图1,∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)∠EMB的度数不发生变化,∠EMB的度数为45°,理由为:如图2,过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),∴S△ABG=S△EBC,AG=EC,∴EC•BP=AG•BH,∴BP=BH,∴MB为∠EMG的平分线,∵∠AMC=∠ABC=90°,∴∠EMB=∠EMG=×90°=45°;(3)CM=BN,理由为:如图3,在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN-BN=AN-NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=BN.故答案为:CM=BN.(1)AG=EC,AG⊥EC,理由为:由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)∠EMB的度数为45°,理由为:过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC 为直角,即∠AME为直角,利用角平分线定义即可得证;(3)CM=BN,在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键,是一道中等难度的中考常考题.24.【答案】1;a-2;a;-a【解析】解:(1)∵抛物线y=2x2-4x+a=2(x-1)2+a-2,∴M(1,a-2),A(0,a),∴直线AM的解析式为y=-2x+a①,∵直线y=x-a②与直线AM相交于点N.联立①②得,N(a,-a);故答案为:1,a-2;a,-a;(2)∵由题意得点N与点N′关于y轴对称,∴N′(-a,-a).将N′的坐标代入y=2x2-4x+a得:-a=2×a2-4×(-a)+a,∴a1=0(不合题意,舍去),a2=-.∴N(-3,),∴点N到y轴的距离为3.∵A(0,-),N'(3,),∴直线AN'的解析式为y=2x-,它与x轴的交点为D(,0)∴点D到y轴的距离为.∴S=S△ACN+S△ACD=××3+××=;四边形ADCN(3)存在,理由如下:如图,①当点P在y轴的左侧时,若ACPN是平行四边形,则PN AC,∵AC=-2a,∴把N向上平移-2a个单位得到P,坐标为((a,-a),代入抛物线的解析式y=2x2-4x+a,得:-a=a2-a+a,解得a1=0(不舍题意,舍去),a2=-,则P(-,);②当点P在y轴的右侧时,若APCN是平行四边形,则AC与PN互相平分,则OA=OC,OP=ON.则P与N关于原点对称,则P(-a,a);将P点坐标代入抛物线解析式y=2x2-4x+a,得:a=a2+a+a,解得a1=0(不合题意,舍去),a2=-,则P(,-).故存在这样的点P(-,)或(,-).能使得以P,A,C,N为顶点的四边形是平行四边形.(1)已知了抛物线的解析式,不难用公式法求出M的坐标为(1,a-1).由于抛物线过A点,因此A的坐标是(0,a).根据A,M的坐标,用待定系数法可得出直线AM的解析式为y=-2x+a.直线AM和y=x-a联立方程组即可求出N的坐标为(a,-a).(2)根据折叠的性质不难得出N与N′正好关于y轴对称,因此N′的坐标为(a,-a).由于N′在抛物线上,因此将N′的坐标代入抛物线的解析式中即可得出a的值.也就能确定N,C的坐标.求四边形ADCN的面积,可分成△ANC 和△ADC两部分来求.已经求得了A,C,N的坐标,可求出AC的长以及N,D到y轴的距离.也就能求出△ANC和△ADC的面积,进而可求出四边形ADCN的面积.(3)分两种情况进行讨论:①当P在y轴左侧时,如果使以P,N,A,C为顶点的四边形为平行四边形,那么P需要满足的条件是PN平行且相等于AC,也就是说,如果N点向上平移AC个单位即-2a后得到的点就是P点.然后将此时P的坐标代入抛物线中,如果没有解说明不存在这样的点P,如果能求出a的值,那么即可求出此时P 的坐标.②当P在y轴右侧时,P需要满足的条件是PN与AC应互相平分(平行四边形的对角线互相平分),那么NP必过原点,且关于原点对称.那么可得出此时P的坐标,然后代入抛物线的解析式中按①的方法求解即可此题是二次函数综合题,主要考查了待定系数法求函数解析式、图形旋转变换、平行四边形的性质等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.。
2018年湖北省宜昌市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共15小题,每小题3分,共45分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018湖北宜昌,1,3分) 2018-的绝对值是( ) A .2018 B .2018- C .12018D . 12018-【答案】A【解析】2018020182018--=Q <,∴,故选择A. 【知识点】绝对值的意义.2.(2018湖北宜昌,2,3分)如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .【答案】D【解析】D 图沿中间线折叠,直线两旁的部分可重合,故选择D. 【知识点】轴对称图形的概念.3.(2018湖北宜昌,3,3分) 工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .31.2110⨯ B .312.110⨯ C .41.2110⨯ D .50.12110⨯ 【答案】C【解析】41.21==1.2110⨯Q 万12100,故选择C. 【知识点】科学记数法——表示较大的数.4.(2018湖北宜昌,4,3分)计算24(2)5+-⨯=( )A .16-B .16 C.20 D .24 【答案】D【解析】24(2)544542024, D.+-⨯=+⨯=+=Q 故选择 【知识点】有理数的计算,有理数的运算顺序.5.(2018湖北宜昌,5,3分) 在“绿水青山就是金山银山”这句话中任选一个汉子,这个字是“绿”的概率为( )A .310B .110C.19 D .18【答案】B【解析】∵在“绿水青山就是金山银山”中,共有10个字,只有1个“绿”,∴“绿”的概率为110.【知识点】概率.6.(2018湖北宜昌,6,3分)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是( )A .B . C. D .【答案】 C【解析】左视图表示从左边看到的图形,故选择C. 【知识点】几何体的三视图.7.(2018湖北宜昌,7,3分)下列运算正确的是( )A .224x x x +=B .326x x x =g C.42222x x x ÷= D .22(3)6x x =【答案】C【解析】2222,A x x x +=∴Q 选项错误.325x x x =Q g ,B ∴选项错误.22(3)9,D x x =∴Q 选项错误.故选择C.【知识点】整式的运算.8.(2018湖北宜昌,8,3分)1261年,我国南宋数学家杨辉用下图中的三角形解释二项和的惩罚规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则,a b ,c 的值分别为( )(第8题图)A.1,6,15a b c === B .6,15,20a b c === C.15,20,15a b c === D .20,15,6a b c === 【答案】B【解析】15651015101020B a b c =+==+==+=∴Q ,,,选项正确. 【知识点】据数字排列,找规律.9.(2018湖北宜昌,9,3分)如图,正方形ABCD 的边长为1,点E, F 分别是对角线AC 上的两点, EG AB ⊥ ,EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂足分别为G I, H, J ,,则图中阴影部分的面积等于( )(第9题图)A .1B .12 C.13 D .14【答案】B【解析】图形沿直线AC 折叠,直线两旁的阴影部分可合并到△ABC 中,△ABC 的面积为正方形ABCD 的面积的一半,故选择B.【知识点】轴对称图形,翻折.10.(2018湖北宜昌,10,3分)为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛.这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定 【答案】A【解析】方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数,在样本容量相同或极为接近的时候,比较方差才可以判断其稳定性,故选择A. 【知识点】平均数,方差与稳定性.11.(2018湖北宜昌,11,3分) 如图,在平面直角坐标系中,把ABC △绕原点O 旋转180°得到CDA △.点A B C,, 的坐标分别为(5,2)-,(22)(52)---,,,,则点D 的坐标为( )(第11题图)A .(2, 2)B .(2-2), C. (2,5) D .(2,5)- 【答案】A【解析】在平面直角坐标系中,把ABC △绕原点O 旋转180°得到CDA △.点B 与点D 关于原点对称,故选择A.【知识点】中心对称图形,旋转,平面直角坐标系,点的坐标.12.(2018湖北宜昌,12,3分)如图,直线AB 是O e 的切线,C 为切点,//OD AB 交O e 于点D ,点E 在Oe 上,连接OC EC ED ,,,则CED ∠的度数为( )(第12题图)A .30°B .35° C.40° D .45° 【答案】D【解析】∵直线AB 是O e 的切线,C 为切点,∴∠OCB =90°,∵//OD AB ,∴∠COD =90°,∴∠CED =45°,故选择D.【知识点】圆的切线,圆心角,圆周角,平行线的性质.13.(201湖北宜昌,13,3分) 尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )A. B.C. D.(第13题图)【答案】B【解析】经过已知直线外一点作这条直线的垂线的尺规作图为:以这点为圆心画弧,再以和直线的两个交点为圆心画弧,两弧交点和这点连接,该直线就是这条直线的垂线.故选择B.【知识点】尺规作图:过直线外一点作已知直线的垂线.14.(2018湖北宜昌,14,3分)如图,要测量小河两岸相对的两点P A ,的距离,可以在小河边取PA 的垂线PB上的一点C ,测得100PC =米,35PCA ∠=o ,则小河宽PA 等于( )(第14题图)A.100sin 35o 米B.100sin 55o 米C.100tan 35o 米D.100tan 55o 米 【答案】C【解析】∵100PC =米,35PCA ∠=o ,∴在Rt △P A C 中,PA =100tan 35o ,故选择C. 【知识点】正弦,正切.15.(2018湖北宜昌,15,3分) 如图,一块砖的,,A B C 三个面的面积比是4:2:1,如果,,A B C 面分别向下放在地上,地面所受压强为123,,p p p 的大小关系正确的是( )(第15题图)A.123p p p >>B.132p p p >>C.213p p p >>D.321p p p >> 【答案】D【解析】物体所受的压力与受力面积之比叫做压强,∵砖不变,∴压力不变.这块砖的,,A B C 三个面的面积比是4:2:1,地面所受压强为123,,p p p 的大小关系由小变大.故选择D.【知识点】压强.二、解答题(本大题共9小题,计75分,解答应写出文字说明、证明过程或演算步骤) 16.(2018湖北宜昌,16,6分)先化简,再求值:()()()122x x x x +++-,其中64x =-. 【思路分析】先化简代数式,再将x的值代入求值. 【解题过程】解:原式224x x x =++-4x =+ 当64x =-时,原式6446=-+=.【知识点】整式的乘法.17.(2018湖北宜昌,17,6分) 解不等式组1021320xx x -≤+-<⎧⎪⎨⎪⎩,并把它的解集在数轴上表示出来.【思路分析】解出两个不等式,求出不等式组的解集,再将解集在数轴上表示出来. 【解题过程】解:解不等式①,得1x ≥ 解不等式②,得2x <∴原不等式组的解集为12x ≤< 不等式组的解集在数轴上表示为:(第17题答图)【知识点】解不等式与不等式组,在数轴上表示不等式组的解集.18.(2018湖北宜昌,18,7分)如图,在Rt ABC ∆中,90ACB ∠=o ,40A ∠=o ,ABC ∆的外角CBD ∠的平分线BE 交AC 的延长线于点E . (1)求CBE ∠的度数;(2)过点D 作DF BE P ,交AC 的延长线于点F .求F ∠的度数.(第18题图)【思路分析】(1)由直角三角形的两个锐角互余,求出∠ABC ,由补角求出∠DBC,再由外角的平分线,求出∠CBE .(2) 由直角三角形的两个锐角互余,求出.CEB ∠再根据平行线的性质,求出∠F . 【解题过程】 解:(1)Q 在Rt ABC ∆中,90ACB ∠=o ,40A ∠=o ,50ABC ACB A ∴∠=∠-∠=o ,∴130CBD ∠=o ,∵BE 是CBD ∠的平分线,1652CBE CBD ∴∠=∠=o .(2)∵90ACB ∠=o ,906525CEB ∴∠=-=o o o , ∵DF BE P ,∴25F CEB ∠=∠=o .【知识点】直角三角形的两个锐角互余,角的平分线,平行线的性质.19.(2018湖北宜昌,19,7分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶。
2018年秋季宜昌市第二十五中学九年级数学试题本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交.一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置将符合要求的选项前面的字母代号涂黑. 本大题共15小题,每题3分,计45分) 1.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .2.用公式法解一元二次方程3x 2-2x+3=0时,首先要确定a 、b 、c 的值,下列叙述正确的是( ).A .a=3,b=2,c=3B .a=-3,b=2,c=3C .a=3,b=2,c=-3D .a=3,b=-2,c=33.已知关于x 的方程x 2+bx+a=0有一个根是-a(a ≠0),则代数式的a-b 值是( ).A .-1B .1C .0D .-2 4. 如图,在△ABC 中,AB =8,BC =6,CA =4,D ,E 分别是AB ,AC 的中点,则DE 的长为( )A. 4B. 3C. 2D. 15. 如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C .若∠A=40°.∠B′=110°,则∠BCA ′的度数是( ).A .110°B .40°C . 80°D .30° 6.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′, 则点A′的坐标是( ).A .(3,-6)B .(-3,6)C .(-3,-6)D .(3,6) 7.已知两个相似三角形的相似比为2:3,则它们的面积比为( ). A .2:3 B .4:9 C .3:2 D .2:38.二次函数y=x 2+bx+c 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ). A . 直线x=4 B .直线x=3 C .直线x=-5 D .直线x=-19.已知:A (-3,y 1),B (1,y 2)是抛物线y=-ax 2-4ax+c(a>0)上两点,则y 1, y 2的大小关系为( ). A. y 1= y 2 B. y 1< y 2 C. y 1>y 2 D. 无法确定 10.已知关于x 的一元二次方程x 2-x+14 m-1=0有实数根,则m 的取值范围是( ).A. m ≤5B. m<5C. m ≤2D. m<211.下列关于抛物线y=2x 2-3的说法正确的是( ).A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x 轴有两个交点第14题B′A′BC A A B CD E12.方程x 2﹣3x ﹣4=0的两根之和为( ).A. ﹣4B. 3C. ﹣3D. 413.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( ). A .(x +2)2=1 B .(x ﹣2)2=1 C .(x +2)2=9 D .(x ﹣2)2=914.根据下面表格中的取值,方程x 2+x ﹣3=0有一个根的近似值(精确到0.1)是( ).A .1.5B .1.2C .1.3D .1.415.直线y 1=x +1与抛物线y 2=-x 2+3的图象如图所示,当y 1>y 2时, x 的取值范围为( ).A .x <-2B .x >1C .-2<x <1D .x <-2或x >1二、解答题(将解答过程写在答题卡上指定的位置.)16.(6分)解方程: x(2x+3)=4x+617.(6分) 已知抛物线的解析式为y=x 2-2x-15.(1)将其化为y=a(x-h)2+k 的形式为_______,抛物线的顶点坐标为_______; (2)求出抛物线与x 轴、y 轴的交点坐标. 18.(7分)如图,△ABC 放在方格纸中,∠ACB=90°,AC=BC ,点D 在边AB 上,点A ,B ,C ,D 都在格点上,连接CD.(1)作图:将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE ; (2)求证:BD=AE.19. (7分)在数学中,以x 为自变量的函数可以用y=f(x)表示,如函数y=2x+3也可以记作f(x)= 2x+3,当x=3时所对应的函数值可以表示为f(3)=2×3+3=9。
2018年秋天学期期中考试九年级数学试卷命题人:黄昌军注意事项:1.本试卷共二大题24小题,卷面满分120分,考试时间120分钟;2.本试卷分试题卷和答题卡两部分,请将各题答案答在答题卡上每题对应的答题地域内,答在试题卷上无效;考试结束,只上交答题卡.一、选择题.(在各小题给出的四个选项中,只有一项为哪一项吻合题目要求的,请在答题卡上指定的地点填涂吻合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.一元二次方程3x2-2x-1=0的二次项系数、一次项系数、常数项分别为()A.3,2,1B.-3,2,1C.3,-2,-1D.-3,-2B,-12.二次函数y=2(x+3)2-1的图象的极点所在象限是(C)AB′A.第一象限B.第二象限C.第三象限D.第四象限3.以下一元二次方程中,没有实数根的是()A′第14题A.4x2-5x+2=0B.x2-6x+9=0第4题C.5x2-4x-1=0D.3x2-4x+1=04.如图,将△ABC绕着点C顺时针旋转50°后获得△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B .80°C .40°D.30°若x1,x是一元二次方程x2的两个根,则x1+x2等于()5.2-3x-4=0A.-3B.6.将二次函数y=x2+1的图象向上平移2个单位,再向右平移1个单位后的函数分析式为()A.y=(x-1)2-1B.y=(x+1)2-1C.y=(x+1)2+3D.y=(x-1)2+37.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=15抛物线y=3x 2,y=-3x2,y=x2+3共有的性质是()8.A.张口向上B.对称轴是y轴C.都有最高点D.y随x的增大而增大9.已知x2+y2-4x+6y+13=0,则代数式x+y的值为()A.-1B.1C.5D.3610.对二次函数y=-(x+2)2-3,描述错误的选项是()A.图象张口向下B.关于直线x=2对称C.函数有最大值为-3D.图象与x轴无交点11.学校要组织足球竞赛,赛制为单循环形式(每两队之间赛一场),计划安排21场竞赛,应邀请多少个球队参赛?设邀请x个球队参赛,依据题意,下边所列方程正确的选项是()A.x221B.x(x1)21C.x221D.x(x1)212212.股票每天的涨、跌幅均不可以超出10%,即当涨了原价的10%后,便不可以再涨,叫做涨停;当跌了原价的10%后,便不可以再跌,叫做跌停.已知一支股票某天跌停,以后两时节间又涨回到原价,若这两天此股票股价的均匀增添率为 x ,则x 满足的方程是()A.(1x)211B.(1x)210 C.12x 11 D.12x 10109 109以下四个函数图象中,当x>0时,y 随x 的增大而减小的是( )yy y yxxxxOOOOAB C D在同一坐标系中,一次函数y=ax+b 与二次函数y=ax 2+b 的大体图象是( )yy y yxxxxOOOOAB C D15.如图,在Rt △ABC 中,∠ACB=90o ,∠A=30o ,BC=2,将△ABC绕点C 按顺时针方向旋转n 度后,获得△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中暗影部分的面积分别为() A.30,2B.60,2C. 60,3D. 60, 32第15 题二、解答题(本大题共 9小题,共75分)16.(6分)解方程:x(x3)x317.(6分)如图,不用量角器,在方格纸中画出△ABC绕点B顺时针方向旋转90°后获得的△A1BC1.18.(7分)已知一个二次函数y=ax2+bx+c的图象以以下图,央求出这个二次函数的分析式。
九年级(上)期中数学试卷一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=02.下列标志中,可以看作是中心对称图形的是()A.B.C.D.3.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和14.抛物线y=﹣2x2开口方向是()A.向上B.向下C.向左D.向右5.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)6.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=27.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=98.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根9.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°10.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)11.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=360012.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y213.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个 B.2个 C.3个 D.4个15.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.二、解答题:(本大题满分75分,共9小题)16.解方程:(1)x2﹣2x﹣1=0(2)12x2+2x+3=3x+4.17.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C (3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.18.已知三角形的两条边a、b满足等式:a2+b2=25,且a、b的长是方程x2﹣(2m ﹣1)x+4(m﹣1)=0的两个根,求m的值.19.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?20.如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.21.把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.22.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).23.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.24.抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB 于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是.(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k 的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、方程x+3=0是一元一次方程,故本选项错误;B、方程x2﹣3y=0是二元二次方程,故本选项错误;C、方程x2﹣2x+1=0是一元二次方程,故本选项正确;D、方程x﹣=0是分式方程,故本选项错误.故选C.2.下列标志中,可以看作是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.3.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.4.抛物线y=﹣2x2开口方向是()A.向上B.向下C.向左D.向右【考点】二次函数的性质.【分析】根据a的正负判断抛物线开口方向.【解答】解:∵a=﹣2<0,∴抛物线开口向下.故选B.5.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).【解答】解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选B.6.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=2【考点】解一元二次方程-因式分解法.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故选C.7.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B8.一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;故选C.9.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°【考点】旋转的性质.【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.【解答】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB﹣∠AOB=80°﹣45°=35°.故选:D.10.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.11.近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【考点】由实际问题抽象出一元二次方程.【分析】设该市投入教育经费的年平均增长率为x,根据:2013年投入资金给×(1+x)2=2015年投入资金,列出方程即可.【解答】解:设该市投入教育经费的年平均增长率为x,根据题意,可列方程:2500(1+x)2=3600,故选:B.12.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.13.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④【考点】旋转的性质.【分析】每次均旋转45°,10次共旋转450°,而一周为360°,用450°﹣360°=90°,可知第10次旋转后得到的图形.【解答】解:依题意,旋转10次共旋转了10×45°=450°,因为450°﹣360°=90°,所以,第10次旋转后得到的图形与图②相同,故选B.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【解答】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确,故选:D.15.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选:D.二、解答题:(本大题满分75分,共9小题)16.解方程:(1)x2﹣2x﹣1=0(2)12x2+2x+3=3x+4.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)根据公式法即可得到结论;(2)先把方程变形得到12x2﹣x+1=0,然后利用因式分解法解方程.【解答】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2+4=12,∴x=,∴x1=,x2=;(2)12x2﹣x﹣1=0,∴(3x﹣1)(4x+1)=0,∴x1=,x2=﹣.17.如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C (3,1)(1)画出将△ABC绕点B逆时针旋转90°,所得的△A1B1C1.(2)直接写出A1点的坐标.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A1、C1的位置,再与点B(即B1)顺次连接即可;(2)根据平面直角坐标系写出点A1的坐标即可.【解答】解:(1)如图所示;(2)A1(﹣1,1).18.已知三角形的两条边a、b满足等式:a2+b2=25,且a、b的长是方程x2﹣(2m ﹣1)x+4(m﹣1)=0的两个根,求m的值.【考点】根与系数的关系;完全平方公式.【分析】根据根与系数的关系得出a+b和ab的值,再根据a2+b2=25,得出(2m ﹣1)2=25+2×4(m﹣1),求出m的值,再把不合题意的值舍去即可.【解答】解∵a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,∴a+b=2m﹣1,ab=4(m﹣1),a>0,b>0,∵a2+b2=25,∴(a+b)2=a2+b2+2ab,∴(2m﹣1)2=25+2×4(m﹣1),∴m1=4,m2=﹣1,∵当m=﹣1时,ab<0,不合题意,舍去,∴m=4.19.如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?【考点】二次函数综合题.【分析】(1)根据函数的特征数的定义,写出二次函数,利用配方法即可解决问题.(2)①首先根据函数的特征数的定义,写出二次函数,再根据平移的规律:左加右减,上加下减,即可解决.②根据函数的特征数的定义,首先写出两个函数的解析式,利用配方法写成顶点式,根据平移规律解决问题.【解答】解:(1)由题意可得出:y=x2﹣2x+1=(x﹣1)2,∴此函数图象的顶点坐标为:(1,0);(2)①由题意可得出:y=x2+2x﹣1=(x+1)2﹣2,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+1﹣1)2﹣2+1=x2﹣1,∴图象对应的函数的特征数为:[0,﹣1];②∵一个函数的特征数为[4,2],∴函数解析式为:y=x2+4x+2=(x+2)2﹣2,∵一个函数的特征数为[2,4],∴函数解析式为:y=x2+2x+4=(x+1)2+3∴原函数的图象向右平移1个单位,再向上平移5个单位得到.20.如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用矩形的面积公式列出方程求解即可;(2)求出花圃面积与AB长度的函数关系式,根据二次函数的性质和AB长度取值范围求出面积的最大值.【解答】解:(1)设AB的长为x米,根据题意列方程得:﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3,当x=3时,BC=24﹣3x=15>10,不合题意,舍去,当x=5时,BC=24﹣3x=9,如果要围成面积为45米2的花圃,AB的长是5米;(2)设花圃的面积为S,由题意可得:S=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵墙体的最大可用长度a=10m,∴0≤24﹣3x≤10,∴≤x≤8,∵对称轴x=4,开口向下,∴当x=时,花圃面积最大,当x=时,S=46.67m2;21.把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长.【考点】旋转的性质;勾股定理.【分析】(1)如图所示,∠3=15°,∠E1=90°,∠1=∠2=75°,所以,可得∠OFE1=∠B+∠1=45°+75°=120°;(2)由∠OFE1=∠120°,得∠D1FO=60°,所以∠4=90°,由AC=BC,AB=6cm,得OA=OB=OC=3cm,所以,OD1=CD1﹣OC=7﹣3=4cm,在Rt△AD1O中,AD1===5cm.【解答】解:(1)如图所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,∵∠C D1E1=30°,∴∠4=90°,又∵AC=BC,AB=6cm,∴OA=OB=3cm,∵∠ACB=90°,∴CO=AB=×6=3cm,又∵CD1=7cm,∴OD1=CD1﹣OC=7﹣3=4cm,∴在Rt△AD1O中,AD1===5cm.22.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设售价应为x元,根据不等关系:该文具店在9月份销售量不低于1100件,列出不等式求解即可;(2)先求出10月份的进价,再根据等量关系:10月份利润达到3388元,列出方程求解即可.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.23.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【考点】几何变换综合题.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.24.抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(﹣2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E 之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB 于点C.B,设CD=r,MD=m.(1)根据题意可求出a=,点E的坐标是(2,1).(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)【考点】二次函数综合题.【分析】(1)利用二次函数图象上点的坐标特征知,点A的坐标满足抛物线的解析式,所以把点A的坐标代入抛物线的解析式,即可求得a的值;由抛物线y=ax2的对称性知,点A、点E关于y轴对称;(2)根据抛物线与直线的解析式求得点B的坐标为(4,4),则t的最小值是点E的横坐标,t的最大值是点B的横坐标;由于点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,所以D(t,t2),C(,t2);最后由两点间的距离公式求得r=|(t﹣1)2﹣|(2≤t≤4),所以根据二次函数最值的求法来求当r取最大值时t的值;(3)①设D(t,t2).由一次函数、二次函数图象上点的坐标特征求得点C的坐标为(t2﹣,t2).然后根据两点间的距离公式知r=﹣(t﹣2k)2+k+,易知当t=2k时,r取最大值.②根据一次函数y=kx+b中的k的几何意义知k==,即m=kr=﹣(t﹣2k)2+k2+b,显然,当t=2k时,m取最大值.【解答】解:(1)根据题意知,点A(﹣2,1)在抛物线y=ax2上,∴1=(﹣2)2a,解得,a=.∵抛物线y=ax2关于y轴对称,AE∥x轴,∴点A、E关于y轴对称,∴E(2,1).故答案是:,(2,1).(2)∵点A(﹣2,1)在直线y=kx+b(k为正常数)上,k=0.5,∴1=﹣2×0.5+b,解得,b=2,即直线AB的解析式为y=x+2.∵由(1)知,抛物线的解析式y=x2,抛物线y=x2和直线y=x+2(k为正常数)交于点A和点B,∴,解得,或,∴它们的交点坐标是(﹣2,1),(4,4),即B(4,4).当点D与点E重合时,t=2.当点D与点B重合时,t=4,∴t的取值范围是:2≤t≤4.∵点C在直线y=x+2上,点D在抛物线y=x2上,CD∥x轴,∴D(t,t2),C(,t2),∴r=t﹣=﹣(t﹣1)2+(2≤t≤4).∵在2≤t≤4范围内,r随t的增大而减小,t=2时,r取最大值.∴当t=2时,r最大=4.即当(3)∵点A、B是直线与抛物线的交点,∴kx+b=x2,即x2﹣4kx﹣4b=0,∴x A+x B=4k.∵x A=﹣2,∴x B=4k+2.又∵点D不与B、E重合,∴2<t<4k+2.设D(t,t2),则点C的纵坐标为t2,将其代入y=kx+b中,得x=t2﹣,∴点C的坐标为(t2﹣,t2),∴r=CD=t﹣(t2﹣)=﹣(t﹣2k)2+k+,当t=2k时,r取最大值.∴2<2k<4k+2,解得,k>1.又∵k==,∴m=kr=﹣(t﹣2k)2+k2+b,∴当t=2k时,m的值也最大.综上所述,当r为最大值时m的值也是最大.2017年2月12日。