安培力做功及其引起的能量转化
- 格式:docx
- 大小:36.15 KB
- 文档页数:6
物理安培力及与安培力有关的力学问题1.安培力的方向根据左手定则判断。
2.安培力公式F=BIL的应用条件(1)B与L垂直。
(2)L是有效长度。
如弯曲通电导线的有效长度L等于连接两端点的直线的长度,相应的电流方向沿两端点连线由始端流向末端,如图所示3.安培力做功的特点和实质(1)安培力做功与路径有关,不像重力、电场力做功与路径无关.(2)安培力做功的实质:起能量转化的作用.①安培力做正功:是将电源的能量传递给通电导线后转化为导线的动能或转化为其他形式的能.②安培力做负功:是将其他形式的能转化为电能后储存起来或转化为其他形式的能.例题与练习1.如图,一导体棒ab静止在U形铁芯的两臂之间。
电键闭合后导体棒受到的安培力方向( )A.向上 B.向下 C.向左D.向右解析本题考查电流的磁效应、安培力及左手定则。
根据图中的电流方向,由安培定则知U形铁芯下端为N极,上端为S极,ab中的电流方向由a―→b,由左手定则可知导体棒受到的安培力方向向右,选项D正确。
答案 D2.(多选)某同学自制的简易电动机示意图如图所示。
矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴。
将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方。
为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将( )A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D正确。
例析安培力做功的三种情况周志文 (湖北省罗田县第一中学 438600)安培力做功的问题是学生在学习《电磁感应》这一章当中感觉到最难的知识点,因为同学往往弄不清安培力做功、焦耳热、机械能、电能之间的转化关系,但它又是高考命题的热点题型。
因此本文通过建立物理模型,分析安培力做功的本质,用实例来帮助学生理解安培力做功的三种情况,希望对同学们有所帮助。
一、安培力做正功1.模型:如图,光滑水平导轨电阻不计,左端接有电源,处于竖直向下的匀强磁场中,金属棒mn 的电阻为R ,放在导轨上开关S 闭合后,金属棒将向右运动。
安培力做功情况:金属棒mn 所受安培力是变力,安培力做正功,由动能定理有k E ∆=安W ①①式表明,安培力做功的结果引起金属棒mn 的机械能增加能量转化情况:对金属棒mn 、导轨、和电源组成的系统,电源的电能转化为金属棒的动能和内能,由能量的转化和守恒定律有:Q E k +=电∆E ②由①②两式得:Q E W -=电安 ③③式表明,计算安培力做功还可以通过能量转化的方法。
2.安培力做正功的实质如图所示,我们取导体中的一个电子进行分析,电子形成电流的速度为u ,在该速度下,电子受到洛仑兹力大小euB F u =,方向与u 垂直,水平向左;导体在安培力作用下向左运动,电子随导体一同运动而具有速度v ,电子又受到一个洛仑兹力作用evB F v =,方向与v 垂直,竖直向上。
其中u F 是形成宏观安培力的微观洛仑力。
这两个洛仑兹力均与其速度方向垂直,所以,它们均不做功。
但另一方面,v F 与电场力F 方向相反,电场力在电流流动过程中对电子做了正功,v F 在客观上克服了电场力F 做了负功,阻碍了电子的运动,把电场能转化为电子的能量,再通过u F 的作用,把该能量以做功的形式转化为机械能。
所以v F 做了负功,u F 做了正功,但总的洛仑功做总功为零。
因此,安培力做功的实质是电场力做功,再通过洛仑兹力为中介,转化为机械能。
安培力做功过程中的能量转化关系
缪芸
【期刊名称】《中学生数理化(学研版)》
【年(卷),期】2016(000)009
【总页数】1页(P21)
【作者】缪芸
【作者单位】云南省曲靖市会泽县茚旺高级中学
【正文语种】中文
【相关文献】
1.形异而神似——谈安培力做功与能量转换 [J], 王利飞
2.对安培力与安培力做功的一种解释 [J], 张黎
3.浅谈电磁感应现象中克服安培力做功与能量转化的关系 [J], 熊锦明
4.培养高中物理学科核心素养用科学思维解决问题——以分析安培力做功与焦耳热的关系为例 [J], 王静;王希春
5.做功与能量转化关系问题分析 [J], 闫培新
因版权原因,仅展示原文概要,查看原文内容请购买。
安培力做功及其引起的能量转化
在物理学中,安培力是指由电流产生的磁场对电流周围的导体的作用力。
当电
流通过导体时,电子会在导体内移动,形成电子流,产生磁场,然后由磁场作用于电子流,产生安培力。
安培力有着广泛的应用,其中之一就是在电动机中产生的功。
电动机是一种将
电能转化为机械能的设备,其原理是利用安培力产生的转矩驱动机械转动。
当电源接通电动机时,电流通过绕组,产生磁场并产生安培力,使转子产生转矩,从而转动机械部件实现功的输出。
在电路中,安培力也可以引起能量的转化。
我们都知道,电路中流动的电流会
产生热量,即焦耳热。
而当电流通过一个电阻时,就会产生安培力,导致电子流动,热量的产生。
这种热量是一种能量形式,实际上是电能转化为热能的过程。
此外,电路中还存在着电压、电阻等因素,它们相互作用也会引起电能、热能、机械能等能量形式的转化。
需要注意的是,电能转化为其他形式的能量时,不会产生任何能量损失。
即使
在复杂的能量转化过程中,总能量守恒原则也不会受到影响。
因此,我们可以通过适当地转化和利用能量,满足不同需求。
总之,安培力在电路中起着至关重要的作用,它引起的能量转化也推动了许多
工业和科学技术的发展。
我们应该进一步研究其机理,不断改进应用,为人类的发展做出更大贡献。
龙源期刊网
安培力做功如何解能量转化须弄清
作者:沈阳
来源:《理科考试研究·高中》2016年第05期
电磁现象中,如果安培力做了功,则闭合电路(或通电导体)与磁场之间一定发生了相对运动,使电能与机械能发生相互转化,这就是说,安培力做功与电能及机械能的转化有对应的关系.
一、安培力做功的实质
大家都知道,导体在磁场中受到的安培力,实际上是导体内各定向运动电荷所受洛伦兹力的宏观表现,因此安培力对运动导体做的功也就与洛伦兹力对电荷的作用有关.安培力对导体做功(正功或负功)的过程,也就是导体内定向移动的自由电荷受到的洛伦兹力参与能量转化的过程,这时导体内的自由电荷所受的洛伦兹力一定与导体不垂直(但始终与电荷运动速度垂直),且安培力所做的功就等于导体内所有定向移动电荷受到的洛伦兹力在垂直导体方向上的分力所做功的总和.
二、安培力做功时的能量转化规律
安培力做功时,导体内运动电荷所受的洛伦兹力参与了能量转化.洛伦兹力在平行导体方向上的分力1驱动(或阻碍)电荷的定向移动,垂直导体的另一分力的宏观效果则阻碍(或驱动)整个导体运动.所以安培力做功的过程,实质上是电能与机械能发生相互转化的过程,安培力对导体做正功,电能转化为机械能;安培力对导体做负功,机械能转化为电能.并且电能的变化量总等于安培力所做的功.。
安培力做功与电能转化之间关系的探究摘要:通过四种情景对安培力做功与电能转化之间的关系进行理论探究,阐明其关系及使用范围。
关键词:安培力做功电能转化电功机发电机【中图分类号】g424【文献标识码】【文章编号】在不少教辅资料中,对于安培力做功与电能转化之间关系的描述大多是:产生的电能等于克服安培力所做的功。
仔细研读这个结论,产生有两点疑问:一、克服安培力做功能作为产生电能多少的唯一量度吗?二、安培力做正功,与电能转化之间又是什么关系?本人利用如下几个情景进行探究:一、克服安培力做功能作为产生电能多少的唯一量度吗?情景一:光滑金属线框水平放置,磁感应强度为b,方向垂直线框平面,金属棒ab垂直线框放置。
其中线框左端接一个电阻r,ab 棒的电阻为r,现给ab棒一个初速度v0,在开始到最后ab棒停止的过程中,我们从ab棒的受力和能量转化角度进行分析:解析:ab棒在水平方向仅向左的安培力,根据动能定理,克服安培力做功,等于动能减少量。
根据能量转化与守恒定律可知:减小的动能应等于回路中产生的电能。
克服安培力所做的功等于产生的电能。
细节:在ab棒运动的过程中,棒中电子在洛仑兹力作用下,由a向b运动,形成a点电势高,b点电势低结果。
如果将ab棒看作回路中的电源,洛仑兹力充当非静电力,克服电场力做功,形成电能。
结论:在这种情况下,克服安培力做功等于电能的产生;这也是发电机的基本原理;情景二:一个金属线圈,置于一个磁场之中。
当磁场均匀增加时,线圈中的电能如何产生?解析:根据法拉第电磁感应定律和楞次定律可知:在线圈中会产生逆时针方向的电流,即有电流产生,但安培力不做功。
细节:这可以利用麦克斯韦电磁场理论进行解析,在变化的磁场周围会产生感生电场,线圈中的电子在电场力作用下开始做定向运动,形成电流则磁场能量转化为电能。
结论:在这种情况下,其实无安培力做功,但其它形式的能仍转化为电能。
总结一:电源的种类很多,化学电源是通过化学作用力将化学能转化为电能;太阳能电池工作的基本原理是通过结的光生伏特效应实现光能转化为电能等。
安培力做功与电磁感应现象中的能量转换能的转化与守恒定律,是自然界的普遍规律,也是物理学的重要规律。
电磁感应中的能量转化与守恒问题,是高中物理的综合问题,也是高考的热点、重点和难点。
在电磁感应现象中,外力克服安培力做功,消耗机械能,产生电能,产生的电能是从机械能转化而来的。
当电路闭合时,感应电流做功,消耗了电能,转化为其它形式的能,如在纯电阻电路中电能全部转化为电阻的内能,即放出焦耳热,在整个过程中,总能量守恒。
安培力做功=电能的改变,安培力做正功,电能转化为其它形式的能;安培力做负功(即克服安培力做功),其它形式的能转化为电能。
产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。
导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后在转化为焦耳热,另一部分用于增加导体的动能,即当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后在转化为焦耳热。
在电磁感应现象中,能量是守恒的。
安培力做功及其引起的能量转化
1、
安培力做正功
如图,光滑水平导轨电阻不计,左端接有电源,处于竖直向下的匀强磁场中,金属棒mn 的电阻为R ,放在导轨上开关S 闭合后,金属棒将向右运动。
安培力做功情况:金属棒mn 所受安培力是变力,安培力做正功,由动能定理有
k E ∆=安W ①
①式表明,安培力做功的结果引起金属棒mn 的机械能增加 能量转化情况:对金属棒mn 、导轨、和电源组成的系统,电源的电能转化为金属棒的动能和内能,由能量的转化和守恒定律有
Q E k +=电∆E ②
由①②两式得
Q E W -=电安③
③式表明,计算安培力做功还可以通过能量转化的方法。
2、
安培力做负功
如图所示,光滑水平导轨电阻不计,处于竖直向下的匀强磁场
m
n
中,金属棒ab 的电阻为R ,以速度0v 向右运动,
安培力做功情况:金属棒所受的安培力是变力,安培力对金属棒做负功,由动能定理有
k E ∆-=安W ①
①式表明,安培力做功的结果引起金属棒的机械能减少。
能量转化的情况:对金属棒ab 和导轨组成的系统,金属棒ab 的动能转化为电能,由能量的转化和守恒定律有
k E ∆=电E ②
金属棒ab 相当于电源,产生的电能转化为内能向外释放
Q =电E ③
由①②③得
Q W -=安④
④式说明,安培力做负功时,所做的负功等于系统释放出的内能。
这也是计算安培力做功的方法。
3、
一对安培力做功
如图所示,光滑导轨电阻不计,处于竖直向下的匀强磁场中,金属棒mn 电阻为R1,放在导轨上,金属棒ab 电阻R2,以初速度0v 向右运动。
安培力对金属棒ab 做负功,对mn 做正功,由动能定理,有
k ab 1E ∆-=安W ① k mn 2E ∆=安W ②
①、②两式表明,安培力做功使金属棒ab 机械能减少,使金属棒mn 机械能增加。
对金属棒ab 、mn 、导轨组成的系统,金属棒ab 减少的动能转化为金属棒mn 的动能和回路的电能,回路的电能又转化为内能,由能量转化和守恒有
电E E E kmn kab +∆=∆③ Q =电E ④
由四式联立得
Q W W -=21安安+⑤
⑤式说明,一对安培力做功的和等于系统对外释放的内能。
典型例题:
例1、如图,光滑水平导轨电阻不计,左端接有电源,处于竖直向下的匀强磁场中,金属棒mn 的电阻为R ,放在导轨上开关S 闭合后,将会发生的现象是() A 、 ab 中的感应电动势先增大而后保持恒
定 B 、
ab 的加速度不断变小,直至为零
C、电源消耗的电能全部转化为ab的动能
D、ab的速度先增大而后保持恒定,这时电源的输出功率为
零。
例2、如图5所示,水平放置的光滑平行金属导轨,相距L=0.1m,导轨距地面高
度h=0.8m,导轨一端与电源相连,另一端放有质量m=3×10-3kg的金属棒,磁
感强度B=0.5T,方向竖直向上,接通电源后,金属棒
无转动地飞离导轨,落地点的水平距离s=1.0m.求:
(1)电路接通后,通过金属棒的电量q.
(2)若ε=6V,电源内阻及导轨电阻不计,求金属棒产
生的热量Q.
1、如图所示,长L1宽L2的矩形线圈电
阻为R,处于磁感应强度为B的匀强磁场边缘,线圈
与磁感线垂直。
求:将线圈以向右的速度v匀速拉出
磁场的过程中,⑴拉力的大小F;⑵拉力的功率P;⑶拉力做的功W;⑷线圈中产生的电热Q;⑸通过线圈某一截面的电荷量q。
2、如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。
磁感应强度为B的匀强磁场方向垂直于纸面向外。
金属棒ab的质量为m,与导轨接触良好,不计摩擦。
从静止释放后ab保持水平而下滑。
试求ab下滑的最大速度v m
L
3、如图所示,U 形导线框固定在水平面上,右端放有质量为m 的金属棒ab ,ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总电阻为R 。
从t =0时刻起,在竖直向上方向加一个
随时间均匀变化的匀强磁场B =kt ,(k >0)那么在t 为多大时,金属棒开始移动?
4、如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B
一个围成四分之一圆形的导体环oab ,其圆心在原点
o ,半径为R ,开始时在第一象限。
从t =0起绕o 点以角速度ω
逆时针匀速转动。
试画出环内感应电动势E 随时间t 而变的函数图象(以顺时针电动势为正)。
3.电磁感应中的能量守恒
例15如图所示,矩形线圈abcd 质量为m ,宽为d ,在竖直平面内由静止自由下落。
其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d ,线圈ab 边刚进
例16
如图所示,水平面上固定有平行导轨,磁感应强度为B 的匀强磁场方向竖直向下。
同种合金做的导体棒ab 、cd 横截面积之比为2∶1,长度和
导轨的宽均为L ,ab 的质量为m ,电阻为r ,开始时ab 、cd 都垂
直于导轨静止,不计摩擦。
给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度v m、最大加速度a m、产生的电热各是多少?
间有B=1.0T的匀强磁场。
一个正方形线圈边长为
l=10cm,线圈质量m=100g,电阻为R=0.020Ω。
开始
时,线圈的下边缘到磁场上边缘的距离为h=80cm。
将
线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。
取g=10m/s2,求:⑴线圈进入磁场过程中产生的电热Q。
⑵线圈下边缘穿越磁场过程中的最小速度v。
⑶线圈下边缘穿
越磁场过程中加速度的最小值a。