《概率论与数理统计》作业四(
- 格式:doc
- 大小:262.00 KB
- 文档页数:2
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率统计第四章综合作业班级: 姓名: 学号(A )1、设离散型随机变量X 服从参数为2的泊松( Poisson )分布,求随机变量23-=X Z 的期望与方差.2、已知随机变量X 服从二项分布,且4.2)(=X E ,44.1)(=X D , 求二项分布的参数p n ,的值.3、设X 服从均值为3的指数分布,求: ]2[X E ,]2[X D ;4、设)4 ,1(~N X ,)9 ,2(~N Y ,且X 与Y 独立,132++=Y X Z ,求Z 的分布密度.5、设⎪⎪⎭⎫ ⎝⎛-12/1312/112/103/12~X ,求2(25)E X +,2(25)D X +.6、设)4,4(~ππ-U X ,求: 3()E X ,3()D X . 7、设随机变量X 服从参数为λ的泊松分布,且已知1)]2)(1[(=--X X E 求λ.8、设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,求2X 的数学期望.9、设两个相互独立的随机变量X 与Y 的方差分别为4和2,求随机变量Y X 23-的方差 .(B )1、设随机变量X 具有密度函数⎪⎪⎩⎪⎪⎨⎧<≤-≤<=.,0,21,2,10)(,其他x x x x x f 求)(),(X D X E .2、设随机变量的X 概率密度为,+∞<<∞-=-X e x f x ,21)( 求X 的数学期望和方差.3、设)(Y X ,的概率密度为⎩⎨⎧≤≤≤=其他. ,0,10 ,12),(2x y y y x f求)(),(),(XY E Y E X E .4、 设二元随机变量)(Y X ,有密度函数⎪⎩⎪⎨⎧<<<<--=其他.0,10,102),(,,y x y x y x f求相关系数XY ρ.5、 已知随机变量X 与Y 的相关系数为ρ,求121+=X X 与121+=Y Y 的相关系数.6、 已知随机变量Y X ,的方差分别为25和36,相关系数为0.4,求:Y X U 23+= 与Y X V 3-=的方差及协方差.7、将一枚硬币重复掷 n 次,以X 和Y 分别表示正面向上和反面向上的次数,求X 和Y 的相关系数是多少?8、设两个随机变量Y X ,相互独立,且都服从均值为0方差为1/2的正态分布,求随机变量Y X -的均值和方差.9、 一工厂生产的某种设备的寿命X (以年计)服从指数分布, 概率密度为⎪⎩⎪⎨⎧≤>=-0,00,41)(4x x e x f x工厂规定,出售的设备售出一年之内损坏可予以调换。
第四章作业题解4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知,X Y 的概率分布如下表所示:如果两台机床的产量相同, 问哪台机床生产的零件的质量较好?解: 11.032.023.014.00)(=⨯+⨯+⨯+⨯=X E9.0032.025.013.00)(=⨯+⨯+⨯+⨯=Y E因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。
4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ).解:X 的可能取值为3,4,5.因为1.01011)3(35====C X P ;3.0103)4(3523====C C X P ;6.0106)5(3524====C C X P所以 5.46.053.041.03)(=⨯+⨯+⨯=X E4.3 设随机变量X 的概率分布1{}(0,1,2,),(1)kk a P X k k a +===+其中0a >是个常数,求()E X解: 112111()(1)(1)(1)k k k k k k a aa E X kk a a a -∞∞+-====+++∑∑,下面求幂级数11k k kx ∞-=∑的和函数,易知幂级数的收敛半径为1=R ,于是有12111()(),1,1(1)k k k k x kxx x x x ∞∞-==''===<--∑∑根据已知条件,0a >,因此011aa<<+,所以有 221()(1)(1)1a E X a a a a==+-+.4.4 某人每次射击命中目标的概率为p , 现连续向目标射击, 直到第一次命中目标为止, 求射击次数的期望.解:因为X 的可能取值为1,2,……。
依题意,知X 的分布律为1(),1,1,2,k P X k q p q p k -===-=所以)1()()()(1111'-='='==∑∑∑∞=∞=∞=-qq p q p q p p kqX E k k k kk k p p p q p11)1(122=⋅=-=4.5 在射击比赛中, 每人射击4 次, 每次一发子弹. 规定4弹全未中得0分, 只中1弹得15分, 中2弹得30 分, 中3弹得55分, 中4弹得100分. 某人每次射击的命中率为0.6, 此人期 望能得到多少分?解:设4次射击中命中目标的子弹数为X ,得分为Y ,则X ~B (4,0.6)因为 0256.04.06.0)0(44=⨯==C X P1536.04.06.0)1(3114=⨯==C X P 3456.04.06.0)2(2224=⨯==C X P 3456.04.06.0)3(1334=⨯==C X P 1296.04.06.0)4(0444=⨯==C X P所以Y 的分布律为故期望得分为1296.01003456.0553456.0301536.0150256.00)(⨯+⨯+⨯+⨯+⨯=Y E= 44.644.6 设随机变量 X 的概率分布为132{(1)}(1,2,,),3kk kk P X k +=-==说明X 的期望不存在。
中国地质大学(武汉)远程与继续教育学院概率论与数理统计 课程作业4(共 4 次作业) 学习层次:专升本 涉及章节:第6章 --第8章1.),(~2σμi N X ,1,2,,10,i i μ= 不全等.试问1021,,,X X X 是简单随机样本吗?为什么?2.设2~(,)X N μσ,10,,2,1 =i .试问1021,,,X X X 是简单随机样本吗?为什么?3.设总体X 服从二点分布),1(p B ,p x P ==)1(其中p 是未知数,54321,,,,X X X X X 是从中抽取的一个样本.试指出在21X X +,}{min 51i i X ≤≤,p X 25+,215)(X X +,13+X ,44-X 中哪些是统计量,哪些不是统计量,为什么?4.对以下一组样本值,计算出样本平均值和样本方差:54,67,68,78,70,66,67,70,65,69.5.设车间生产一批产品要估计这批产品的不合格率p ,为此随机地抽取一个容量为n 的子样n X X X ,,,21 .用A 表示第i 次抽样为不合格品,求事件A 的概率p 的矩估计量。
6.设总体X 的期望)(X E 、方差)(X D 均存在, n X X X ,,,21 是X 的一个样本,试证统计量:(1)212114341),(X X X X +=ϕ; (2)212123231),(X X X X +=ϕ;(3)212138583),(X X X X +=ϕ.都是)(X E 的无偏估计,并说明哪个有效。
7.随机地从一批钉子中抽取16枚,测得其长度(以厘米计)为2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15,2.12,2.14,2.10,2.13,2.11,2.14,2.11。
设钉长服从正态分布.(1)若已知σ=0.01厘米;(2)若σ未知,分别求均值μ的置信度为90%的置信区间。
8.测量一孔直径六次,得到直径来均值495x来方厘米,样本方差=.120.00051S=平方厘米,设孔径服从正态分布,试求孔径真值的范围。
概率论与数理统计 第四章 随机变量的数字特征练习题与答案详解(答案在最后)1.假定每个人生日在各个月份的机会是相同的,求三个人中生日在第一季度的人数的平均.2.100个产品中有5个次品,任取10个,求次品个数的数学期望与方差.3.设随机变量X 的概率密度为)(,e 21)(∞<<-∞=-x x p x试求数学期望EX 及方差DX .4.已知随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<≤=,,,,,,4140400)(x x x x x F 试求X 的数学期望EX 方差DX .5.对圆的直径作近似测量,设其值均匀地分布在[]b a ,内,求圆面积的数学期望.6.设随机变量X 概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,020cos )(πx x x f X试求随机变量DY X Y 的方差2=.7.设随机变量ξ只取非负整数值,其概率为{}0)1(1>+==+a a a k P k k,ξ是常数, 试求ξE 及ξD .8.设独立试验序列中,首次成功所需要的次数ξ服从的分布列为:其中q =9.若事件A 在第i 次试验中出现的概率为,i p 设μ是事件A 在起初n 次独立试验中的出现次数,试求μE 及μD .10.随机变量n ξξξ,,,21 独立,并服从同一分布,数学期望为,μ方差为2σ,求这些随机变量的算术平均值∑==ni i n 11ξξ的数学期望与方差.11.设μ是事件A 在n 次独立试验中的出现次数,在每次试验中,)(p A P =再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD .12.设随机变数ξ之概率分布如下:求: (1) ; ]]1[2[2+ξE (2) ])[(2ξξE E -.13.随机变量,)(~x f X⎪⎩⎪⎨⎧<<-≤≤=其它,,,,,,021210)(x x x x x f试计算n EX n (为正整数).14.随机变量aX Y p n B X e ),,(~=,求随机变量Y 的期望和方差. 15.某种产品每件表面上的疵点数服从泊松分布,平均每件上有8.0个疵点.规定疵点数不超过1个为一等品,价值10元,疵点数大于1不多于4为二等品,价值为8元,4个以上者为废品,求:)1( 产品的废品率;)2( 产品的平均价值.16.一个靶面由五个同心圆组成,半径分别为25,20,15,10,5厘米,假定射击时弹着点的位置为Z Y Z ,),(为弹着点到靶心的距离,且),(Y Z 服从二维正态分布,其密度为200222001),(y x ey x f +-=π,现规定弹着点落入最小的圆域为5分,落入其他各圆域(从小到大)的得分依次为4分,3分,2分,1分,求:)1( 一次射击的平均得分;)2( 弹着点到靶心的平均距离.17.若ξ的密度函数是偶函数,且∞<2ξE ,试证ξ与ξ不相关,但它们不相互独立.18.若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立.答案详解1.每个生日在第一季度的概率是41=p .设X 表示三个人中生日在第一季度的人数,则X 服从二项分布,,⎪⎭⎫⎝⎛B 413从而X 的平均为43413)(=⨯=X E2.5.0=EX ,11045=DX3.x -e 21为偶函数,⋅x x-e 21为奇函数,所以,由积分性质知0d e 21=⋅=-∞∞-⎰x x EX x(奇函数在对称区间上的积分值为零)=DX x x P X E x X d )()]([2⎰∞∞--=⨯=-∞∞-⎰x x xd e 212x x x d e 02-∞⎰)(d )(202x x x x --∞-=-=⎰ x x x d e 200⎰∞-+∞2d e 20==⎰∞-x x x 4.342==DX EX ,5.设圆的直径为随机变量X ,圆的面积为随机变量,Y 则24)(X X f Y π==,随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它,,,,01)(b x a ab x p X , 于是)(12112 d 14d )()())(()(2232b ab a a b x ab x ab x x x p x f X f E Y E b aX ++=⋅-⋅=-⋅===⎰⎰∞∞-πππ6.2220π-=DY7.⎥⎦⎤⎢⎣⎡++=+⋅=∑∑∞=∞=+101)1(11)1(k k k k k a a k a a a k E ξ, 令,且,则10)1(<<=+p p a a ,211)1()1()(p p p p p p p kp k k kk -='-='=∑∑∞=∞= 故a aa a aaE =+-+⋅+=2)11(111ξ.采用同样的方法并利用a E =ξ得⎥⎦⎤⎢⎣⎡++=∑∞=k k a a k a E )1(11122ξ[]k k p k k a ∑∞=+-+=11)1(11 ∑∑∞=∞=-+++=11)1(1111k k k k p k k a kp a ,2322122)1(21)1(1)(1a a p a p a p p a p a p a p a k k +=-⋅++="⎥⎦⎤⎢⎣⎡-++=''++=∑∞=故)1()2()(2222a a a a a D +=-+=E -E =ξξξ 8.21pqD pE ==ξξ,9.设,21n μμμμ+++= 其中⎩⎨⎧=出现次试验若第出现次试验若第A i A i i ,0,1μ,则∑∑===E =ni i ni i p E 11μμ,由试验独立得诸i μ相互独立,从而知=μD )1(11i ni i ni i p p D -=∑∑==μ10.nD E 2,σξμξ== 11.事件A 出现奇数次的概率记为b ,出现偶数次的概率记为a ,则.,++=++=---3331122200n n n n n n n n q p C pq C b q p C q p C a 利用,,n n p q b a q p b a )(1)(-=-=+=+可解得事件A 出现奇数次的概率为 n n p p q b )21(2121])(1[21--=--=,顺便得到,事件A 出现偶数次的概率为n p a )21(2121-+=.η服从两点分布,由此得,{}{}===出现奇数次事件A P P 1ηn p )21(2121--, {}{}===出现偶数次事件A P P 0ηn p )21(2121-+, 所以,=ηE n p )21(2121--,=ηD ][)21(2121[n p --])21(2121n p -+n p 2)21(4141--=.12.(1) 117; (2) 46513.x x f x EX n n d )(⎰∞∞-=x x x x x x n n d )2(d 2110-⋅+⋅=⎰⎰12)212(012212+-+⋅++=+++n x n x n x n n n)21122212(2122+++-+-+++=++n n n n n n n )2)(1(222++-=+n n n 14.n a n a n a p q p q DY p q EY 22)e ()e ()e (+-+=+=, 15.(1) 0.0014; (2) 9.616.(1) 007.3; (2) π2517.设)(x f 是ξ的密度函数,则)()(x f x f =-,由)(x xf 是奇函数可得,0=ξE 从而0=ξξE E .又由于)(x f x x 是奇函数及,2∞<ξE 得ξξξξE E x x f x x E ===⎰∞∞-0d )(,故ξ与ξ不相关.由于ξ的密度函数是偶函数,故可选0>c 使得当{}10<<P <c ξ时,也有{}10<<P <c ξ,从而可得 {}{}{}{}c c P c P c P c P <<=<≠<<ξξξξξ,,其中等式成立是由于{}{}c c <⊂<ξξ,由此得不独立与ξξ.18.设⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛2,2,1, , 1q p d c p b a q :,:ηξ.作两个随机变量 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=**2211,0, ,0, q p d c d q p b a b :,:ηηξξ, 由ξ与η不相关即ηξξηE E E ⋅=得)(bd d b E E +--=**ξηξηηξbd dE bE E E +--=ξηηξ**=--=ηξηξE E d E b E ))((,而,,,}{)(}{)(} {))((d c P d c b a P b a E E d c b a P d c b a E -=-⋅-=-=-=-=--=********ηξηξηξηξ由上两式值相等,再由0))((≠--d c b a 得,,}{}{}{d c P b a P d c b a P -=-==-=-=****ηξηξ 即}{}{}{c P a P c a P =⋅====ηξηξ,. 同理可证}{}{}{d P a P d a P =⋅====ηξηξ,, }{}{}{c P b P c b P =⋅====ηξηξ,, }{}{}{d P b P d b P =⋅====ηξηξ,,从而ξ与η独立.。
《概率论与数理统计》第四、五章练习学院 班级、学号 姓名 成绩一、单项选择题(每小题2分,共16分)说明:请将答案直接填入下表中!(A)1- (B)0 (C)21 (D)1 2.设随机变量X 和Y 的方差存在且不等于0,则DY DX Y X D +=+)(是X 和Y (A)不相关的充分条件,但不是必要条件 (B)独立的充分条件,但不是必要条件(C)不相关的充分必要条件 (D)独立的充分必要条件3.设X 是一个随机变量,μ=EX ,2σ=DX (0,>σμ为常数),则对任意常数c ,必有(A)222)(c EX c X E -=- (B)22)()(μ-=-X E c X E(C)22)()(μ-<-X E c X E (D)22)()(μ-≥-X E c X E 4.设随机变量X 和Y 独立同分布,方差存在且不为零,记Y X U -=,Y X V +=,则随机变量U 与V 必然(A)不独立 (B)独立 (C)相关系数不为零 (D)相关系数为零5.假设随机变量)1,0(~N X ,)4,1(~N Y ,且相关系数1=XY ρ,则(A)1}12{=--=X Y P (B)1}12{=-=X Y P(C)1}12{=+-=X Y P (D)1}12{=+=X Y P6.设随机变量X 和Y 都服从正态分布,且它们不相关,则(A)X 与Y 一定独立 (B)),(Y X 服从二维正态分布(C)X 与Y 未必独立 (D)Y X +服从一维正态分布7.设随机变量n X X X ,,,21 )1(>n 独立同分布,且其方差为02>σ,令随机变量∑==ni i X n Y 11,则 (A)212)(σn n Y X D +=+ (B)211)(σnn Y X D +=- (C)nY X Cov 21),(σ= (D)21),(σ=Y X Cov 8.设 ,,,,21n X X X 为独立同分布的随机变量序列,且均服从参数为λ)1(>λ的指数分布,记)(x Φ为标准正态分布的分布函数,则 D (A))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ (B))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ (C))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ (D))(lim 1x x n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ 二、填空题(每小题2分,共14分)1.设随机变量X 的服从参数为λ的指数分布,则=>}{DX X P 1-e2.设随机变量X 服从二项在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧>=<-=010001X X X Y ,则方差=DY98 3.设随机变量X 服从参数为1的泊松分布,则==}{2EX X P 121-e 4.设一次试验的成功率为p ,进行100次独立重复试验,当=p 时,成功次数的标准差的值最大,其最大值为 21,5 5.设随机变量321,,X X X 相互独立,其中1X 在]6,0[上服从均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3=λ的泊松分布,记32132X X X Y +-=,则=DY 466.设随机变量X 和Y 的相关系数为,0==EY EX ,222==EY EX ,则=+2)(Y X E67.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据切比雪夫不等式≤≥+}6|{|Y X P 121 三、解答题(每题7分,共49分)1.设随机变量X 服从区间],[b a 上的均匀分布,2=EX ,3=DX ,求条件概率}2|0{≤>X X P【答】5,1=-=b a ;32 2.设连续型随机变量X 的概率密度为⎩⎨⎧<<=其他0103)(2x x x f X ,试求: (1)随机变量X 的分布函数)(x F X ;(2)数学期望EX 与方差DX ;【解】(1)⎪⎩⎪⎨⎧≥<<≤=111000)(3x x xx x F X (2)43=EX ;532=EX ,803)(22=-=EX EX DX3.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(EX )为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机。
第一章 随机事件及其概率练习1.1 随机事件与样本空间一、解:1. 由于每颗骰子出现1—6点数是等可能性的,同时掷三颗骰子,三个点数之和最小的为3,最大的为18,故样本空间为:S ={3, 4, 5, ……, 18}.2. 在此试验中,可能的结果有6×6=36个,故试验的样本空间为: S ={(1, 1), (2, 1), (3, 1), (4, 1), ……(5, 6), (6,6)}.3. 以“0”表示次品,“1”表示正品,则试验的样本空间为:S ={00, 0100, 0101, 0110, 0111, 100, 1010, 1011, 1100, 1101, 1110, 1111}. 4. 设三段长分别为1x , 2x , 3x ,则试验的样本空间为: S ={(1x , 2x ,3x )| 1x +2x +3x =1, 1x >0, 2x >0, 3x >0}. 二、解:1. C AB 2. A +B +C 3. C B A C B A C B A C B A +++ 4. AB +BC +AC 5. C B A C B A C B A ++ 三、解:1. C B A 2. C AB 3. C B A C B A C B A ++ 4. C B A BC A C AB ++ 5. A +B +C 6. C B A 四、解:1. 依题意:}21210|{≤≤≤≤=x x x A 或,故}2312141|{≤≤≤≤=x x x B A 或2. S x x B A =≤≤=+}20|{.3. }2341|{≤≤==⋃=⋃=x x B B A B A B A . 4. 因为AB =}121|{<<x x ,故}21210|{≤≤≤≤=x x x AB 或.五、解:1. C B A ⋂⋂表示1990年以前出版的中文数学书;2. 在“馆中的数学书都是90年后出版的中文版”的条件下,有 C B A ⋂⋂=A ;3. CB C 表示1990年以前出版的都是中文版。
概率论与数理统计 习题四解答3. 利用定理2的结论计算χ2分布的期望与方差。
解:设随机变量)(~2n Y χ,由定理2知,)()(,)()(1212∑∑====ni ini iXD Y D XE Y E ,其中X i 为相互独立的随机变量,且n i N X i ,,2,1),1,0(~ =.于是1212121)(22222222=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-∞+∞-+∞∞---∞+∞-⎰⎰dx exedx e x X E x x x i πππ所以 n Y E =)(. 又 121)()()(2422422-=-=⎰∞+∞--dx ex X E X E X D x i i i π2131)(3123212222322=-=-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-∞+∞-+∞∞--⎰i x x X E dx ex ex ππ, 所以 n Y D 2)(=. 解二:n X EX D XE Y E ni ni i ini i=-=+==∑∑∑===11212]01[)]()([)()(.4.试证明定理5.证:因为),(~2σμN X ,所以由定理1得:)1,0(~/N nX σμ-.再由定理4得:)1(~)1()1(/22----n t n S n n X σσμ即:)1(~/)(--n t nS X μ.6.设总体),(~λπX 试求)()(2S E X D 及.解:因为),(~λπX 所以λλ==)(,)(X D X E .于是 nn X D n X n D X D ni ni i ni i λλ===⎪⎪⎭⎫⎝⎛=∑∑∑===121211)(11)(⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡--=∑∑∑===)()(1111)(11)(212212122X nE X E n X n X E n X X n E S E n i i n i i ni i[][]λλλλλλλ=--=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛+-+-=⎭⎬⎫⎩⎨⎧+-+-=∑=)(1111)()()()(1122212n n n n n n n X E X D n X E X D n ni i i7. 设总体X 在[0,b ]上服从均匀分布,b 未知。
《概率论与数理统计》作业四(数理统计的基础知识,参数估计)
选择题和填空题答案填到相应大题题首答案处 学院 专业班级 姓名 学号 序号
一、选择题(每小题5分,共40分)
答案:1. 2. 3. 4. 5. 6. 7. 8.
1.下列说法错误的是( ).
A .统计量为随机变量
B .统计量是样本的函数
C .统计量表达式中不含有参数
D .统计量中不含未知参数
2.126,,,X X X 是来自正态总体(,1)N μ的一组简单随机样本,μ未知,则( )不是统计量.
A .41i i X =∑
B .6
21i i X =∑ C .6
116i i X μ=+∑ D .5X 3.设总体均值为μ,方差为2σ,n 为样本容量,下式中错误的是( ).
A .0)(=-μX E
B .2
()D X n σμ-= C .()1X
E μ= D
~(0,1)N 4.设X 服从)(n t 分布, αλ=>}|{|X P ,则=-<}{λX P ( ).
A .2α
B .α2
C .12α+
D .12α-
5.正态总体方差未知时,对取定的样本观察值及给定的(01)αα<<,欲求总体的数学期望的1α-置信区间,使用的统计量服从( ). A .标准正态分布 B .t 分布 C .2
χ分布 D .F 分布
6.设12,,,n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则2σ的无偏估计量为( ). A .11n i i X n =∑ B .211n i i X n =∑ C .211()1n i i X X n =--∑ D .21
1()n i i X X n =-∑ 7.设正态总体X 的方差为1,根据来自总体X 的容量为100的简单随机样本,测得样本均值为5,则X 的数学期望的置信度等于0.95的置信区间为( ).
A .[]4.804,5.196
B .[]8.404,9.156
C .[]4.408,5.916
D .[]4.084,6.156
8.从正态总体X 中,抽取一个容量为100的随机样本,其均值为81x =,标准差12s =,总体均值μ的99%置信区间为( ).
A .[]79.03,82.97
B .[]78.65,83.35
C .[]77.90,84.10
D .[]77.48,84.52
二、填空题(每空5分,共30分)
答案:① ② ③ ④ ⑤ ⑥
1.设随机变量n X X X ,,,21 相互独立且服从相同的分布,()()2E X ,D X μσ
==,令∑==n i i X n X 11,则()E X = ① ;()
D X = ② . 2.设1210X ,X ,,X 是来自总体)3.0,0(~2
N X 的样本,则1021144i i P X .=⎧⎫≥=⎨⎬⎩⎭∑ ③ . 3.设总体),(~2σμN X ,X 是样本均值,2S 是样本方差,样本容量为n ,则常用的随机变量
()221n S σ-服从 ④ 分布.
4.设12ˆˆ(,,,)n
X X X θθ= 是未知参数θ的估计量,若满足 ⑤ ,则称ˆθ为θ的无偏估计量. 5.如果1ˆθ和2ˆθ均为总体未知参数θ的无偏估计量,若满足 ⑥ ,则称1ˆθ是较2
ˆθ有效. 三、计算题(共30分,每题15分)
1.设总体X 的概率分布为
其中θ为未知参数,现抽取一组样本,样本值为,求的矩估计值.
2.设X 的概率密度函数为1,(0,1)(,)0,
(0,1)x x f x x θθθ-⎧∈=⎨∉⎩,12,,,n X X X 是来自于总体X 的一组简单随机样本,求参数θ的矩估计.
注:第八章计算题(不计入本次作业成绩)
某盐厂用自动包装机包装食盐,袋装食盐的重量服从正态分布2
(,)N μσ.正常工作时,袋装食盐的平均重量为400克.现随机地抽取9袋,测得样本均值为402.3克.问(1)若2=9σ,则自动包装机工作是
否正常;(2)若2σ未知,测得2=9S ,则自动包装机工作是否正常.其中0.05α=.。