甲壳素和壳聚糖天然高分子材料
- 格式:pptx
- 大小:4.70 MB
- 文档页数:103
甲壳素与壳聚糖综述甲壳素是自然界中最丰富的氨基多糖类有机资源,广泛存在于甲壳纲动物虾蟹的甲壳、昆虫的甲壳、真菌(酵母、霉菌)的细胞壁和植物(菇类)的细胞壁中,它通常与蛋白质、钙质等结合在一起,形成生物体的支撑组织。
在海洋中甲壳类动物就有两万多种,其中最主要的品种有100多种,各种虾类和蟹类是最主要的甲壳类水产。
甲壳素的自然年产量大约与纤维素差不多,估计每年生物合成的甲壳素达100亿吨。
全世界每年水产加工后的甲壳素废弃物约为140多万吨,甲壳素在我国有丰富的自然资源,如何充分利用这一宝贵的自然资源,长期以来一直是人们探索的课题。
早在1811年,H.Bracohnot首次从蘑菇中分离出甲壳素,并命名为“fangin”。
1823年,A.Odier发现昆虫的外皮上分布有大量的甲壳素,并用希腊语命名为“chitin”。
1859年,C.Rouget用浓氢氧化钾处理甲壳素,使其脱乙酰化,制备出能溶于稀有机酸的物质。
1894年Hoppe-seiler[1]将该物质命名为壳聚糖。
1937年,Iobell等人发现能把甲壳素水解成甲壳素低聚糖的甲壳素酶; 1973年,Eveleighdeng等人发现能把壳聚糖水解成低聚糖的壳聚糖酶。
壳聚糖酶对生物体自溶、形态发生和营养代谢中具有一系列重要作用,同时一些疾病和生物共生现象也与壳聚糖酶有关。
1977年,日本人首次将壳聚糖作为天然絮凝剂处理废水。
同年,在美国波士顿召开第一次有关甲壳素/壳聚糖的国际会议。
从此,甲壳素的开发应用在世界范围内形成一股热潮[1]。
甲壳素及其衍生物由于其优异的生物性能而具有广泛的应用前景,对其物理与化学结构的研究也一直是高分子材料领域所关注的热点。
随着现代化表征手段的建立和应用,对甲壳素及其衍生物的化学结构,超分子结构以及它们的应用研究得到了极大的发展。
甲壳素及其衍生物己被广泛应用于农业、食品添加剂、化妆品、抗菌剂、医疗保健以及药物开发等众多领域,其中尤为重要的是生物医用领域。
1 甲壳素与壳聚糖甲壳素(chitin)又名甲壳质、壳蛋白、几丁、几丁质,广泛存在于昆虫和甲壳动物(虾、蟹等)的甲壳中,少数真菌和绿藻等低等植物的细胞壁中也含有甲壳素。
在天然高分子中,其数量仅次于纤维素。
甲壳素是由N-乙酰-2-氨基-2-脱氧-D-葡萄糖经由β-1,4糖苷键聚合而成的线型高分子,分子量100万以上。
甲壳素和壳聚糖有不同的化学结构,甲壳素分子链上存在羟基和乙酰基,壳聚糖分子链上还含有游离的氨基可以通过各种化学改性,获得多种功能和用途。
甲壳素和壳聚糖可以与一氯乙酸、环氧乙烷、丙烯腈等醚化剂进行羧甲基化、羟乙基化、氰乙基化反应,生成相应的离子型醚和非离子型醚。
例如,在碱性(NaOH)条件下,以异丙醇为溶剂,加入一氯乙酸与甲壳素或壳聚糖反应,经中和、洗涤、干燥得到羧甲基甲壳素或羧甲基壳聚糖,是一类水溶性离子型醚。
2 甲壳素和壳聚糖的应用甲壳素、壳聚糖及其多种多样的化学改性产品具有种种功能,在纺织、印染、造纸、生化、食品、医疗、日用化工、农业和环境保护等方面都得到了广泛应用。
壳聚糖是一种阳离子聚电解质,对固体悬浮物有很好的凝聚作用,壳聚糖本身无毒性,所以可作为絮凝剂应用。
例如:用于水质净化和饮料(果汁、果酒)的除浊澄清;仪器工业下脚废水处理及对淀粉、蛋白质的回收;活性污泥的凝集及脱水;印染废水染料的凝集等。
根据美国商业部估计,目前全世界甲壳素的工业用量每年约15万t,主要用作环保处理剂及净水剂、约占50%。
它涉及的行业有食品业、屠宰业、染整业、电镀业。
甲壳素本身是天然材料,在发达国家环保管理机构均鼓励业界优先考虑使用,因对于其凝集之沉淀物不需考虑“二次污染”问题。
以甲壳素为主的滤材目前已使用于游泳池及其他大型水池除污及饮水净化。
甲壳素和壳聚糖及其衍生物在农业、纺织、造纸、生化、化学分析、重金属富集回收等方面还有多种用途。
甲壳素及其衍生物由于分子中羟基、氨基及其他基团的存在,对许多金属离子具有螯合作用,所以能有效地吸附或捕集溶液中的重金属离子,但不吸附水中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-、CO32-、HCO3-等离子,因而不影响天然水的本底浓度。
壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。
然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。
壳聚糖的改性方法主要包括化学改性和物理改性。
化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。
例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。
物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。
例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。
目前,壳聚糖的改性研究已经取得了显著的进展。
然而,仍存在一些问题和挑战。
其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。
改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。
未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。
壳聚糖在工业、生物医学等领域有着广泛的应用。
在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。
例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。
在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。
例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。
在生物医学领域,壳聚糖还可用于组织工程。
通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。
这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。
壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。
例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。
壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。
甲壳素与壳聚糖的制备原理与工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!甲壳素与壳聚糖的制备原理与工艺流程1. 概述甲壳素与壳聚糖是从甲壳类动物的外壳中提取的重要生物高分子材料,具有广泛的应用价值。
知识介绍甲壳素和壳聚糖作为天然生物高分子材料的研究进展车小琼,孙庆申,赵凯(黑龙江大学生命科学学院微生物黑龙江省高校重点实验室,黑龙江大学,哈尔滨150080)摘要:甲壳素是自然界中含量仅次于纤维素的天然高分子,壳聚糖是甲壳素脱乙酰化后带有阳离子的多糖。
壳聚糖中的自由氨基以及它的高结晶性,使得它能溶于酸,而不溶于碱和绝大数的有机溶剂。
同时壳聚糖具有无毒性、无刺激性、良好的生物相容性、生物可溶解性,以及高的电荷密度,因而被作为一种新型的天然生物材料得到广泛应用。
文章介绍了甲壳素和壳聚糖的结构和性质,综述分析了甲壳素和壳聚糖在制备微球和作为支架材料中的应用,并总结了甲壳素和壳聚糖在这两个方面存在的问题和发展前景。
关键词:甲壳素;壳聚糖;微球;组织工程;支架甲壳素(chitin)又名甲壳质、几丁质,是一种广泛存在于昆虫、海洋无脊椎动物的外壳以及真菌细胞中的天然高分子化合物[1]。
壳聚糖(chitosan)是甲壳素脱乙酰基后的产物,具有良好的生物相容性和生物可降解性,因此可用作生物材料,甲壳素和壳聚糖具有来源广泛、取材方便等优点[2,3]。
1甲壳素、壳聚糖的理化性质甲壳素是一种天然高分子化合物,其学名是B-(1y4)-2-乙酰胺基-2-脱氧-D-葡萄糖,是由N-乙酰胺基葡萄糖以及B-1,4糖苷键缩合而成[4]。
如果把此结构中糖基上的N-乙酰基大部分去掉的话,就成为甲壳素最为重要的脱乙酰化衍生物壳聚糖。
壳聚糖是由D-氨基葡萄糖和适量的N-乙酰-D-氨基葡萄糖以-B(1,4)糖苷键连接而组成的。
其化学名是(1,4)-2-氨基-2-脱氧-B-D-葡萄糖,结构类似于纤维素[1,2]。
111甲壳素、壳聚糖的物理性质甲壳素呈灰白色或白色片状、半透明、略有珍珠光泽的无定性固体,相对分子量因原料和制备方法的差异而从数十万到数百万不等。
不溶于水、稀碱、稀酸及一般的有机溶剂,可溶于浓的盐酸、硫酸、硝酸等无机酸和大量的有机酸[1]。
专题论述甲壳素和壳聚糖的研究及其在农林业中的应用※段新芳(中国林科院林业工程博士后流动站,北京100091)摘要 本文扼要介绍了甲壳素和壳聚糖的性质、研究概况和主要用途,着重论述了甲壳素和壳聚糖在农业和林业中的应用情况,分析了甲壳素和壳聚糖在林业中的潜在应用前景,指出安全无毒且对环境无公害的天然高分子壳聚糖和甲壳素在林木种子处理、森林土壤改良、森林病虫害防治、水果保鲜和木材工业中均有很光明的应用前景。
关键词 甲壳素 壳聚糖 农业 林业 应用1 甲壳素和壳聚糖甲壳素(Chitin),又名甲壳质、几丁质、壳蛋白、蟹壳素等,广泛存在于低等动物,特别是节肢动物(如昆虫、蜘蛛、甲壳动物等)的外壳及低等植物(如真菌、藻类、酵母等)的细胞壁中,是一种天然的生物高分子,属线性多糖类。
甲壳素的学名为B (1,4)-2-乙酰氨-2-脱氧-D -葡萄糖。
尽管其分子结构中也含有少量的氨基葡萄糖链节(约为15%),但由于乙酰氨葡萄糖链节占多数,分子间和分子内存在有强烈的氢键。
因此它的溶解性能很差,化学性质也不活泼。
甲壳素不溶于水、稀酸、稀碱及一般的有机溶剂,能溶于诸如浓的无机酸等一些非常规溶剂,同时由此往往伴随着高分子链的降解。
壳聚糖(Chitosan),又名聚氨基葡萄糖,可溶性甲壳素或脱乙酰甲壳素,是甲壳素的脱乙酰化产物,是一种高分子直链型多糖。
学名是B (1,4)-2-氨基-2-脱氧-D-葡萄糖。
由于脱乙酰化反应破坏了甲壳素分子结构的规整性,因此,其溶解性能较甲壳素大为改善,化学性质也较为活泼。
壳聚糖不溶于水、碱和有机溶液,溶于甲酸、乙酸、乳酸、盐酸和苯甲酸等稀酸溶液,可生成盐类。
一般使用时,多使用这类稀酸壳聚糖溶液。
这种溶液带正电荷[1]。
甲壳素是一种丰富的天然资源,是一种可再生的能源及工业原材料,它在自然界的产量仅次于纤维素,据估计自然界每年生物合成的甲壳素达100亿t,远远超过其它氨基多1998 世 界 林 业 研 究 WORLD FORESTRY RESEARCH No.3a ※本项目获国家自然科学基金和中国博士后科学基金资助。
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。