水力学_第1章绪论
- 格式:pdf
- 大小:1.57 MB
- 文档页数:88
《水力学》学习指南第一章绪 论(一)液体的主要物理性质1.惯性与重力特性:掌握水的密度ρ和容重γ;2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。
描述液体内部的粘滞力规律的是牛顿内摩擦定律 :注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动3.可压缩性:在研究水击时需要考虑。
4.表面张力特性:进行模型试验时需要考虑。
下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。
2.理想液体:忽略粘滞性的液体。
(三)作用在液体上的两类作用力第二章 水静力学水静力学包括静水压强和静水总压力两部分内容。
通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。
(一)静水压强:主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。
1.静水压强的两个特性:(1)静水压强的方向垂直且指向受压面(2)静水压强的大小仅与该点坐标有关,与受压面方向无关,2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。
(它是静水压强计算和测量的依据)3.重力作用下静水压强基本公式(水静力学基本公式)p=p 0+γh 或 其中 : z —位置水头,p/γ—压强水头(z+p/γ)—测压管水头请注意,“水头”表示单位重量液体含有的能量。
4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑相对压强:p=γh,可以是正值,也可以是负值。
要求掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。
1pa(工程大气压)=98000N/m 2=98KN/m2下面我们讨论静水总压力的计算。
计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。
第一章绪论1-2.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度转变前后质量守恒,即又20℃时,水的密度80℃时,水的密度那么增加的体积为1-4.一封锁容器盛有水或油,在地球上静止时,其单位质量力为假设干?当封锁容器从空中自由下落时,其单位质量力又为假设干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如下图,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。
[解]2-3.密闭水箱,压力表测得压强为4900Pa。
压力表中心比A点高0.5m,A点在液面下1.5m。
求液面的绝对压强和相对压强。
[解]绘制题图中面上的压强散布图。
Bh 1h 2A Bh 2h 1hAB解:Bρgh 1ρgh 1ρgh 1ρgh 2AB ρgh2-14.矩形平板闸门AB一侧挡水。
已知长l=2m,宽b=1m,形心点水深h c=2m,倾角=45,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:作用点位置:2-15.平面闸门AB 倾斜放置,已知α=45°,门宽b =1m ,水深H 1=3m ,H 2=2m ,求闸门所受水静压力的大小及作用点。
45°h 1h 2BA[解] 闸门左侧水压力:作用点:闸门右边水压力:作用点:总压力大小:对B 点取矩:2-13.如下图盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求维持液体不溢出管口的最大角速度ωmax 。
[解] 由液体质量守恒知,I 管液体上升高度与 II 管液体下降高度应相等,且二者液面同在一等压面上,知足等压面方程:液体不溢出,要求, 以别离代入等压面方程得2-16.如图,,上部油深h1=1.0m,下部水深h2=2.0m,油的重度=m3,求:平板ab单位宽度上的流体静压力及其作用点。
[解] 合力作用点:一弧形闸门,宽2m,圆心角=,半径=3m,闸门转轴与水平齐平,试求作用在闸门上的静水总压力的大小和方向。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0.9mm,长度20mm,涂料的粘度μ=0.02Pa.s。