输电线路单相断线事故分析
- 格式:pptx
- 大小:1.62 MB
- 文档页数:20
500kV输电线路子导线断裂原因分析摘要:输电线路的安全是保障稳定供电的重要基础,其正常运行与否对于人们生活以及社会生产有着极大的影响,如施工过程中存在任何质量问题,都有可能导致安全隐患的存在,造成的后果将是难以估量的。
本文即对此进行分析并以2012年发生的真实子导线断裂案例进行分析,剖析导致其断裂的原因。
关键词:500kv输电线路;导线断裂;事故原因一、引言就我国当前在建的以及处于运行中的输电线导线的连接方式而言,不论是直线接续管或是耐张管均使用的是液压压接进行连接的,而对于此类具有隐蔽性工程的施工质量的管理,已经建立了相对完善控制体系。
例如,部分施工单位聘请专业的工程监理单位加以监督控制、部分建设单位整体负责工程质量的监管、部分建设单位采用了“三级”质量监督体系,总体而言取得的效果还是良好的。
然而,在完善的监督体系中假如出现细节上的疏忽,即有可能影响到整个监督体系的效果,导致工程质量存在质量问题进而埋下了诸多隐患。
例如,输电线路子导线断裂、输电线路倒塌等问题,不仅影响到供电的需求甚至有可能引发难以估量的灾害。
本文就以近年来发生的导线子导线断线的案例加以分析。
二、内蒙古一北京的托源安500kV输电线路案例分析(一)工程简述在2012年2月28日8时,该输电线路因受到冰雪天气的影响导致117号直线铁塔与相近导线出现严重覆冰现象。
此外,在现场听到有冰块脱落声响,与117号相邻的18号部分线路的间隔棒发生破裂与子导线扭绞现象。
经过对事故现场的故障检查并确认,在2012年2月28日11时58分左相(A相)线路发生跳闸现象。
次日9时再次检查发现,117~118号档间隔棒相比28日损坏程度更加严重而且子导线已经从破损处脱出。
12时间待冰雪融化后再次检查发现,118号塔的左相子导线在悬垂线夹发生断裂,导致大号侧子导线悬挂与联板上致使联板发生变形而小号侧子导线直接坠落地面。
(二)相关参数介绍1.档距参数该线路117~118十l号耐张段为耐一直一耐的结构形式,其中117号和118+1号为耐张塔,118号为直线塔,具体参数如表1所示”117一118号耐张段档距为497m,118一118+l号耐张段档距为211m,117一118+l号耐张段代表档距为424m。
单相断线故障的分析一、单相断线运行的理论分析电力系统在非全相运行时,在一般情况下,没有危险的大电流和高电压产生(在某些情况下,例如带有并联电抗器的超高压线路,在一定条件下会产生工频谐振过电压)。
但是,负序电流和零序电流可能引起某些继电保护误动作。
下面简单介绍非全相运行的方法。
110kV断路器操作机构均采用三相机构,开关本体基本不会出现非全相运行;同时110kV线路杆塔相对于35kV线路杆塔要高,出现单相断线的概率同样很小,运行值班人员很少遇见110kV线路单相断线故障。
110kV配电网发生单相断线时故障分析在电力系统实际运行中,线路断线故障发生的概率较小,故110 kV及以下电压等级的线路保护在整定计算时不考虑断线故障的影响,这就造成当小概率的断线故障发生时,电力系统继电保护及自动装置往往会出现不可预料的动作情况,因此,总结并分析断线故障发生时的相关规律,对电力系统运行人员(特别是调度员)分析判断并迅速处理故障具有十分重要的意义。
有没有故障相别显示?无测距参数?发生断线的T接线路负荷电流,根据仿真系统相电流有效值为1.06kA,(一般110kV输电线路600-1200A)辛村变电站间隙过电流保护动作,整定值为100A。
当220 kV线路发生单相一侧断线故障后,220 kV线路电流和末端变电站变压器各侧电压的大小,与变压器中性点接地方式及断线前所带负荷均有关系,对单侧供电的220 kV变电站,当220 kV线路发生单相(A相)一侧断线故障后(1) 220 kV 线路健全相电流将增大,增大的幅度与变压器220 kV中性点是否接地运行有关,变压器220 kV中性点不接地运行,健全相电流增幅更大。
变压器220 kV中性点不接地运行时,220 kV线路负序电流稳态值超过了断线前的负荷电流。
断线相A相及变压器110 kV和10 kV侧相电压都将降低。
健全相三侧相电压降低与否,与变压器所带负荷的大小及变压器220 kV中性点是否接地运行有关,变压器所带负荷越大,三侧相电压降幅越大,变压器220 kV中性点不接地运行时,相电压降幅更大。
分析110 kV 输电线路单相断线故障摘要:阐述了一起 110 kV 输电线路 B 相断线故障及引起的其他故障,通过与 AC两相接地故障的对比,分析了单相断线和AC 两相接地故障现象的异同,为专业工作人员介绍了一种便捷的工作思路。
关键词:输电线路;断线故障;在大电流接地系统中,输电线路单相或两相断线,分相断路器跳开一相,线路单相重合闸过程中一侧拒合或者两侧拒合,及短期非全相运行等,均属断相状态。
从故障边界条件来看,单相断线与两相接地故障边界条件相同。
下面以 B 相断线故障为引子,介绍 B 相断线故障及引起的避雷器永久击穿故障,并与 AC 两相接地故障相进行对比,分析这两种故障的异同及继电保护的动作行为。
一、B 相断线及断线引发事件过程综述系统一次接线简图如图 1 所示。
110 kV 输电线路 MN,线路上 T 接电铁牵引站。
M 站为主供电源侧,M 侧到 T 接点为 LGJ-185 架空导线,长度:Ⅰ回23.717 km,Ⅱ回23.631 km。
T接点到牵引变为LGJ-95架空导线,长度:Ⅰ回1.123 km,Ⅱ回 1.060 km。
为双回路平行架设,有部分杆段同杆并架,线路于1995 年 4 月投入运行。
线路保护为南京自动化设备厂 PSL621C 型线路保护。
零序电流保护二次定值为:Ⅰ段 23A/0 s,Ⅱ段 6.5A/0.5 s,Ⅲ段(Ⅳ段)3.3A/0.8 s,电流互感器变比为 300/5。
电铁牵引变电站 T 站变压器绕组接线型式为 Y/V 型,两台变压器一台运行,另一台备用,低压侧母联断路器合。
正常运行方式为M站1113MNⅡ线单回带T站2#变压器单台运行,1114MNⅠ线在 T 站 G1 隔离刀闸处备投。
某年6 月7 日11 时39 分 32 秒321 ms,1113MNⅡ线PSL621C零序电流保护Ⅲ段3.3A/0.8 s动作跳闸,Ⅳ段3.3A/0.8 s 动作永跳。
Ⅲ、Ⅳ段零序电流保护不带方向,保护测量电流值为 6.491 A,即将达到而未达到Ⅱ段定值。
35kV线路单相断线故障分析摘要:35kV线路单相断线在电网系统中出现频率较小,但准确判断这类故障有一定难度,现运用对称分量法与复合序网对单相断线后系统电压、变化进行分析,为调控人员在出现类似故障时能准确的分别出故障类型,迅速找出故障点从而避免故障的扩大。
关键词:单相断线;对称分量;连接组别1.事故过程2月9日35kV老县变35kV三相电压异常:Ua2.0、Ub22.0、Uc20.8。
10kV三相电压异常:Ua3.9、Ub6.3、Uc2.1,电源侧110kV太山变35kV三相电压为:Ua22.54、Ub21.37、Uc21.54(无明显异常)。
面对这种突发情况,当值调度人员与监控人员立即采取了措施,首先按照线路接地故障处理方式进行了线路推拉,在无效后更换了35kV进线电源后电压均恢复正常。
整个过程持续4小时,后经线路巡查故障点为3622老太线1号杆A相电缆线夹断线,即35kV线路单相断线。
如能掌握35kV断线后系统电气量变化情况,可以更加准确迅速对故障进行处理。
以下就针对断线电气量进行分析。
2.断线事故电压异常分析正常运行时,系统三相电源及负荷处于对称状态,三相对地导纳相等,即,中性点电压为零,无偏移电压,当系统A相断线时,三相导纳不再相等,即,三相负载对称性遭到破坏,中性点电压不再为零,在电源侧中性点产生一个偏移电压,破坏了三相负载的对称性。
老县变35kV系统及其他配电线路对称时,只考虑35kV老太线对系统影响。
系统结构图如图1所示,等值电路图如图2所示。
三相对称,即式中:为A相电源侧对地电容;为A相负荷侧对地电容;为B相对地电容;为C相对地电容。
图1 简化的35kV系统结构图图2 等值电路图2.1单相断线后的35kV电源侧母线电压数据分析线路A相断线开路,电源中性点对地电位为:1)若在35kV太老线首端开路(向量图如图3所示),则≈0,≈0,电源中性点对地电位为:A相对地电位(即M点对地电位)为:B相对地电位:C相对地电位:图3 线路首端开路向量图图 4 线路末端开路向量图图5 线路中间开路向量图2)若在35kV老太线末端开路(向量图如图4所示),则≈0,,,则电源中性点对地电位为:(电源中性点电位与大地电位相同)A相对地电位为:;B相对地电位为:C相对地电位为:。
110kV并列运行双回线其中一回线单相断线案例分析在电力运行中,高压电缆有时会发生单相断线问题,这会给电力系统带来一定的影响。
本文将采用一个110kV并列运行双回线中的一回线单相断线案例进行分析,并对该问题的原因、影响及解决方法进行探讨。
案例描述:某城市电力系统中,110kV电网采用并列运行双回线的方式供电,其中一条回线发生单相断线,导致该环网段的供电能力出现了问题,专业人员对该问题进行了分析,并及时采取了有效措施解决了该问题。
问题分析:1.问题原因单相断线通常是由于电缆本身质量问题,或是在运行中受到外界因素的影响所导致的。
若出现了单相断线的情况,在排查问题时,需细致全面地进行检测,并寻找问题原因,以便针对性地解决问题。
2.问题影响一旦发生单相断线,将会直接影响到整个回路的供电能力,使得该环网段的供电能力大大降低。
在此期间,出现负荷过大时,电力系统的运行稳定性也将受到影响。
3.解决方法专业的技术人员对该问题进行了有力应对,进行了详细的现场勘查,并修复了断线的电缆部位,使得电力系统恢复了正常的运行状态。
总结:针对单相断线的情况,在检测问题及寻找问题原因时,需细致周全,以便尽快地找到问题并及时解决。
在此过程中,必要的技术措施和装备是必不可缺的。
对于这样的问题,我们应该重视电缆工作的缺陷排查和维护工作,增强预防和排除隐患去发生问题。
同时,还需要及时采取措施,保证系统的正常稳定运行。
为进一步分析这个110kV并列运行双回线中的一回线单相断线问题,我们需要了解相关数据,进而对问题进行更深入的分析。
数据:1.电缆长度:该回路的全长为12.5公里,其中4.5公里采用直埋电缆方式。
2.电缆规格:110kV交联聚乙烯电缆,直径65mm,每根电缆搭载2芯导体。
3.断线位置:该回路单相断线出现在直埋电缆段,距离馈线侧15米处。
分析:1.电缆长度对断线的影响从该回路的全长来看,其长度并不算长,因此可以排除电缆长度过长导致的单相断线问题。