2.4:初始解
- 格式:ppt
- 大小:857.50 KB
- 文档页数:11
2.4.2 求函数零点近似解的一种计算方法—二分法整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点教学重点:用二分法求方程的近似解.教学难点:二分法.课时安排1课时教学过程导入新课思路1.(情境导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米).电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究 提出问题①解方程2x -16=0.②解方程x 2-x -2=0.③解方程x 3-2x 2-x +2=0.④解方程x 2-2x 2-3x +2=0.⑤我们知道,函数f x =lnx +2x -6在区间2,3内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间? ⑦什么叫二分法?⑧试求函数f x =lnx +2x -6在区间2,3内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.,⑩思考用二分法求函数零点近似值的特点. 讨论结果: ①x=8.②x=-1,x =2.③x=-1,x =1,x =2 ④x=-2,x =2,x =1,x =2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x =a +b 2称为区间(a ,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y =f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.⑧因为函数f(x)=lnx +2x -6,用计算器或计算机作出函数f(x)=lnx +2x -6的对应值表. x 1 2 3 4 5 6 789f(x)-4-1.306 91.098 63.386 35.609 47.791 89.945 9 12.079 4 14.197 2由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间(2,3)内有零点x 0,取区间(2,3)的中点x 1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x 0∈(2.5,3).同理,可得表(下表)与图象(如下图).区间 中点的值 中点函数近似值(2,3) 2.5 -0.084 (2.5,3) 2.75 0.512 (2.5,2.75) 2.625 0.215 (2.5,2.625) 2.562 5 0.066 (2.5,2.562 5) 2.531 25 -0.009 (2.531 25,2.562 5)2.546 8750.029(2.531 25,2.546 875) 2.539 062 5 0.010 (2.531 25,2.539 062 5)2.535 156 250.001由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.539 062 5-2.531 25|=0.007 812 5<0.01,所以,我们可以将x =2.531 25作为函数f(x)=lnx +2x -6零点的近似值.⑨用二分法求函数零点的一般步骤如下:第一步 在D 内取一个闭区间[a 0,b 0] D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.第二步 取区间[a 0,b 0]的中点(如下图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; (3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0. 第三步 取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f(x 1)和f(a 1),并判断:(1)如果f(x 1)=0,则x 1就是f(x)的零点,计算终止;(2)如果f(a 1)·f(x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; (3)如果f(a 1)·f(x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点满足给定的精确度.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1求函数f(x)=x 3+x 2-2x -2的一个正实数零点(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.用二法逐步计算,列表如下:端点或中点横坐标 计算端点或中点的函数值 定区间 a 0=1,b 0=2 f(1)=-2,f(2)=6 [1,2] x 0=(1+2)/2=1.5 f(x 0)=0.625>0 [1,1.5] x 1=(1+1.5)/2=1.25 f(x 1)=-0.984<0 [1.25,1.5] x 2=(1.25+1.5)/2=1.375 f(x 2)=-0.260<0 [1.375,1.5] x 3=(1.375+1.5)/2=1.437f(x 3)=0.162>0[1.375,1.437 5]1.4,因此1.4就是所求函数的一个正实数零点的近似值.函数f(x)=x3+x2-2x-2的图象如下图.实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.点评:以上求函数零点的二分法,对函数图象是连续不间断的一类函数的零点都有效.如果一种计算方法对某一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.算法是刻板的、机械的,有时要进行大量的重复计算,算法的优点是一种通法,只要按部就班地去做,总会算出结果.算法更大的优点是,它可以让计算机来实现.例如,我们可以编写程序,快速地求出一个函数的零点.有兴趣的同学,可以在“Scilab”界面上调用二分法程序,对上例进行计算,求出精确度更高的近似值.本套书的一个重要特点是,引导同学们认识算法思想的重要性,并希望同学们在学习前人算法的基础上,去寻求解决各类问题的算法.在思路2例1求方程2x3+3x-3=0的一个实数解(精确到0.01).解:考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在[0,2]内有解.取[0,2]的中点1,经计算,f(1)=2>0,又f(0)<0,所以方程2x3+3x-3=0在[0,1]内有解.3至此,可以看出,区间[0.742 187 5,0.744 140 625]内的所有值,若精确到0.01,都是0.74.所以0.74是方程2x3+3x-3=0精确到0.01的实数解.点评:利用二分法求方程近似解的步骤:①确定函数f(x)的零点所在区间(a,b),通常令b-a=1;②利用二分法求近似解.,发现x1∈(2,2.5)(如上图),这样可以进一步缩小,先画出函数图象的简图,如上图.=2>0,x2-2x-1=0有一解,记为x1.,因为f(2.5)=0.25>0,所以2<x<2.5.知能训练1.函数f(x)=x3-2x2-x+2的零点个数是( )A.0 B.1 C.2 D.3答案:D2.在26枚崭新的金币中,有一枚外表与真币完全相同的假币(重量轻一点),现在只有一台天平,请问:应用二分法的思想,最多称__________次就可以发现这枚假币?解析:将26枚金币平均分成两份,放在天平上,则假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,放在天平上,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚平均分成两份,放在天平上,则假币一定在轻的那3枚金币里面;将这3枚金币任拿出2枚放在天平上,若平衡,则剩下的那一枚就是假币,若不平衡,则轻的那一枚就是假币.综上可知,最多称4次就可以发现这枚假币.答案:43.求方程x 3-3x -1=0的一个正的近似解(精确到0.1).解:设f(x)=x 3-3x -1,设x 1为函数的零点,即方程x 3-3x -1=0的解.作出函数f(x)=x 3-3x -1的图象如下图.因为f(1)=-3<0,f(2)=1>0,所以在区间(1,2)内方程x 3-3x -1=0有一个解,记为x 1.取1与2的平均数1.5,因为f(1.5)=-2.125<0,所以1.5<x 1<2.再取2与1.5的平均数1.75,因为f(1.75)=-0.890 625<0,所以1.75<x 1<2. 如此继续下去,得f(1)<0,f(2)>0 ⇒x 1∈(1,2), f(1.5)<0,f(2)>0 ⇒x 1∈(1.5,2), f(1.75)<0,f(2)>0 ⇒x 1∈(1.75,2), f(1.875)<0,f(2)>0 ⇒x 1∈(1.875,2),f(1.875)<0,f(1.937 5)>0 ⇒x 1∈(1.875,1.937 5),因为区间[1.875,1.937 5]内的所有值,如精确到0.1都是1.9,所以1.9是方程x 3-3x -1的实数解. 拓展提升从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为多少?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识) 答案:至少需要检查接点的个数为4. 课堂小结①掌握用二分法求方程的近似解,及二分法的其他应用. ②思想方法:函数方程思想、数形结合思想. 作业课本习题2—4 A 7.设计感想 “猜价格”的游戏深受人们的喜欢,它是二分法的具体应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着广泛的应用.本节设计紧紧围绕这两个中心展开,充分借助现代教学手段,用多种角度处理问题,使学生充分体会数学思想方法的科学性与完美性.备课资料基本初等函数的零点个数 结合基本初等函数的图象得:①正比例函数y =kx(k≠0)仅有一个零点0; ②反比例函数y =kx (k≠0)没有零点;③一次函数y =kx +b(k≠0)仅有一个零点;④二次函数y =ax 2+bx +c(a≠0),当Δ>0时,二次函数有两个零点-b ±Δ2a ;当Δ=0时,二次函数仅有一个零点-b2a;当Δ<0时,二次函数无零点.。
2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。
专题2.4 守恒思想在化学中的应用——守恒法解题守恒法是中学化学计算中一种很重要的方法与技巧,也是高考试题中应用最多的方法之一,其特点是抓住有关变化的始态和终态,忽略中间过程,利用其中某种不变量建立关系式,从而简化思路,快速解题。
1.“守恒法”就是以化学反应过程中存在的某些特定关系为依据,从诸多变化和繁杂数据中寻找某一不变的物理量及其对应等式关系解题的一种思想方法。
2.运用守恒法可以避开复杂的反应和中间过程,直接寻找始态和终态中特有的守恒关系,能更快、更便捷地解决问题,提高解题的速度和准确度。
3.中学常见的守恒问题有三种:质量守恒、电荷守恒、电子守恒。
一、质量守恒:反应物减少的总质量=生成物增加的总质量。
在一些物理变化中也存在质量守恒,如溶液在稀释或浓缩过程中,原溶质质量在稀释或浓缩后不变(溶质不挥发、不析出)。
在化学反应过程中找准反应前后的质量关系,利用不变量可快速求解。
【例1】在臭氧发生器中装入100 mL O2,经反应3O22O3,最后气体体积变为95 mL(体积均为标准状况下测定),则反应后混合气体的密度为g·L-1。
【答案】1.5。
2.原子守恒:抓住初始反应物和最终生成物中某一原子(或原子团)不变,找到等量关系进行求解。
【变式探究】有一在空气中暴露过的KOH固体,经分析知其内含水7.12%,K2CO32.88%,KOH90%,若将此样品1 g加入到46.00 mL的1 mol·L-1盐酸中,过量的酸再用1.07 mol·L-1KOH溶液中和,蒸发中和后的溶液可得固体克。
【解析】此题中发生的反应很多,但仔细分析可知:蒸发溶液后所得固体为KCl,其Cl-全部来自于盐酸中的Cl-,在整个过程中Cl-守恒。
即n(KCl)=n(HCl);故m(KCl)=0.046 L×1 mol·L-1×74.5 g·mol-1=3.427 g。
2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。
1 / 21第二章 单自由度系统习题2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:2n=g/δ运动微分方程(式2.5):x +2nx=0初始条件:x (0)=3δ,x(0)=0 由式2.8有:A=2020)(ωnxx +=3δ=arctgnx xω00 =0由式2.7有: 响应:x =3δcos(δg t)2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:ω2n =g/δ=9.8/0.2=49运动微分方程(式2.5):x +ω2n x=0 初始条件:x (0)=-0.2,x(0)=0 由式2.8有:振幅:A=2020)(ωnxx +=0.2ϕ=arctgnx xω00 =0由式2.7有: 响应:x=0.2cos(7t) 周期:T=2/ωn弹簧刚度:k=mg/δ=19.8/0.2=49(N/m)最大弹簧力:F Smax =-kA=-490.2=9.8(N)2.3 重物m l 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物m 2从高度为h 处自由落到m l 上而无弹跳,如图T —2.3所示,求其后的运动。
图 T —2.3解:ω2n =k/(m 1+m 2)运动微分方程(式2.5):x+2nx=0初始条件:x (0)=- m 2g/km 2gh=21(m 1+m 2)x2(0)⇒ x (0) (以下略)2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆3 / 21心受到一弹簧k 约束,如图T —2.4所示,求系统的固有频率。
图 T —2.4解:系统的势能:U=21kr 2θ2系统的动能:E t =21I •θ2+21mr2•θ2由d(U+E t )=0得:(I+ mr 2)••θ+kr 2θ=0ω2n =22m r I kr +2.5 均质杆长L 、重G ,用两根长h 的铅垂线挂成水平位置,如图T —2.5所示,试求此杆相对铅垂轴OO 微幅振动的周期。
第二章习题答案2.1.1 质点的运动学方程为j t i t r j i t r ˆ)14(ˆ)32()2(ˆ5ˆ)23()1(-+-=++=求质点的轨迹并用图表示解:(1)⎭⎬⎫=+=523y t x 平行于x 轴的直线:y=5(2)⎭⎬⎫-=-=1432t y t x 消去t 的轨迹方程:0534=-+y x2.1.2 质点的运动学方程为kj e i e r t t ˆ2ˆˆ22++=-。
(1)求质点的轨迹。
(2)求自t = -1 至t = 1质点的位移解:(1)由运动方程得质点轨迹的参数方程为 )3()2()1(222⎪⎩⎪⎨⎧===-z ey e x tt (1)x (2)消去t ,得轨迹方程 ⎩⎨⎧==21z xy(2)自t = -1 至t = 1质点的位移:je e i e e r r r k j e i e r k j e i e r t t ˆ)(ˆ)(ˆ2ˆˆˆ2ˆˆ,1,1222211221221-------+-=-=∆++=++==-= 2.1.3 质点的运动学方程为j t i t r ˆ)32(ˆ42++=。
(1)求质点的轨迹;(2)求自t=0至t=1质点的位移解:由质点的运动方程⎩⎨⎧+==)2(32)1(42t y t x (1) 质点的轨迹:消去t 得:2)3(-=y x(2) 位移:ji r r r j i r j r t t ˆ2ˆ4ˆ5ˆ4ˆ3101221+=-=∆+====2.2.1 雷达站于某瞬时测得飞机位置为R 1=4100m ,θ1=33.70,0.75s 后测得R 2=4240m ,θ2=29.30,R 1,R 2均在铅直平面内,求飞机瞬时速度的近似值和飞行方向(α角)。
解:取雷达站位置为原点,飞机在两个时刻的位置矢量分别为r 1和r 2,则| r 1|=R 1, | r 2|=R 2,如图所示由余弦定理,在0.75s 时间间隔内飞机的位移的大小为mR R R R r r r r r 4.349)3.297.33cos(42404100242404100)cos(2)cos(200222121222121212221≈-⨯⨯-+=--+=--+=∆θθθθ飞机的瞬时速度的大小:==∆∆≈smt r v 75.04.349465.8m/s飞机的瞬时速度方向:由正弦定理)3.297.33sin(4.349sin 4240)sin(sin 00212-=⇒-∆=γθθγr r100001207.341806.11193.0arcsin 18090,93.04.4sin 4.3494240sin ≈--=∴≈-=∴>∴>≈=γθαγγγr r另解:利用矢量在直角坐标系中的正交分解. 选平面直角坐标系,取雷达站的位置为坐标原点,x 轴沿水平方向,y 轴铅直向上,则在两个时刻飞机的位置矢量分别可表示为ji j i jR i R r ji j i jR i R r ˆ98.2074ˆ57.3697ˆ3.29sin 4240ˆ3.29cos 4240ˆsin ˆcos ˆ86.2274ˆ01.3411ˆ7.33sin 4100ˆ7.33cos 4100ˆsin ˆcos 00222220011111+=⨯+⨯=+=+=⨯+⨯=+=θθθθ 飞机飞行0.75s 后的位移矢量为j i r r r ˆ88.199ˆ56.28612-=-=∆飞机瞬时速度的大小的近似值:s m t rv /8.46575.038.34975.088.19956.28622=≅+=∆∆≈飞机瞬时速度的方向与x 轴的夹角:09.3482.038.34956.286ˆcos =∴==∆⋅∆=ααr i r2.2.2 一圆柱体沿抛物线轨道运动.抛物线的轨道方程为y=x 2/200(长度:mm).第一次观测到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处.求圆柱体瞬时速度的近似解:第一次观测时,x=249mm, y=x 2/200=(249)2/200≈310mm ,j i r ˆ310ˆ2491+=2ms 后,x=234mm, y=x 2/200=(234)2/200≈273.78mm ,j i r ˆ78.273ˆ2342+=圆柱体的位移:mm r j i r r r 2.3922.3615ˆ22.36ˆ152212≈+=∆--=-=∆∴ms mm msmm t r v /6.1922.39==∆∆≈速度与x 轴的夹角:5.112383.02.3915ˆcos -≈∴-≈-=∆⋅∆=ααr i r2.2.3 一人在北京音乐厅内听音乐,离演奏着17m 。