第4章模糊函数汇编
- 格式:ppt
- 大小:1.24 MB
- 文档页数:32
§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为 推理、 和 推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为 和 。
模糊算法的基本原理与应用模糊算法是20世纪60年代提出的一种新的数学分析方法,具有广泛的应用领域,如控制理论、人工智能、模式识别、决策分析等。
本文将介绍模糊算法的基本原理以及在实际应用中的一些案例。
一、模糊算法的基本原理模糊算法的核心思想是将不确定性和模糊性考虑进来,将数据分为模糊集合,不再是传统意义上的精确集合。
模糊集合是指一个元素可能属于这个集合的程度,它用隶属度函数来表示。
举个例子,一个人的身高不可能绝对的是1米80,可能是1米78或者1米82,那么身高就可以看成一个模糊集合,每个身高值对应一个隶属度。
隶属度函数一般用μ(x)表示,μ(x)的取值范围是[0,1],它表示元素x属于该模糊集合的程度。
为了使模糊算法具有可操作性,需要建立一套模糊集合运算规则。
常用的包括交运算和并运算。
1. 交运算:模糊集合A和B的交集,定义为:A ∩B = { (x, min(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中都出现的元素x,它们的隶属度的最小值就是A∩B中x的隶属度。
2. 并运算:模糊集合A和B的并集,定义为:A ∪B = { (x, max(μA(x), μB(x))) | x∈X }其中X是数据集合。
这个公式的意思是,对于集合A和B中出现的元素x,它们的隶属度的最大值就是A∪B中x的隶属度。
二、模糊算法在实际应用中的案例1. 模糊控制系统模糊控制系统是模糊算法应用最广泛的领域之一。
传统的控制系统需要建立数学模型,对系统进行分析和设计。
而模糊控制系统则是基于经验的,采用模糊集合来描述系统状态,从而规划控制策略。
比如在家电产品中,智能洗衣机的控制系统就采用了模糊控制算法,根据衣物的不同湿度、污渍程度、质地等因素,自动调整洗涤方案,达到最佳的洗涤效果。
2. 模糊识别系统模糊识别系统是指通过对事物进行模糊描述和抽象,进行模式匹配和分类的一类智能系统。
它可以处理各种类型的信息,比如图像、声音、文本等等。
模糊核函数模糊核函数是机器学习中常用的一种核函数,它在支持向量机等算法中发挥着重要的作用。
模糊核函数通过将输入数据映射到高维空间中,从而使得原本线性不可分的数据在新的空间中变得线性可分。
本文将通过讲解模糊核函数的原理、常用的模糊核函数以及它们的应用案例,来深入探究模糊核函数的特点和优势。
一、模糊核函数的原理模糊核函数是一种非线性函数,它用于将输入数据从低维空间映射到高维空间。
在高维空间中,原本线性不可分的数据可能变得线性可分,从而提高了机器学习算法的分类性能。
模糊核函数的原理可以通过以下几个步骤来解释:1. 首先,将输入数据从低维空间映射到高维空间,通常使用非线性映射函数来实现。
这个映射过程可以将原本线性不可分的数据转化为线性可分的数据。
2. 其次,在高维空间中,使用线性分类器(如支持向量机)对数据进行分类。
线性分类器在高维空间中可以更好地划分数据,从而提高分类的准确性。
3. 最后,通过将分类结果从高维空间映射回低维空间,得到最终的分类结果。
在实际应用中,有许多种模糊核函数可以选择。
下面介绍几种常用的模糊核函数及其特点:1. 高斯核函数:高斯核函数是一种常用的模糊核函数,它通过计算数据点与其他数据点之间的距离来确定数据点在高维空间中的位置。
高斯核函数具有良好的平滑性和非线性特性,能够较好地处理复杂的分类问题。
2. 多项式核函数:多项式核函数通过将数据点映射到多项式空间中来实现非线性分类。
多项式核函数具有简单的形式和计算效率高的特点,适用于一些简单的分类问题。
3. 拉普拉斯核函数:拉普拉斯核函数是一种基于数据点之间的密度差异的模糊核函数。
它能够更好地处理数据分布不均匀的情况,对异常点的鲁棒性较强。
三、模糊核函数的应用案例模糊核函数在机器学习中有广泛的应用,下面介绍几个典型的应用案例:1. 图像分类:模糊核函数可以应用于图像分类任务中,通过将图像像素映射到高维空间中,提取出更多的特征信息,从而提高图像分类的准确性。
第6章模糊逻辑6.1 隶属函数6.1.1 高斯隶属函数函数gaussmf格式y=gaussmf(x,[sig c])说明高斯隶属函数的数学表达式为: , 其中为参数, x为自变量, sig为数学表达式中的参数。
例6-1>>x=0:0.1:10;>>y=gaussmf(x,[2 5]);>>plot(x,y)>>xlabel('gaussmf, P=[2 5]')结果为图6-1。
图6-16.1.2 两边型高斯隶属函数函数gauss2mf格式y = gauss2mf(x,[sig1 c1 sig2 c2])说明sig1.c1.sig2.c2为命令1中数学表达式中的两对参数例6-2>>x = (0:0.1:10)';>>y1 = gauss2mf(x, [2 4 1 8]);>>y2 = gauss2mf(x, [2 5 1 7]);>>y3 = gauss2mf(x, [2 6 1 6]);>>y4 = gauss2mf(x, [2 7 1 5]);>>y5 = gauss2mf(x, [2 8 1 4]);>>plot(x, [y1 y2 y3 y4 y5]);>>set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off');结果为图6-2。
6.1.3 建立一般钟型隶属函数函数 gbellmf格式 y = gbellmf(x,params)说明 一般钟型隶属函数依靠函数表达式b 2|ac x |11)c ,b ,a ;x (f -+=这里x 指定变量定义域范围, 参数b 通常为正, 参数c 位于曲线中心, 第二个参数变量params 是一个各项分别为a, b 和c 的向量。
模糊理论及其在图像处理中的应用独。
创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。
学位论文作者签名:签字日期:冽年易月弓日学位论文版权使用授权书本学位论文作者完全了解江西师范大学研究生院有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的电子版和纸质版,允许论文被查阅和借阅。
本人授权江西师范大学研究生院可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
保密的学位论文在解密后适用本授权书学位论文作者签名:诛荔签字日期:加年历月日摘要图像滤波技术是数字图像预处理的重要环节,对图像滤波的好坏,直接影响滤波后分割的精度。
图像成像过程中受各种因素的影响,人们事先很难了解成像过程中信息丢失的情况,使得图像处理过程中带有一定的相似性和不确定性。
而模糊集合论及模糊信息处理技术,在处理带有模糊不确定性的事件及对不精确知识的描述与处理上都具有极大的优势。
基于以上原因,本文研究了以模糊信息处理技术为基础的图像滤波算法,提出了一些新的思想和想法。
本文首先从低密度椒盐噪声的去噪开始,通过四个不同方向的拉普拉斯算子来检测噪声,然后将卷积得出的结果通过模糊规则转换为噪声隶属度,利用得到的噪声隶属度采取加权的方法去噪,然后是讨论高密度椒盐噪声,先是对统计量检测噪声的能力进行讨论,从而探讨处理高密度椒盐噪声的方法。
通过对椒盐噪声性质的分析,提出新的噪声检测方法,并采取噪声点和非噪声点分离的处理思路,基于像素间的相似度进行去噪,最终得到了比较好的结果。
关键词:椒盐噪声;隶属度函数;阀值;相似度, ,,.,,’ ..,,.:,,,.,. , , .:; ;;录目摘要??..??.目录弓言.....?..??.,茜?..??‘模糊数学理论基础?...模糊理论简单介绍??...模糊数学的基本概念..模糊子集的定义.?. ..模糊子集的表示..?.隶属函数的确定...二元对比排序??...其它.小结??.数字图像处理基础?..像素间的基本关系.椒盐噪声??..常用的滤波方式...中值滤波原理..均值滤波算法原理...滤波图像质量评价方法....小结??.?低密度椒盐噪声的处理??...将噪声图像转化为模糊集?..椒盐噪声的检测.改进的中值滤波方法?...仿真实验.小结.??..高密度椒盐噪声的处理??...基于噪声矩阵的阀值噪声处理.实验模拟..基于噪声矩阵的相似度去噪??....算法实现.....小结??.?结论??.参考文献?.致谢??.在读期间公开发表论文著及科研情况模糊理论及其在图像处理中的应用引言人类已经进入了世纪,这是一个信息爆炸的时代,而图像能够很好的借助多媒体表达大量的信息,从而逐渐成为人类获取和表达信息的重要工具。