利用旋转解决几何问题(较难)
- 格式:ppt
- 大小:1.24 MB
- 文档页数:15
模型介绍★旋转动角问题三步解题技巧总结一.根据题意找到目标角度二.表示出目标角度1.角度一边动另一边不动,角度变大:目标角=起始角+速度×时间2.角度一边动另一边不动,角度变小:目标角=起始角-速度×时间3.角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角-速度×时间变大:目标角=速度×时间-起始角4.角度两边都动,运动方向相同且变大目标角=起始角+速度差×时间5.角度两边都动,运动方向相同且变小目标角=起始角-速度差×时间6.角度两边都动,运动方向相反目标角=起始角+速度和×时间三.根据题意列方程求解例题精讲【例1】.如图,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD,当OC边与OB边重合时,∠COD从图中的位置绕点O顺时针旋转n°(0<n<126),则n°=51°或69°.时,∠MON=2∠BOC.解:①0°<n<54°时,∠BOC=n°,∠MON=2n°,∠MON=(126°+n°)+54°﹣(54°+n°)=100°,∴n=51.②当54°<n<126°时,∠AOC=360°﹣(126°+n°)=234°﹣n°,∠BOD=54°+n°,∴∠MON=360°﹣∠AOM﹣∠AOB﹣∠BON=360°﹣(234°﹣n°)﹣126°﹣(54°+n°)=138°∴n=69.综上所述,n的值为51或69.故答案为:51°或69°.变式训练【变式1-1】.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D 重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒15°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为2或8或10秒.解:∵∠E=∠ABC=30°,∠C=∠EFB=90°,∠E=∠ABC=30°,∴∠D=∠A=60°.①当DE∥AC时,如图1中,∵∠C=90,∴AC⊥BC,∴DE⊥BC,∴∠D+∠BFD=90°,∴∠BFD=90°﹣60°=30°,∴旋转时间t==2s.②如图2中,当DE∥BC时,∠BFE=∠E=30°,∴∠DFB=90°+30°=120°,∴旋转时间t==8s.③当DE∥AB时,如图3中,∴∠BGF=∠E=30°,∴∠BFE=30°+30°=60°,∴∠DFB=60°+90°=150°,∴旋转时间t==10s.综上所述,旋转时间为2s或8s或10s时,△ABC恰有一边与DE平行.故答案为:2或8或10.【变式1-2】.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75+5t),解得t=.当∠NPQ=∠MPN时,15t=(75+5t),解得t=.故t的值为3或或.故答案为:3或或.【例2】.一副三角板按图1方式拼接在一起,其中边OA,OC与直线EF重合,∠AOB=45°,∠COD=60°,保持三角板COD不动,将三角板AOB绕着点O顺时针旋转一个角度α,(如图2),在转动过程中两块三角板都在直线EF的上方,当OB平分由OA,OC,OD其中任意两边组成的角时,α的值为30°或90°或105°.解:当OB平分∠AOD时,∵∠AOE=α,∠COD=60°,∴∠AOD=180°﹣∠AOE﹣∠COD=120°﹣α,∴∠AOB=∠AOD=60°﹣α=45°,∴α=30°,当OB平分∠AOC时,∵∠AOC=180°﹣α,∴∠AOB=90°﹣α=45°,∴α=90°;当OB平分∠DOC时,∵∠DOC=60°,∴∠BOC=30°,∴α=180°﹣45°﹣30°=105°,综上所述,旋转角度α的值为30°或90°或105°;故答案为:30°或90°或105°.变式训练【变式2-1】.将一副直角三角板ABC,ADE按如图1叠加放置,其中B与E重合,∠BAC =45°,∠BAD=30°.将三角板ADE从图1位置开始绕点A顺时针旋转,并记AM,AN分别为∠BAE,∠CAD的平分线,当三角板ADE旋转至如图2的位置时,∠MAN的度数为37.5°.解:∵AM,AN分别为∠BAE,∠CAD的角平分线,∴∠MAE=∠BAE,∠NAC=∠DAC,∴∠MAN=∠MAE+∠NAC﹣∠CAE=(∠BAE+∠DAC)﹣∠CAE=(∠BAC+∠DAE+2∠CAE)﹣∠CAE=×75°=37.5°;故答案为:37.5.【变式2-2】.如图①,O为直线AB上一点作射线OC,使∠AOC=120°,将一个直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒5°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中第t 秒时,OQ所在直线恰好平分∠BOC,则t的值为24s或60s.解:如图1,∵∠AOC=120°,∴∠BOC=60°,∵OQ平分∠BOC,∴∠BOQ=∠BOC=30°,∴t==24s;如图2,∵∠AOC=120°,∴∠BOC=60°,∵OQ′平分∠BOC,∴∠AOQ=∠BOQ′=∠BOC=30°,∴t==60s,综上所述,OQ所在直线恰好平分∠BOC,则t的值为24s或60s,故答案为:24s或60s.1.如图,已知PQ∥MN,点A,B分别在MN,PQ上,射线AC自射线AM的位置开始,以每秒3°的速度绕点A顺时针旋转至AN便立即逆时针回转,射线BD自射线BP的位置开始,以每秒1°的速度绕点B逆时针旋转至BQ后停止运动.若射线BD先转动30秒,射线AM才开始转动,当射线AC,BD互相平行时,射线AC的旋转时间为37.5或105秒.解:根据题意,需要分两种情况,当射线AC顺时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠MAC=3°t,∠PBD=30°+1°t,∴∠CAN=180°﹣3°t,∴30°+1°t=180°﹣3°t,解得t=37.5.当射线AC逆时针旋转时,如图所示:∵PQ∥MN,∴∠PBD=∠BDN,∵BD∥AC,∴∠BDA=∠CAN,∴∠PBD=∠CAN,设射线AC运动时间为t,则∠CAN=3°t﹣180°,∠PBD=30°+1°t,∴30°+1°t=3°t﹣180°,解得t=105.故答案为:37.5或105.2.如图1,直线ED上有一点O,过点O在直线ED上方作射线OC,将一直角三角板AOB (∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线ED上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,旋转时间为t秒.若射线OC的位置保持不变,且∠COE=140°.则在旋转过程中,如图2,当t =2或8或32秒时,射线OA,OC与OD中的某一条射线恰好是另两条射线所夹角的平分线.解:当射线OA是∠COD的平分线时,∵∠COD=180°﹣∠COE=40°,OA是∠COD的平分线,∴∠AOD=∠COD=20°,∴t==2;当射线OC是∠AOD的平分线时,∠AOD=2∠COD=80°,∴t==8;当射线OD是∠COA的平分线时,360﹣10t=40,∴t=32,故答案为:2或8或32.3.如图1,已知∠ABC=50°,有一个三角板BDE与∠ABC共用一个顶点B,其中∠EBD =45°.(1)若BD平分∠ABC,求∠EBC的度数;(2)如图2,将三角板绕着点B顺时针旋转α度(0°<α<90°),当AB⊥BD时,求∠EBC的度数.解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠CBD==25°,∵∠EBD=45°,∴∠EBC=∠EBD+∠DBC=45°+25°=70°.(2)∵AB⊥BD,∴∠ABD=90°,∵∠ABC=50°,∴∠DCB=90°﹣50°=40°,∵∠EBD=45°,∴∠EBC=45°﹣40°=5°.4.将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数;(2)如图(1),求∠BOD+∠AOC的度数;(3)如图(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∵∠BOD=∠AOB+∠COD﹣∠AOC,∴∠BOD+∠AOC=∠AOB+∠COD=90°+90°=180°;(3)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°;当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.5.已知∠AOB=60°,OM平分∠AOC,ON平分∠BOC,求:(1)如图1,OC为∠AOB内部任意一条射线,求∠MON=30°;(2)如图2,当OC旋转到∠AOB的外部时,∠MON的度数会发生变化吗?请说明原因;(3)如图3,当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,OM平分∠AOC,射线ON在∠BOC内部,∠NOC=∠BOC,求∠COM﹣∠BON的值?解:(1)∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠BOC+∠AOC=∠AOB=×60°=30°.故答案为:30°;(2)不变,当OC旋转到∠AOB的外部时,∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=∠BOC﹣∠AOC=∠AOB=×60°=30°.∴∠MON的度数不会发生变化;(3)当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,∵OM平分∠AOC,∠NOC=∠BOC,∴∠COM=∠AOC,∠BON=∠BOC,∴∠COM﹣∠BON=∠AOC﹣×∠BOC=∠AOC﹣∠BOC=∠AOB=30°.6.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=1:2,∠MON 的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图1,求∠CON的度数;(2)将图1中的∠MON绕点O以每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,如图2,若直线ON恰好平分锐角∠AOC,求∠MON所运动的时间t值;(3)在(2)的条件下,当∠AOC与∠NOC互余时,求出∠BOC与∠MOC之间的数量关系.解:(1)∵∠AOC:∠BOC=1:2,∠AOC+∠MOC=180°,∴∠AOC=,∵∠MON=90°,∴∠AON=90°,∴∠CON=∠AOC+∠AON=90°+60°=150°;(2)当直线ON平分∠AOC时,如图,ON'平分∠AOC,逆时针旋转60度至ON''时,直线ON平分所以t=3,∵∠AOC=60°,∴∠AON'=30°,此时射线ON逆时针旋转60度,∴∠MON所运动的时间t=60÷20=3(s);如图②,∵直线ON恰好平分锐角∠AOC,∴ON沿逆时针旋转的度数为90°+150°=240°,∴∠MON所运动的时间t==12(s);综上,∠MON所运动的时间t值为3s或12s;(3)如图③所示:∵∠AOC+∠NOC=90°,OM与OA重合∴∠BOC与∠MOC互补.如图②所示:当ON平分∠AOC时,∠AOC+∠NOC=90°,∴∠NOC=30°,∠MOC=120°,∠BOC=120°,∴∠BOC=∠MOC.综上所述:∠BOC与∠MOC互补或相等.顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°,∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠COB﹣∠BON=65°﹣40°=25°,即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°,∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°,∴4∠NOC+∠NOC=25°,∴∠NOC=5°,∴∠NOB=∠NOC+∠BOC=70°.点放在O处,即∠DOE=90°.(1)如图1,若直角三角板DOE的一边OE放在射线OA上,求∠COD的度数;(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,求∠COD的度数;(3)将直三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好∠COD=∠AOE,求此时∠BOD的度数.解:(1)由题意得∠BOD=90°,∵∠BOC=40°,∴∠COD=90°﹣40°=50°.(2)∵∠AOC+∠BOC=180°,∠BOC=40°,∴∠AOC=180°﹣40°=140°,∵OE平分∠AOC,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=90°﹣70°=20°,(3)①当∠COD在∠BOC的内部时,∵∠COD=∠BOC﹣∠BOD,而∠BOC=40°,∴∠COD=40°﹣∠BOD,∵∠AOE+∠EOD+∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴40°﹣∠BOD=(90°﹣∠BOD),∴∠BOD=15°;②当∠COD在∠BOC的外部时,∵∠COD=∠BOD﹣∠BOC,而∠BOC=40°,∴∠COD=∠BOD﹣40°,∵∠AOE+∠EOD﹣∠BOD=180°,∠EOD=90°,∴∠AOE=90°﹣∠BOD,又∵∠COD=∠AOE,∴∠BOD﹣40°=(90°﹣∠BOD),∴∠BOD=52.5°,综上所述:∠BOD的度数为15°或52.5°.9.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,当OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;如图,当射线OC在OB右侧时,∵∠COM=∠AOC,∠BON=∠BOD,∴∠MON=∠MOC+∠BON+∠BOC=∠AOC+∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t的值为21秒.10.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=25°;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.解:(1)∵∠MON=90°,∠BOC=65°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.故答案为:25°.(2)∵∠BOC=65°,OC是∠MOB的角平分线,∴∠MOB=2∠BOC=130°.∴∠BON=∠MOB﹣∠MON=130°﹣90°=40°.∠CON=∠COB﹣∠BON=65°﹣40°=25°.即∠BON=40°,∠CON=25°;(3)∵∠NOC=∠AOM,∴∠AOM=4∠NOC.∵∠BOC=65°,∴∠AOC=∠AOB﹣∠BOC=180°﹣65=115°.∵∠MON=90°,∴∠AOM+∠NOC=∠AOC﹣∠MON=115°﹣90°=25°.∴4∠NOC+∠NOC=25°.∴∠NOC=5°.∴∠NOB=∠NOC+∠BOC=70°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM ﹣∠NOC的度数.解:(1)直线ON平分∠AOC.理由如下:如图,设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=,又∠MOD=∠MON=90°,∴∠COD=90°﹣∠BOC=30°,∵∠AOC=180°﹣∠BOC=60°,∴∠COD=∠AOC,∴OD平分∠AOC,即直线ON平分∠AOC;(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.12.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF 的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=30或50或90.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值不是定值,理由是:当0<n<80时,如图2.∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;当n=80时,∠AOC=180°,∠AOE﹣∠BOF=(100°+80°)﹣(40°+80°)=30°;当80<n<90时,如图3.∠AOE=(360°﹣100°﹣α)=130°﹣n°,∠BOF=(40°+n°),则∠AOE﹣∠BOF=110°﹣n°,不是定值;(3)当0<n<40时,C和D在OA的右侧,∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.当40≤n<80时,如图2所示,D在OA的左侧,C在OA的右侧.当∠AOD=∠AOB+∠COD+n°>180°时,∠AOD=360°﹣∠AOB﹣∠COD=220°﹣n°,∠EOF=70°,∵∠AOD+∠EOF=6∠COD,∴220°﹣n°+70°=6×40°,解得n=50.当80<n<140时,如图3所示,∠AOD=360°﹣100°﹣40°﹣n°=220°﹣n°,∠EOF=360°﹣(130°﹣n)﹣(40°+n)﹣100°=110°,则(220﹣n)+110°=240°,解得n=90°;当140≤n<180时,∠AOD=220°﹣n°,∠EOF=70°,则220﹣n+70=240,解得n=50(舍去).故答案是:30或50或90.13.新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线是这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为15°或22.5°或30°;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=45°,解得x=15°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=22.5°,③设∠AOC=x,则∠BOC=x,由题意得,x+x=45°,解得x=30°,故答案为:15°或22.5°或30°;(3)当0<t≤4时,∠MON=60+5t,∠AON=60﹣15t,若射线OA是∠MON的幸运线,则∠AON=,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;∠AON=∠MON,即60﹣15t=(60+5t),解得t=;当4<t<9时,∠MOA=20t,∠AON=15t﹣60,若射线ON是∠AOM的幸运线,则∠AON=∠MOA即15t﹣60=×20t,解得t=12(舍);∠AON=∠MOA,即15t﹣60=×20t,解得t=;∠AON=∠MOA,即15t﹣60=×20t,解得t=36(舍);故t的值是或或或.14.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如图1,如果OA,OC重合,且OD在∠AOB的内部,求∠MON的度数;(2)如图2,固定∠AOB,将图1中的∠COD绕点O顺时针旋转n°(0<n≤90).①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m≤100),如图③,请直接写出∠MON 与旋转度数m°之间的数量关系:∠MON=m°+25°.解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)如图2,①∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°;②当∠MON=90°时,n+25=90,∴n=65.(3)如图3中,当ON在∠AOB内部时∠MON=∠AOM﹣∠AON=65°﹣(40°﹣m°)=m°+25°.当ON在∠AOB外部时时,∠MON=∠AOM+∠AON=65°+m°﹣40=m°+25°.综上所述,∠MON=m°+25°.故答案为:∠MON=m°+25°.15.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数;(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”;(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,直接写出符合条件的所有的旋转时间5秒或7.5秒..解:(1)∵射线OP是∠AOB的好线,且∠BOP=30°,∴∠AOP=∠BOP=60°,①当OP在∠AOB内部时,∠AOB=∠BOP+∠AOP=90°,②当OP在∠AOB外部时,∠A0B=∠AOP﹣∠BOP=30°,∴∠AOB=90°或30°;(2)∵OB,OA分别是∠MOP和∠PON的平分线,∴∠AOB=∠BOP+∠AOP=(∠MOP+∠NOP)=90°,∠BOP=∠BOM=30°,∴∠AOP=90°﹣30°=60°,∴∠BOP=∠AOP,∴OP是∠AOB的一条“好线”;(3)5秒或7.5秒.设运动时间为t,则∠MOP=12t,∠BOA=4t,①当OP在OB上方时,∠BOP=80°﹣12t,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(80﹣12t)解得:t=5;②当OP在OB下方时,∠BOP=12t﹣80°,∠AOP=80°+4t﹣12t=80°﹣8t,∴80﹣8t=2(12t﹣80),解得:t=7.5;综上所述:t的值为5秒或7.5秒.故答案为:5秒或7.5秒.16.如图,点O为直线AB上一点,∠AOC=90°,在直线AB上方有射线OM、ON分别从OA和OC开始绕点O顺时针旋转,旋转过程中始终保持∠AOM=2∠CON,OQ平分∠AON.(1)如图1,证明:ON平分∠MOB;(2)如图2,在旋转过程中,当∠CON=2∠MOQ时,求∠CON的度数;(3)如图3,在旋转过程中,∠AOM是锐角,射线OD在∠MON内部,∠MOD=30°,OP平分∠MON,∠MOQ:∠POD=m,∠NOB:∠QOC=n,在AB下方有射线OT,∠AOT=90°﹣(m+n)°,∠BOT+∠MOQ=110°,求∠AOM的度数解:(1)设∠CON=α,∠AOM=2∠CON=2α,∴∠AON=∠AOC+∠CON=90°+α,∵∠AOB=180°,∴∠NOB=∠AOB﹣∠AON=180°﹣(90°+α)=90°﹣α,∠MOB=∠AOB﹣∠AOM=180°﹣2α=2(90°﹣α),∴∠MOB=2∠NOB,∴ON平分∠MOB;(2)若射线OM在∠AOQ内时,∵OQ平分∠AON,∴∠AOQ=∠AON=(90°+α)=45°+α,∴∠MOQ=∠AOQ﹣∠AOM=45°+α﹣2α=45°﹣α,∵∠CON=2∠MOQ,∴α=2(45°﹣α),∴α=22.5°,即∠CON=22.5°,若射线OM在∠BOQ内时,∴∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°,∵∠CON=2∠MOQ,∴α=2(α﹣45°),∴α=45°,即∠CON=45°,故∠CON的度数为22.5°或45°;(3)由(1)(2)知∠AON=90°+α;∠AOQ=45°+α,∠MOQ=45°﹣α;∠NOB=90°﹣α=2(45°﹣α),∴∠MON=∠AON﹣∠AOM=90°+α﹣2α=90°﹣α,∵OP平分∠MON,∴∠MOP=∠MON=(90°﹣α)=45°﹣α,情况1:射线OM在∠AOQ内,∠POD=∠MOP﹣∠MOD=45°﹣α﹣30°=15°﹣α,∠QOC=∠AOC﹣∠AOQ=90°﹣(45°+α)=45°﹣α,∴m=∠MOQ:∠POD=(45°﹣α):(15°﹣α)=3(15°﹣α):(15°﹣α)=3,n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2(45°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∴∠BOT=∠AOB﹣∠AOT=180°﹣85°=95°,∵∠BOT+∠MOQ=110°,∴∠MOQ=110°﹣95°=15°,∴45°﹣α=15°,解得∠α=20°∠AOM=2α=40°,情况2:射线OM在∠BOQ内,∠POD=∠MOD﹣∠MOP=30°﹣(45°﹣α)=α﹣15°,∠MOQ=∠AOM﹣∠AOQ=2α﹣(45°+α)=α﹣45°=3(α﹣15°),∴m=∠MOQ:∠POD=(α﹣45°):(α﹣15°)=3(α﹣15°):(α﹣15°)=3,由情况1可知:n=∠NOB:∠QOC=(90°﹣α):(45°﹣α)=2,∴∠AOT=90°﹣(m+n)°=90°﹣(3+2)°=85°,∠BOT=95°,∠MOQ=15°,∴α﹣45°=15°,解得∠α=40°,∴∠AOM=2α=80°.故∠AOM的度数为40°或80°.17.如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=40°°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC 与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.解:(1)∵OM为∠AOB的角平分线、∠AOB=40°,∴∠MOB=20°.∵∠MON=70°,∴∠BON=∠MON﹣∠MOB=50°.∵ON为∠BOD的角平分线,∴∠BON=∠DON=50°.∴∠CON=∠COD﹣∠DON=10°∴∠BOC=∠DON﹣∠CON=40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C′在B上方时,根据题意可知,∠BOC′=40°﹣4t,∠BOD′=∠BOD﹣4t=100°﹣4t.∠BON′=∠BOD′==50°﹣2t,∵OC′平分∠BON′,∴∠BOC′=,即40°﹣4t=(50°﹣2t),解得:t=5(s).当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.顺时针旋转时:如图②,同理当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.当C′在B上方时,即OC′与OB重合,由题意可求OC′与OB重合用的时间=∠AOC÷4+∠AOB÷6=(∠AOB+∠BOC)÷4+∠AOB÷6=(s).∴OC′与OB重合之后,∠BOC′=6(t﹣)(s).∴∠BOD′=∠BOC′+60°=6(t﹣)+60°=6t﹣100°.∴∠BON′==(6t﹣100°)=3t﹣50°,∵OC′平分∠BON′,∴∠BOC′=,∴6(t﹣)=(3t﹣50°),解得:t=30(s)综上所述t的值为5或30.②逆时针旋转时:如图3中,当射线OP在射线OB的上方时,∵∠POB=(140°﹣4t)﹣40°=30°﹣2t,∠BON′=(100°﹣4t)=50°﹣2t,∴∠PON′=∠BON′﹣∠POB=20°∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,当OP与OB重合时,(140°﹣4t)﹣40°=0,解得t=15.∴0≤t≤15时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OP返回时与OB重合时.时间t=20+=,当运动到射线OD与OA共线时,60°+6(t﹣20)=180°时,解得t=40,观察图象可知,≤t≤40时,|∠BOP﹣∠MON′|的值不变,是40°.当射线OD运动到与射线OB共线时,20°+6(t﹣20)=180°,解得t=,当≤t≤50时,如图4中,同法可得,∠PON′=20°,∴|∠BOP﹣∠MON′|=|∠BOM+∠PON′|=40°,综上所述,满足条件的t的值为:0≤t≤15或≤t≤40或≤t≤50.18.如图1,摆放一个三角形纸板ODE,边OD在正东方向的射线上,点A,B分别在正西,正东方向上,∠COF=30°,现将三角形纸板ODE从图1位置开始绕点O以每秒5度的速度逆时针方向匀速旋转,设旋转的时间为t秒,在旋转一周的过程中.(1)当t=5时,求∠AOD的度数,并写出点D的方向角;(2)如图2,当三角形纸板ODE旋转至△OD1E1时,边OE1恰好落在射线OF上,且OF平分∠AOD1,OD1平分∠BOC,求t的值,并写出点F的方向角;(3)当旋转至△OD2E2时,OE2所在直线平分∠AOC,求t的值.解:(1)因为三角形纸板ODE绕点O旋转的速度为每秒5度,所以当t=5时,∠BOD=25°,此时,点D在北偏东65°方向上,又∠AOD+∠BOD=180°,所以∠AOD=180°﹣∠BOD,即∠AOD=180°﹣25°=155°.(2)如图2中,设∠BOD1=x°.因为OD1平分∠BOC,所以∠BOC=2x°,∠COD1=x°,因为∠COF=30°,所以∠D1OF=∠COD1+∠COF=x°+30°=(x+30)°,又OF平分∠AOD1,即∠AOF=∠D1OF,因为∠AOF+∠D1OF+∠BOD1=180°,即2∠D1OF+∠BOD1=180°,所以2(x+30)°+x°=180°,化解得3x°=120°,解得x=40,所以三角形纸板ODE运动的时间(秒),所以∠AOF=∠D1OF=40°+30°=70°,由90°﹣70°=20°,得点F的方向角为北偏西20°.(3)如图3中,由(2)得∠AOC=180°﹣∠BOC=180°﹣2x°=180°﹣2×40°=100°,且∠D1OF=∠DOE=70°,又∠COE=∠BOC﹣∠DOE=80°﹣70°=10°,当OE2线段平分∠AOC时,OE旋转的角大小为,所以三角形纸板ODE旋转的时间为(秒),当线段OE2的反向延长线平分∠AOC时,OE旋转的角大小为60°+180°=240°,所以三角形纸板ODE旋转的时间为(秒).综上,当OE所在直线平分∠AOC时,t=12秒或48秒.19.如图为两个特殊三角板AOB和三角板COD,∠A=45°,∠D=60°,O为直角顶点,两直角顶点重合,A,O,D在同一直线上,OB,OC重合,OM平分∠COD,ON平分∠AOB.(1)∠MON=90度;(2)若三角板AOB与三角板COD位置如图(2)所示,满足∠BOC=20°,求∠MON 的度数;(3)在图(1)的情形下,三角板AOB固定不动,若三角板COD绕着O点旋转(旋转角度小于45°),∠BOC=α,求∠MON的度数(用含α的式子表示).解:(1)∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD,∠NOB=∠AOB,∵∠MON=∠MOC+∠NOB,∴∠MON=∠AOD,∵A,O,D在同一直线上,∴∠AOD=180°,∴∠MON=90°,故答案为90;(2)由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=20°,∴∠MON=45°+45°﹣20°=70°;(3)①当两三角板由重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB﹣∠BOC,∠BOC=α,∴∠MON=45°+45°﹣α=90°﹣α;②当两三角板无重叠时,由题意可知∠AOB=∠COD=90°,∵OM平分∠COD,ON平分∠AOB,∴∠MOC=∠COD=45°,∠NOB=∠AOB=45°,∵∠MON=∠MOC+∠NOB+∠BOC,∠BOC=α,∴∠MON=45°+45°+α=90°+α.20.已知长方形纸片ABCD,E、F分别是AD、AB上的一点,点I在射线BC上、连接EF,FI,将∠A沿EF所在的直线对折,点A落在点H处,∠B沿FI所在的直线对折,点B 落在点G处.(1)如图1,当HF与GF重合时,则∠EFI=90°;(2)如图2,当重叠角∠HFG=30°时,求∠EFI的度数;(3)如图3,当∠GFI=α,∠EFH=β时,∠GFI绕点F进行逆时针旋转,且∠GFI总有一条边在∠EFH内,PF是∠GFH的角平分线,QF是∠EFI的角平分线,旋转过程中求出∠PFQ的度数(用含α,β的式子表示).解:(1)∵EF平分∠AFH,IF平分∠BFG,∴∠EFH=∠AFH,∠IFH=∠BFH,∵∠EFI=∠EFH+∠IFG=(∠AFH+∠BFH)=∠AFB=90°,∴∠EFI=∠AFB=90°,故答案为:90.(2)令∠EFG=x,∠HFI=y,∵∠HFG=30°∴∠EFA=30°+x,∠BFI=30°+y∴∠AFE+∠EFI+∠BFI=(30°+x)+(x+30°+y)+(30°+y)=180°,即2x+2y=90°,∴x+y=45°,∴∠EFI=x+y+30=75°,∴∠EFI=75°.(3)由题意得∠AFE=∠EFH=β,∠BFI=∠GFI=α,∴∠GFH=2α+2β﹣180°,∴∠GFP=∠HFP=α+β﹣90°,又∵,∴∠PFQ=|∠GFI﹣∠GFP﹣∠QFI|,∴∠PFQ=|α﹣(α+β﹣90°)﹣|=||,∴∠PFQ|=||。
六年级数学技巧解决几何问题的旋转变换在数学学科中,几何是一门需要具备解决问题的技巧的重要领域。
在六年级学生的课程中,掌握几何问题的解决方法对于提高数学能力至关重要。
其中,旋转变换是一种常用的技巧之一。
通过旋转变换,学生可以更好地理解和解决各种几何问题。
本文将详细介绍几个旋转变换的技巧,以帮助六年级学生在数学学习中更加轻松地应对几何问题。
一、旋转变换的基本概念在开始介绍旋转变换的具体技巧之前,我们首先需要了解旋转变换的基本概念。
旋转变换是指将一个图形按照一定角度围绕一个固定点旋转,从而得到一个新的图形。
在旋转变换中,固定点被称为旋转中心,旋转的角度被称为旋转角度。
通过旋转变换,我们可以改变图形的朝向和位置,进而解决几何问题。
二、旋转变换的基本技巧1. 顺时针和逆时针旋转在旋转变换中,有两种基本的旋转方式:顺时针旋转和逆时针旋转。
顺时针旋转是指图形按照顺时针方向绕旋转中心旋转,而逆时针旋转则是指图形按照逆时针方向绕旋转中心旋转。
通过掌握这两种旋转方式,学生可以更加灵活地应对不同的几何问题。
2. 旋转角度的确定在进行旋转变换时,旋转角度的确定是非常关键的。
旋转角度通常以度数表示,可以是正值也可以是负值。
根据题目给出的旋转要求,学生需要准确地确定旋转角度,并按照要求进行旋转变换。
3. 图形特征的保持在进行旋转变换时,保持图形的某些特征是十分重要的。
例如,保持图形的某条边不动,只对其他部分进行旋转变换。
通过保持某些特征,学生可以更好地理解图形的变化规律,并解决与旋转变换相关的几何问题。
三、旋转变换的应用技巧1. 旋转对称图形的性质旋转对称图形是指经过旋转变换后仍然与原图形完全相同的图形。
在解决旋转对称图形相关问题时,学生可以利用该性质来简化问题。
例如,对于一个正方形,它的每一条边都相等且与旋转中心的连线长度相等,利用这些性质,学生可以快速获得其他边的长度等信息。
2. 旋转变换的组合运用在实际的几何问题中,旋转变换可以与其他几何技巧相结合,进一步解决更加复杂的问题。
几何旋转练习题在几何学中,旋转是一种常见的变换方式。
通过旋转,我们可以改变图形的方向和位置,进而解决各类几何问题。
本文将提供一些几何旋转的练习题,帮助读者熟悉旋转的概念和运算。
题目一:旋转正方形已知正方形ABCD的边长为2个单位长度,将其顺时针旋转90度,求旋转后的正方形顶点坐标。
解析与解答:首先,我们需要确定旋转点。
由于正方形的中心点到顶点的距离是边长的一半,所以该正方形的中心点为(1, 1)。
接下来,我们可以通过旋转公式进行计算。
设旋转后的正方形顶点为A'、B'、C'、D',则有:A'(x,y) = [(x-1)cos90° - (y-1)sin90° + 1, (x-1)sin90° + (y-1)cos90° + 1]B'(x,y) = [(x-1)cos90° - (y+1)sin90° + 1, (x-1)sin90° + (y+1)cos90° + 1] C'(x,y) = [(x+1)cos90° - (y+1)sin90° + 1, (x+1)sin90° + (y+1)cos90° + 1] D'(x,y) = [(x+1)cos90° - (y-1)sin90° + 1, (x+1)sin90° + (y-1)cos90° + 1]代入正方形的坐标值x=1,y=1,我们可以得到旋转后的正方形顶点坐标为:A'(0, 2)B'(0, 0)C'(2, 0)D'(2, 2)题目二:旋转三角形已知三角形ABC的顶点坐标分别为A(0, 0),B(3, 0),C(0, 2)。
将该三角形逆时针旋转30度,求旋转后的三角形顶点坐标。
解析与解答:同样地,我们需要确定旋转点。
初三数学旋转的题解题方法(一)初三数学旋转的题解题方法旋转概念介绍旋转是指图形在平面内绕定点旋转一定角度所得到的新图形。
旋转是初中数学中的一个较难的部分,但对于理解几何变换有很大帮助。
旋转的表示方法在平面中,旋转可以通过角度和旋转中心来表示。
角度可以用弧度制或度数制来表示,而旋转中心就是图形围绕旋转的点。
旋转的应用旋转有很多应用,尤其是在几何题目中常常会出现旋转的情况。
以下是两个例题:例题一已知点A(4,3),将点A沿着坐标轴旋转180度,求旋转后的坐标。
解:点A与坐标轴的关系如下图所示。
| y|| A-----0-----| x将点A沿着x轴旋转180度后,坐标变为(4,-3);再将点A沿着y轴旋转180度后,坐标变为(-4,-3)。
所以点A沿着坐标轴旋转180度后,坐标为(-4,-3)。
例题二已知线段AB,将线段AB沿点C旋转α角,求旋转后的线段坐标。
解:如下图所示,线段AB以点C为中心旋转α角度后,变成线段A’B’。
C|||A--------B||假设向量AC的坐标为(a,b),则向量A’C的坐标为(a cosα+b sinα, -a sinα+b cosα)。
同理,向量BC的坐标为(c,d),则向量B’C的坐标为(c cosα+d sinα, -c sinα+d cosα)。
因此旋转后的线段坐标为(A’C,B’C)。
以上是初三数学旋转的题解题方法,希望能帮到正在学习数学的同学们。
旋转的注意事项在解决旋转问题时,需要注意以下几点:•旋转角度的正负:顺时针旋转为负角度,逆时针旋转为正角度。
•旋转坐标系的选择:旋转坐标系可以是直角坐标系、极坐标系或其他坐标系,需要根据具体的题目情况选择。
•旋转位置的确定:需要确定旋转的中心点和旋转方向。
•旋转后图形的形状:可通过观察旋转前后图形的变化,来判断旋转后图形的形状,进而求解相关问题。
总结旋转是初中数学中一个比较重要的概念,其应用广泛,在解决几何问题时非常有用。
高中数学旋转解题技巧在高中数学中,旋转是一个常见的解题技巧,它可以帮助我们简化问题,找到更直观的解题方法。
本文将介绍几种常见的旋转解题技巧,并通过具体的题目进行说明,帮助读者更好地掌握这些技巧。
一、旋转解题的基本原理旋转解题是将原问题通过旋转变换转化为一个更简单的问题,从而利用几何性质进行求解。
在旋转解题中,我们通常会用到以下几个基本原理:1. 旋转不改变长度和角度:旋转只改变了原图形的位置和方向,但不改变图形的长度和角度关系。
因此,在旋转解题中,我们可以利用旋转后的图形与原图形的对应关系来求解问题。
2. 旋转对称性:旋转对称性是指图形在某个旋转变换下保持不变。
利用旋转对称性,我们可以将原问题转化为一个与之等价的旋转对称问题,从而简化求解过程。
3. 旋转变换的性质:旋转变换具有保角性和保持直线平行性的性质。
利用这些性质,我们可以推导出旋转后的图形与原图形的一些几何关系,进而解决问题。
二、旋转解题的实际应用下面我们通过几个具体的题目来说明旋转解题的应用方法和技巧。
题目一:已知一个平面图形,将其逆时针旋转90度,再将旋转后的图形绕原点顺时针旋转60度,得到的图形与原图形重合。
求原图形的类型。
解析:根据题目描述,我们可以得知旋转后的图形与原图形重合,说明它们是同一个图形。
根据旋转变换的性质,逆时针旋转90度相当于顺时针旋转270度,再绕原点顺时针旋转60度相当于逆时针旋转300度。
因此,旋转后的图形相当于逆时针旋转270度再逆时针旋转300度,即逆时针旋转570度。
根据旋转对称性,逆时针旋转570度等于顺时针旋转360度加上逆时针旋转210度。
所以,原图形的类型是正五边形。
题目二:已知一个圆的半径为r,以圆心为中心,将圆逆时针旋转60度,得到的图形与原图形重合。
求r的值。
解析:根据题目描述,旋转后的图形与原图形重合,说明它们是同一个图形。
根据旋转变换的性质,逆时针旋转60度相当于顺时针旋转300度。
因此,旋转后的图形相当于逆时针旋转300度。
利用旋转解决几何问题一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
二、旋转的三要素1、旋转中心:旋转时的定点;2、旋转方向:顺时针或者逆时针;3、旋转角:任意一对对应点与旋转中心的连线所成的角都是旋转角。
三、旋转的性质旋转只改变图形的位置,而不改变图形的大小和形状。
1、图形中的每一点都绕着旋转中心转动了同样大小的角度;2、对应点到旋转中心的距离相等;3、对应角、对应线段相等。
旋转伴随着几何元素位置的变化会使得这些元素重新组合,会产生新的角或者新的多边形。
四、与旋转相关的几何题型(一)以等边三角形为背景的旋转60。
1、方法:一般将与等边三角形共边的三角形顺时针或者逆时针旋转02、结果:连接对应点出现新的等边三角形。
常会结合勾股定理、勾股定理的逆定理解题。
等边△ABC,P是△ABC形内一点,连结PA、PB、PC,以点A为旋转中心,将△ABP逆时针旋转60度,可以得到△APD为等边三角形,可以将PA、PB、PC三边组成一个新三角形△PCD,已知PA、PB、PC的长可以求出∠APB、∠APC、∠BP C,因为初中没学余弦定理,所以涉及求角度时△PCD一般是直角三角形。
模型一:点P在△ABC的内部模型二:点P在△ABC的外部3、相关题型1、如图3-6-8,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.2、设P是等边△ABC内的一点,PA=3,PB=4,PC=5,求 APB的度数?3、点O 是△ABC 内的一点,已知0125115=∠=∠BOC AOB ,,求以线段OA 、OB 、OC 为边构成的三角形的各角度数是多少?4、设P 是等边△ABC 内的一点,PA=2,PB=32,PC=4,求△ABC 的边长?5、如图3-6-10,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=6,PB=8,PC=10,则四边形APBQ 的面积为 .6、如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AM N ∆的周长?7、如图,已知△ABC 为等边三角形,M 为三角形外任意一点,证明:AM ≤BM+CM.8、如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关NM DCBANMEDC BA系为 .②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动. 试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(二)以等腰三角形为背景的旋转1、方法:一般将与等腰三角形共边的三角形顺时针或逆时针旋转与其顶角相等的度数。