高等光学2016-第5章作业参考答案
- 格式:pdf
- 大小:282.81 KB
- 文档页数:4
第一章 光的干涉1 波长为500nm 的绿光照射在间距为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长700nm 的红光照射此双缝,两个亮条纹之间的距离又为多少?计算这两种光第二级亮条纹位置的距离。
解:本题是杨氏双缝干涉实验, 其光路、装置如图。
由干涉花样亮条纹的分布规律:λdr jy 0= (j=0、±1、±2、…)得亮条纹间距:λdr y 0=∆ (1)其中:λ=500nm 和700nm 、d=0.022mm 、r 0=180cm 代入公式(1)计算得到:当λ=500nm 时,两个亮条纹之间的距离:cmy 409.0=∆ 当λ=700nm 时,两个亮条纹之间的距离: cmy 573.0='∆第2 级亮条纹的位置:λdr jy 02= 2=j (2)当λ=500nm 时: cmy 819.02= 当λ=700nm 时:cm y 146.12='两种光第二级亮条纹位置间的距离: cm y y y 327.0222=-'=∆2 在杨氏实验装置中,光源的波长为640nm ,两缝间距为0.4mm ,光屏离双缝的距离为50cm ,试求:(1)光屏上第一亮条纹和中央亮条纹之间距离;(2)若P 点距离中央亮条纹0.1mm ,则两束光P 点的相位差;(3)P 点的光强度与中央亮条纹的强度之比。
解: (1) 由:λdr jy 0= (1),已知:λ=640nm ,d=0.4mm ,r 0 = 50cm ,j=1代入公式(1)解得,第一亮纹到中央亮纹的距离:y=0.8mm (2)两束光传播到P 点的光程差为:12r y dr r =-=δ位相差为:022r dyλπδλπϕ==∆代入数据:λ=640nm 、d=0.4mm 、r 0=50cm 、y=0.1mm 得到两束光在P 点的相位差:4/πϕ=∆(3)在中央亮条纹的位置上,两光的相位差为:0=∆ϕ 光强度为:224)cos 1(2AA I =∆+=ϕP 点的光强度为:2224.3)4/cos 1(2)cos 1(2AA A I p=+=∆+=πϕ两条纹光强度之比为:2:7.1:0=I I p3 把折射率为1.5的玻璃片插入杨氏双缝的一束光中,光屏上原来第五级亮条纹所在的位置变为中央亮条纹,求插入的玻璃片的厚度。
第五章 部分相干光理论5.1 证明解析信号的实部u 和虚部u 之间互为希尔伯特变换,即它们之间有下面的关系()t u t r ()()t i ()()⎰∞∞--=ξξξπd )(P.V.1)()()(t u t u r i , ⎰∞∞---=ξξξπd )(.P.V 1)()()(tu t u i r证明:(1)由(5-10)式,解析函数的实部()()0()2Re ()exp(2)d r r u t j t νπνν∞⎡=-⎢⎣⎦⎰U ⎤⎥t (5.1-11)而,比较以上两式,可见有关系式)](Re[)()(t t u r u = (5.1-13)⎰∞-=0)(d )2exp()(2)(νπννt j t r U u 上式可表示为 (5.1-18)⎰∞∞--+=νπνννd )2exp()()sgn 1()()(t j t r U u 又因为 ()()exp(2)d t j νπνν∞-∞=-⎰u U所以有 ()()(1sgn )()r νν=+U νU )r (5.1-19)对上式两边取傅里叶逆变换11()1()()11((){()}{()}{(sgn )()}(){sgn )}{()}r r r t u t ννννν-----==+=+*u U U U U F F F F F ν上式中 1{sgn }jtνπ-=-F 再利用卷积定义⎰⎰∞∞---=*=*ηξηξηξd d ),(),(y x f g f g g f 令 t j f π-= , )()(t j t f -=-ξπξ , , )()(t u g r =)()()(ξξr u g =所以 ⎰∞∞--+=ξξξπd )(..)()()()(t u V P jt ut r r u (5.1-22)可见 ⎰∞∞--=ξξξπd )(..1)()()(t u V P t ur i(2)参考教材中(5.1-10)式的推导过程,对于解析函数的虚部有下式成立(P5.1-1)⎥⎥⎦⎤⎢⎢⎣⎡-=⎰∞)()(d )2exp()(Re 2)(νπννt j t ui i U)](Re[)()(t j t u i u -= (P5.1-2)比较(P5.1-1)和(P5.1-2)式,得到⎰∞-=-0)(d )2exp()(2)(νπννt j t j i U u所以⎰∞-=0)(d )2exp()(2)(νπννt j j t i U u )()sgn 1()()(νννi j U U +=对上式两边取傅里叶逆变换得)}(){sgn )}({)}({)()(1)(11ννννi i j j t U U U u ---+==F F F)()}({}{sgn )()(11t ju j i i +*=--ννU F F )(d )(..1)()(t ju tu V P i i +--=⎰∞∞-ξξξπ所以 ⎰∞∞---=ξξξπd )(..1)()()(t u V P t ui r5.2 考察用宽带光作杨氏干涉实验(1) 证明观察屏上的入射光场可表示为⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=c r t P t c r t P t t Q 222111,d d ,d d ),(u K u K u 其中 iii i i i i i cr A s cr πθπθ2)(d 2)(k k K ≅=⎰⎰个针孔第 2,1=i 而为第个针孔的面积。
1. 解:(1)()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2cos cos 01πωωkZ t y kZt x A E()()[]()(),为左旋。
是按逆时针方向旋转的,时,,时,时,当又此即偏振光旋圆偏振光。
该列光波的偏振态是左准形式。
符合左旋圆偏振光的标∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==========+∴-=⎪⎭⎫ ⎝⎛--=-=∴-+-=∧∧0210410,00sin 2cos cos :sin cos 020220yxyxyxyxyxE A E T t A E E T t E A E t Z AEEkZt A kZ t A E kZ t A E or kZt y kZ t x Aωπωωωω (2()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2sin sin 02πωωkZ t y kZ t x A E()()[]()()20220cos ,sin cos sin AE E kZ t A E kZ t A E kZt y kZ t x A yxyx=+-=-=---=∧∧ωωωω即:()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧======-====∧∧∧∧∧∧→2sin 2cos 2sin 2cos 2sin sin :021041,00002πωπωπωτωππωωkZ t y kZ t x A kZ t y k Z x A kZ t y kZt x A E or A E E T t E A E T t A E E t Z yxyxyx光。
该列光波为左旋圆偏振,时,,时,时,当2. 解:()21011'1I I⋅-=()()()8/81.060cos 1011.01.01.010125.0881.0819.041210160cos 101I IIII02'121121''1211112122'1''1=⋅⋅-===∴==≈==⨯=⋅⋅-=⋅⋅-=I or I I I I I I I I I I I I 透过偏振片观察为:直接观察的光强为:自然光强为而:3. 解:201II =()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I Id dd dI IIII II II I II I2cos cos 2329434323060cos30cos 2302602coscos 2coscos 2cos 2222max22232213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===4. 证:21II =()()t II tII I I I I I Iωωθθθθθθπθθπθ4cos 1164cos 11612sin81sincos22cos cos2coscos22222122212-=∴=-===⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-==而5. 解:()折射定律21221sin sin nnn ii==∴30732.160sin sinsin sin12112===--ni i()()()()()()()()()()()(),一部分折射,,垂直分量一部分反射直分量为而入射光的电矢量的垂入射面的光矢量分量。
第一章 光的干涉1 波长为500nm 的绿光照射在间距为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长700nm 的红光照射此双缝,两个亮条纹之间的距离又为多少?计算这两种光第二级亮条纹位置的距离。
解:本题是杨氏双缝干涉实验, 其光路、装置如图。
由干涉花样亮条纹的分布规律:λdr jy 0= (j=0、±1、±2、…)得亮条纹间距:λdr y 0=∆ (1)其中:λ=500nm 和700nm 、d=0.022mm 、r 0=180cm 代入公式(1)计算得到:当λ=500nm 时,两个亮条纹之间的距离:cmy 409.0=∆ 当λ=700nm 时,两个亮条纹之间的距离: cmy 573.0='∆第2 级亮条纹的位置:λdr jy 02= 2=j (2)当λ=500nm 时: cmy 819.02= 当λ=700nm 时:cm y 146.12='两种光第二级亮条纹位置间的距离: cm y y y 327.0222=-'=∆2 在杨氏实验装置中,光源的波长为640nm ,两缝间距为0.4mm ,光屏离双缝的距离为50cm ,试求:(1)光屏上第一亮条纹和中央亮条纹之间距离;(2)若P 点距离中央亮条纹0.1mm ,则两束光P 点的相位差;(3)P 点的光强度与中央亮条纹的强度之比。
解: (1) 由:λdr jy 0= (1),已知:λ=640nm ,d=0.4mm ,r 0 = 50cm ,j=1代入公式(1)解得,第一亮纹到中央亮纹的距离:y=0.8mm (2)两束光传播到P 点的光程差为:12r y dr r =-=δ位相差为:022r dyλπδλπϕ==∆代入数据:λ=640nm 、d=0.4mm 、r 0=50cm 、y=0.1mm 得到两束光在P 点的相位差:4/πϕ=∆(3)在中央亮条纹的位置上,两光的相位差为:0=∆ϕ 光强度为:224)cos 1(2AA I =∆+=ϕP 点的光强度为:2224.3)4/cos 1(2)cos 1(2AA A I p=+=∆+=πϕ两条纹光强度之比为:2:7.1:0=I I p3 把折射率为1.5的玻璃片插入杨氏双缝的一束光中,光屏上原来第五级亮条纹所在的位置变为中央亮条纹,求插入的玻璃片的厚度。
高等光学第4-5章习题答案第四章标量衍射理论基础4.1证明(4-21)式所示的索末菲辐射条件成立。
证明:球面2S是中心位于1S面上的发散球面波的波面,假定2S面上的光场分布表示为rj k r)e x p(=U式中r表示产生发散球面波的点光源到球面2S上任意一点的距离。
1exp()cos()cos(,)r jkrjkn r n r r r∂∂∂∂⎛⎫===-⎪∂∂∂∂⎝⎭U U Un,r n r当∞→R时,有∞→r,所以这时有1),cos(≈rn2)exp()exp(1rjkrjkrjkrrjkjkn-≅-⎪⎭⎫⎝⎛-=-∂∂UUU当∞→R时,上式分母中的r可用R来代替,于是2e x p()1l i m l i m l i m(c o s s i n)R R Rj k rR j k R k r j k rn R R→∞→∞→∞∂⎛⎫⎡⎤⎛⎫-=-=-+⎪ ⎪⎢⎥∂⎝⎭⎣⎦⎝⎭UUlim0jkrReR→∞⎛⎫=-=⎪⎝⎭4.2 参考图4-8,考虑在瑞利—索末菲理论中采用下式所表示的格林函数,即010110101e x p()e x p()()jkr jkrPr r+=+G(1)证明+G的法线方向的导数在孔径平面上为零。
(2)利用这个格林函数,求出用孔径上的任意扰动来表示()pU的表达式,要得到这个结果必须用什么样的边界条件。
(3)利用(2)的结果,求出当孔径被从2P点发散的球面波照明时()pU的表达式证明: 下面是教材中图4-8(1))(1P +G 由两项迭加而成,它们分别表示从互为镜像的点0P 和0~P 发出的两个初相位相同的单位振幅的球面波。
孔径平面1S 上任一点1P 的+G 值为010101011~)~exp()exp()(r r jk r jkr P +=+G (P4.2-1) 1()P +G 的法向导数为0101010101010101~)~exp(~1)~,cos()exp(1),cos(r r r r n r n G jk jk r jkr r jk n ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=∂∂+ (P4.2-2) 对于互为镜像点的0P 和0~P 来说,有)~,cos(),cos(0101r n r n -= 0101~r r = (P4.2-3)将以上关系式代入(P4.2-2)式,得到0n+∂=∂G (P4.2-4) (2)根据(4-22)式,观察点0P 的光扰动可以用整个平面1S 上的光扰动U 和它的法向导数来表示⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=1d 41)(0S s n n P G U G U U π(P4.2-5) 由0101~r r =,得 01011)exp(2)(r jkr P =+G (P4.2-6)将上式和(P4.2-4)式一同代入(P4.2-5)式,得到⎰⎰⎰⎰∂∂=∂∂=+11d )exp(21d 41)(01010S S s r jkr n s G n P U U U ππ(P4.2-7)为了将上式所表示的结果进一步简化,根据孔径∑上的场去计算0P 点的复振幅分布)(0P U ,只需要规定如下两个边界条件:(a )在孔径∑上,场分布的法向导数n U ∂与不存在衍射屏时的值完全相同。
1-2 从麦克斯韦方程组出发,导出电磁场在两种电介质分界面处的边值关系。
解:(ⅰ)ln t E E l d E ∆×⋅−=⋅∫)()(21当回路短边趋于零时,回线面积为零,而t B ∂∂有限,所以0)()(21=⋅∂∂−=∆×⋅−=⋅∫∫∫Σσd t B l n t E E l d E高等光学作业习题参考答案2012.12.10即l E E n t ∆−⋅×)()(21l E E n t ∆−×⋅=))((210=得0)(21=−×E E n,即t t E E 21=(ⅱ)l t d t DJ l n t H H l d H ∆⋅=⋅∂∂+=∆×⋅−=⋅∫∫∫Σασ)()()(21t H H n t n t H H⋅=−×⋅=×⋅−α))(()()(2121当没有电流分布时0=α,得,0)(21=−×H H n即t t H H 21=(ⅲ)s n D D ds n D d D ∆⋅−=⋅=⋅∫∫)(21σ当不存在自由电荷时,0=sρ,积分0=∫∫∫Ωdv s ρ,所以0)(21=∆⋅−s n D D,即n n D D 21=(ⅳ)0)(21=∆⋅−=⋅=⋅∫∫s n B B ds n B d Bσ即n n B B 21=1-5 已知电场E 和磁场H 在直角坐标中的分量分别为:)cos(t kz A E x ω−=;);sin(wt kz B E y −=0=z E )sin(t kz B H x ωε−−=;)cos(t kz A H y ωε−=;0=z H试求电磁场的能量密度w 和玻印亭矢量S 。
解:HB E D µε==,电磁场能量密度)(21B H D E w ⋅+⋅=)(2122H E µε+= )]()([21222222z y x z y x H H H E E E +++++=µε )](sin )(cos [2)1(2222t kz B t kz A ωωµε−+−+=玻印亭矢量H E S ×=zyxz y xH H H E E E z y x =z H E H E y H E H E x H E H E x y y x z x x z y z z y)()()(−+−+−=z H E H E x y y x)(−=z t kz B t kz A))]((sin ))((cos [2222ωεωε−+−=1-6 设某一无限大介质中,,0,0==σρε、µ只是空间坐标的函数,试从麦克斯韦方程和物质方程出发证明:{}0)](ln [)()(ln 22=∇⋅∇+×∇×∇++∇εµεµωE E E E证明:)(),(r rµµεε==H B E Dµε==,E E E D⋅∇+⋅∇=⋅∇=⋅∇εεε由麦克斯韦方程 0=⋅∇D得 (ln )EE E εεε∇⋅∇⋅=−=−∇⋅取麦克斯韦方程组微分式第一式的旋度,)()(B tE ×∇∂∂−=×∇×∇其中,E E E 2)()(∇−⋅∇∇=×∇×∇2[(ln )]E E ε=−∇∇⋅−∇)()(H tB t µ×∇∂∂−=×∇∂∂− )(H H t×∇+×∇∂∂−=µµ)(µµµB t Dt×∇+∂∂∂∂= t B tE ∂∂×∇+∂∂= )(ln 22µεµ)()(ln 22E t E×∇×∇−∂∂=µεµ)()(B tE ×∇∂∂−=×∇×∇即222(ln )()[(ln )]0E E E E t εµµε∂∇−+∇×∇×+∇∇⋅=∂若ti e E E ω0 =,则22(ln )()[(ln )]0E E E E εµωµε∇++∇×∇×+∇∇⋅=1-7 从麦克斯韦方程组出发导出电磁场在有色散的非均匀介质中所满足的亥姆霍兹方程。
第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。
4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:1mmI 1=90︒n 1 n 2200mmL I 2 xn0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
2016高等光学第4次作业答案4-8一对称型带状波导,宽度和厚度分别为a 和b ,导光层的折射率为n ,覆盖层和衬底的折射率为n 0.证明:波导的基模传输条件为a=b 。
解:薄膜波导在x 向有限,y 方向无限大;带状波导,在x 和y 向都有限,宽度为a 和b (类似于矩形波导,参考图(4.1.1))。
x 方向受限的波导稳定传输的条件为(4.2.8)0122a cos ++2i n k m θδδπ=Y 方向受限的波导稳定传输条件为'''0122b cos ++2i n k n θδδπ=基模传输,''112'112===,0mn δδδθθδ==,,, 故a=b 。
4-9 一阶跃型光纤的纤芯和包层的折射率分别为1 1.55n =,2 1.50n =,求光纤在空气中的数值孔径和最大入射孔径角0θ.若将该光纤放入水中(设水的折射率为1.33),问光纤的数值孔径是否会改变?如果改变,则改变量是多少?解:光纤的数值孔径大小与纤芯折射率,及纤芯-包层折射率差有关,表达式为:.所以将该光纤放入水中,其数值孔径不会改变. 最大入射孔径角0θ==023≈4-10 一阶跃型光纤的纤芯和包层的折射率分别为n1=1.52,n2=1.51,现欲使该光纤单模传输,问工作波长分别为λλ00=11.222222和λλ00=00.882222时,光纤的最大芯径应该是多少?解:单模光纤的归一化截止频率(查阅光纤相关资料)0V=k 2.4048≤a λ≤max max =1.2m a =2.64m =0.8m a =1.76mλµµλµµ,,。
光学教程答案(第五章)光学教程答案第五章:光的偏振引言光的偏振是指光波中电场矢量的振动方向。
在自然界中,光通常是无偏振的,电场矢量在各个方向上均有振动。
然而,通过特定的介质或装置,我们可以使光的偏振发生变化。
本章将介绍偏振光的产生、表征和应用。
一、偏振光的产生1.1 通过介质的偏振当光穿过各向同性介质(如玻璃、空气等)时,光的偏振状态通常不会发生变化。
然而,当光通过各向异性介质(如晶体、液晶等)时,光的偏振状态会发生变化。
这是因为各向异性介质的物理性质在不同的方向上不同,从而导致光的传播速度和振动方向发生变化。
1.2 通过偏振器的偏振偏振器是一种特殊的光学装置,可以选择性地通过某个方向的偏振光。
最常见的偏振器是偏振片,它只允许特定方向的光通过,而过滤掉其他方向的光。
偏振片可以用来产生偏振光,例如线偏振光。
二、偏振光的表征2.1 偏振光的振动方向偏振光的振动方向是指电场矢量在空间中的方向。
常见的偏振方式有线偏振和圆偏振。
线偏振光的电场矢量沿着直线方向振动,而圆偏振光的电场矢量沿着圆弧方向旋转。
2.2 偏振光的强度偏振光的强度是指单位面积上通过的光功率。
偏振光的强度与振幅的平方成正比,与振动方向的选择无关。
三、偏振光的应用3.1 光通信偏振光在光通信领域有广泛的应用。
通过选择不同的偏振方向,可以实现多路复用和分路复用,提高光纤传输的效率和容量。
3.2 偏振显微镜偏振显微镜是一种常用的显微镜,可以观察物质的偏振特性。
通过对样品的偏振状态进行分析,可以获得物质的结构、形态和光学性质等信息。
3.3 光偏振滤波器光偏振滤波器可以选择性地通过或屏蔽特定方向的偏振光。
它在光学成像、摄影和显示等领域都有重要的应用,可以改善图像的对比度和清晰度。
结论通过特定的介质和装置,我们可以实现光的偏振控制和调节。
偏振光在光通信、显微镜和滤波器等领域有广泛的应用。
深入理解偏振光的产生、表征和应用,对于光学技术的发展和应用具有重要意义。
高等光学第4-5章习题答案第四章标量衍射理论基础4.1证明(4-21)式所示的索末菲辐射条件成立。
证明:球面2S是中心位于1S面上的发散球面波的波面,假定2S面上的光场分布表示为rjkr)exp(=U式中r表示产生发散球面波的点光源到球面2S上任意一点的距离。
1exp()cos()cos(,)r jkrjkn r n r r r∂∂∂∂===−∂∂∂∂U U Un,r n r当∞→R时,有∞→r,所以这时有1),cos(≈rn2)exp()exp(1rjkrjkrjkrrjkjkn−≅−−=−∂∂UUU当∞→R时,上式分母中的r可用R来代替,于是2exp()1lim lim lim(cos sin)R R RjkrR jk R kr j krn R R→∞→∞→∞∂−=−=−+∂UUlim0jkrReR→∞=−=4.2 参考图4-8,考虑在瑞利—索末菲理论中采用下式所表示的格林函数,即010110101exp()exp()()jkr jkrPr r+=+G(1)证明+G的法线方向的导数在孔径平面上为零。
(2)利用这个格林函数,求出用孔径上的任意扰动来表示()pU的表达式,要得到这个结果必须用什么样的边界条件。
(3)利用(2)的结果,求出当孔径被从2P点发散的球面波照明时()pU的表达式证明: 下面是教材中图4-8(1))(1P +G 由两项迭加而成,它们分别表示从互为镜像的点0P 和0~P 发出的两个初相位相同的单位振幅的球面波。
孔径平面1S 上任一点1P 的+G 值为010101011~)~exp()exp()(r r jk r jkr P +=+G (P4.2-1) 1()P +G 的法向导数为0101010101010101~)~exp(~1)~,cos()exp(1),cos(r r r r n r n G jk jk r jkr r jk n −+ −=∂∂+ (P4.2-2) 对于互为镜像点的0P 和0~P 来说,有)~,cos(),cos(0101r n r n −= 0101~r r = (P4.2-3)将以上关系式代入(P4.2-2)式,得到0n+∂=∂G (P4.2-4) (2)根据(4-22)式,观察点0P 的光扰动可以用整个平面1S 上的光扰动U 和它的法向导数来表示∫∫∂∂−∂∂=1d 41)(0S s n n P G U G U U π(P4.2-5) 由0101~r r =,得01011)exp(2)(r jkr P =+G (P4.2-6)将上式和(P4.2-4)式一同代入(P4.2-5)式,得到∫∫∫∫∂∂=∂∂=+11d )exp(21d 41)(01010S S s r jkr ns G n P U U U ππ(P4.2-7)为了将上式所表示的结果进一步简化,根据孔径Σ上的场去计算0P 点的复振幅分布)(0P U ,只需要规定如下两个边界条件:(a )在孔径Σ上,场分布的法向导数n U ∂∂与不存在衍射屏时的值完全相同。
光学课后习题答案光学课后习题答案光学是一门研究光的传播、反射、折射、干涉和衍射等现象的学科。
在学习光学的过程中,习题是提高理解和应用能力的重要练习。
下面将为大家提供一些光学课后习题的答案,希望对大家的学习有所帮助。
1. 什么是光的折射?折射定律是什么?光的折射是指光线从一种介质进入另一种介质时改变传播方向的现象。
折射定律是描述光线在两种介质交界面上折射规律的定律。
根据折射定律,入射光线、折射光线和法线所在平面三者的夹角满足正弦定律,即入射角的正弦与折射角的正弦成比例。
2. 什么是光的干涉?什么是光的相长干涉和相消干涉?光的干涉是指两束或多束光线相互叠加产生干涉条纹的现象。
光的相长干涉是指两束光线的相位差为整数倍波长,叠加后互相增强,形成明纹。
光的相消干涉是指两束光线的相位差为半整数倍波长,叠加后互相抵消,形成暗纹。
3. 什么是光的衍射?什么是夫琅禾费衍射?光的衍射是指光通过一个或多个孔或者绕过障碍物后发生偏离传播方向的现象。
夫琅禾费衍射是指光通过一个狭缝时产生的衍射现象。
夫琅禾费衍射的特点是,衍射图样中有一中央亮纹,两侧逐渐变暗,且衍射角度越大,衍射图样越宽。
4. 什么是光的反射?反射定律是什么?光的反射是指光线从一个介质射入另一个介质时,部分或全部光线从交界面上反射回原介质的现象。
反射定律是描述光线在交界面上反射规律的定律。
根据反射定律,入射光线、反射光线和法线所在平面三者的夹角相等。
5. 什么是光的色散?为什么光会产生色散?光的色散是指光通过透明介质时,不同波长的光线发生不同程度的偏折,从而使光分离成不同颜色的现象。
光会产生色散的原因是不同波长的光在介质中传播速度不同,导致折射角度不同,从而产生色散效应。
6. 什么是光的偏振?什么是偏振光?光的偏振是指光波中的电矢量只在一个特定方向上振动的现象。
偏振光是指只在一个方向上振动的光波。
偏振光可以通过偏振片来实现,偏振片能够选择性地透过或者吸收特定方向上的光振动。
第一章 光的干涉1、波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得3.把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为 所以玻璃片的厚度为4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm7. 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度.已知肥皂膜折射率为1.33,且平行光与发向成30°角入射. 解:根据题意8. 透镜表面通常镀一层如MgF 2(n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚?解:可以认为光是沿垂直方向入射的。