光学系统的分辨本领
- 格式:pptx
- 大小:5.46 MB
- 文档页数:40
4.光学仪器的像分辨本领1.在50公里远处有两只弧光灯,今用一通光孔径为40mm 的望远镜观察它们,并在物镜前置一宽度可调的缝,缝的宽度方向和两弧光灯连线方向一致。
观察发现,当缝宽减至30mm 时,两光源恰可被分辨,缝再窄就分辨不清了。
取波长为600nm,试问两弧光灯之间的距离是多少?解:恰可分辨时,满足瑞利判据,一个灯的中央衍射极大恰与另一灯的第一衍射极小相重,即最小分辨角为。
故两灯的间距为()a /sin1λθ−=mL l 1=⋅=∆θ2.一直径为2mm 的氦氖激光管,发出波长为632.8nm 的氦氖激光,问:射向远离我们公里的月球,则月球上的光斑有多大?若先将激光束扩束51076.3×成直径为5m 的光束,则射向月球在月球上的光斑又是多大?解:激光管直径为2mm 时,月球上光斑直径为m aL D 5109.2222.1×=×⋅=λ月地将激光扩束至5m 直径,增大了2500倍,则月球上光斑直径也缩小2500倍,为m21016.1×3.一对双星的角距离为,要用多大口径的望远镜才能把它们分辨开?''05.0这样的望远镜的正常放大率是多少?解:望远镜最小分辨角,已知,,故望远镜D /22.1λθ=µλ55.0=''05.0=θ物镜的口径直径为m D 77.222.1==θλ瞳孔直径d 在夜间可取成6mm,故望远镜正常放大率为倍462=D 4.宇航员声称他恰能分辨在他下面100公里地面上两个黄绿点光源。
若瞳孔直径为4mm,试估算这两个点光源的间距。
解:两个点光源的间距为m dL l 8.1622.1=×=λ5.一架光圈数最大为2.8的优质照相机,现在用它来拍摄天上的星点,试计算其像面上的像点有多大?解:已知,,像点大小就是艾里斑直径,它是,µλ55.0=8.2/'==D f F l 2而µλ88.1/22.1'=×=D f l 故直径为3.76微米。
光学仪器的分辨本领第四章光学仪器的基本原理●学习⽬的通过本章的学习,使得学⽣熟悉光学仪器的基本原理,掌握如何使⽤这些光学仪器,了解基本光学仪器的构造和原理以及正确的使⽤⽅法。
●内容提要1、掌握光学仪器的基本⼯作原理;2、了解⼏何光学仪器的构造、使⽤⽅法;3、了解助视仪器的分辨率;4、光度学基础。
●重点1、光学仪器的基本⼯作原理;2、⼏何光学仪器的构造、使⽤⽅法;3、助视仪器的分辨率。
●难点1、光学仪器的基本⼯作原理;2、助视仪器的分辨率。
●计划学时计划授课时间6学时●教学⽅式及教学⼿段课堂集中式授课,采⽤多媒体教学。
●参考书⽬1、《光学教程》第三版姚启钧著,⾼等教育出版社,第四章2、《光学》第⼆版章志鸣等编著,⾼等教育出版社,第三章3、《光学原理》上册,玻恩,科学出版社,第三、四、五、六章§4.1 ⼏何光学仪器⼀、⼈的眼睛1. 眼球壁主要分为外、中、内三层外层由⾓膜、巩膜组成。
前1/6为透明的⾓膜,其余5/6为⽩⾊的巩膜,俗称“眼⽩”。
眼球外层起维持眼球形状和保护眼内组织的作⽤。
⾓膜是接受信息的最前哨⼊⼝。
⾓膜是眼球前部的透明部分,光线经此射⼊眼球。
⾓膜稍呈椭圆形,略向前突。
横径为11.5—12mm ,垂直径约10.5—11mm 。
周边厚约1mm ,中央为0.6mm 。
⾓膜前的⼀层泪液膜有防⽌⾓膜⼲燥、保持⾓膜平滑和光学特性的作⽤。
⾓膜含丰富的神经,感觉敏锐。
因此⾓膜除了是光线进⼊眼内和折射成像的主要结构外,也起保护作⽤,并是测定⼈体知觉的重要部位。
巩膜为致密的胶原纤维结构,不透明,呈乳⽩⾊,质地坚韧。
中层⼜称葡萄膜,⾊素膜,具有丰富的⾊素和⾎管,包括虹膜、睫状体和脉络膜三部分。
虹膜:呈环圆形,在葡萄膜的最前部分,位于晶体前,有辐射状皱褶称纹理,表⾯含不平的隐窝。
不同种族⼈的虹膜颜⾊不同。
中央有⼀2.5-4mm 的圆孔,称瞳孔。
睫状体:前接虹膜根部,后接脉络膜,外侧为巩膜,内侧则通过悬韧带与晶体⾚道部相连。
5 光学成像的波动学原理§5.4 光学仪器的分辨本领主要内容1. 衍射受限系统的成像特点2. 瑞利判据3. 成像仪器的分辨本领4. 眼睛及助视仪器的分辨本领5. 分光仪器的分辨本领分辨本领:光学系统对被观察对象微小细节的分辨能力(1) 几何光学成像系统的分辨本领一个无像差或像差得到良好矫正的光学系统能够使一个点物成一个理想的点像,因而物平面上无论怎样微小的细节,都可以在其共轭像平面上详尽无遗地反映出来。
可见,从几何光学角度,一个无像差的光学系统的分辨本领是无限的。
5.4.1 衍射受限系统的成像特点 无像差系统的理想成像:点↔点L s' s P Qx x ' I (x ) x 0 物点强度 I'(x')x' 0 像点强度从波动光学角度,成像光具组的孔径光阑起衍射屏的作用。
一个点物的共轭像,实际上是自该物点发出的球面光波经成像光具组有限大小的孔径,在物的共轭像平面上所形成的以其几何像点为中心的夫琅禾费衍射图样。
孔径较大时,衍射光能量主要集中在中央亮斑内;光具组的孔径较小时,中央亮斑可能会很大。
(2) 对夫琅禾费衍射实验光路的再分析衍射受限系统的成像:点↔衍射斑I (x ) x 0 物点强度 I'(x')x' 0 像斑强度L s' s P 0 Qx x'若光具组的孔径光阑为矩形孔(或狭缝),相应的像点为矩形孔(或狭缝)的夫琅禾费衍射图样的中央亮斑(或亮条纹)。
图5.4-1 光具组的孔径有限大小时的成像特性(a) 孔径光阑为圆孔 Q L P (b) 孔径光阑为狭缝Q LP若光具组的孔径光阑为圆孔,相应的像点就是圆孔的夫琅禾费衍射图样的中央艾里斑。
结论:几何光学中的所谓像点,实际上是在假定成像系统孔径无限大时的一种极限情况。
假设:① 成像系统无像差或像差已得到良好矫正② 物平面上的相邻两点可视为强度相等的两个独立发光点 结果:以单透镜成像系统为例两个艾里斑不重叠时,可完全分辨出是两个像点;两个艾里斑的重叠区域很小时,亦可以分辨出是两个像点; 两个艾里斑的重叠区域增大到一定程度时,两个像点不可分辨。