八年级数学上册《14.1.4 整式的乘法》教学反思
- 格式:doc
- 大小:25.01 KB
- 文档页数:1
14.1.4整式的乘法(单乘多)说课稿-2022-2023学年人教版八年级数学上册一、教材分析本节课主要讲述的是整式的乘法中的单项式与多项式相乘的方法和规律。
通过本节课的学习,学生将进一步巩固和拓展他们对整式的认识和理解,掌握单乘多的运算方法,提高他们的综合运算能力。
本节课的教学内容涉及了整式的乘法运算。
在此之前,学生已经学习了整式的定义、加法、减法以及加法的运算规律。
本节课将进一步延伸整式的运算,引入了整式的乘法,并着重讲解了单项式与多项式相乘的方法和规律。
二、教学目标1.知识与技能–掌握单项式与多项式相乘的基本运算方法;–能够按照要求将单项式与多项式相乘并化简。
2.过程与方法–培养学生逻辑思维能力,培养分析和解决问题的能力;–引导学生通过实例探索,激发学生的求知欲和学习兴趣。
3.情感、态度与价值观–培养学生对数学的兴趣和好奇心;–培养学生良好的学习态度和积极的学习思维。
三、教学重点1.掌握单项式与多项式相乘的基本运算方法;2.能够按照要求将单项式与多项式相乘并化简。
四、教学难点1.运用单项式与多项式相乘的方法解决实际问题;2.运用乘法的性质进行化简运算。
五、教学过程1. 导入新课通过短暂的复习,回忆并巩固上节课学到的概念和知识。
利用一些简单的问题或练习,激发学生对整式乘法的兴趣,并引出本节课要学习的内容。
2. 引入新知识步骤1:引导学生思考单项式与多项式相乘的方法。
通过一个简单的例子,让学生观察并总结出单项式与多项式相乘的规律。
例如:计算 2x(3x+5)。
步骤2:总结整式的乘法法则。
引导学生观察和总结,整理出整式的乘法法则。
•单项式与单项式相乘:乘法的幂相加,底数不变。
•单项式与多项式相乘:将多项式中的每一项与单项式相乘,再将乘积相加。
•多项式与多项式相乘:将第一个多项式中的每一项与第二个多项式中的每一项相乘,再将乘积相加。
3. 讲解示范通过多个例子向学生演示整式的乘法运算和化简。
示例1:计算并化简:(2a-3b)(4a+5b)。
《整式的乘法》教学反思一、尽量做到关注每一位学生,注重学生的差异性。
在师生互动环节,我关注思维活跃的学生,引导他们说出自己的想法,对于基础较差的学生,通过让他们重复别人的回答,达到理解知识,记忆知识的效果。
在当堂达标环节,我让思维活跃的学生做较难题目,让那些基础较差的学生做较容易的题目,以增强他们的信心。
二、尽量让学生自主探索、合作交流。
本节课我让学生以小组合作的形式探究单项式乘以单项式及单项式乘以多项式的计算方法,在独立思考的基础上进行小组交流,最后全班交流,在生生互动中总结出单项式乘以单项式及单项式乘以多项式的计算法则。
在探究多项式乘以多项式的计算方法时也是让学生通过自主探索、合作交流的方式进行,最后教师引导总结。
这样的设计充分发挥了学生的主体作用,培养了学生的创新能力。
三、尽量让学生体验成功。
本节课我尊重学生的个体差异,让不同层次的学生都能体验到成功的乐趣。
在口算抢答环节我设计了一些较容易的题目让那些基础较差的学生回答,对于思维活跃的学生则设计一些稍难一些的题目。
这样既让所有的学生都能体验到成功,又使他们在原有的基础上得到充分的发展。
四、尽量做到关注学生的长远发展。
本节课我不仅关注学生是否学会,还关注学生是否会学,在引导学生探究单项式乘以单项式及单项式乘以多项式的计算方法时,不仅让学生知道怎样计算,还让学生知道为什么要这样计算及计算的依据是什么。
在总结单项式乘以单项式及单项式乘以多项式的计算法则时,不仅让学生知道法则的内容是什么,还让学生知道法则的来源是什么。
另外还让学生通过小组合作、自主探索的方式探究多项式乘以多项式的计算方法。
这样的设计不仅让学生学会知识,还让学生学会学习的方法及获得知识的途径。
不仅关注学生的现在,还关注学生的将来。
14.1.4 整式的乘法(第2课时)说课稿一、教材分析本节课是《2022-2023学年人教版八年级数学上册》中第14章第1节的第4个课时,主要讲解整式的乘法。
本节课的教学内容包括整式的基本概念、整式的乘法法则、多项式的乘法等。
通过本节课的学习,学生将进一步巩固整式的概念和性质,掌握整式的乘法法则,培养学生解决实际问题的能力。
二、教学目标1.知识与技能:•掌握整式的基本概念及其表示方法;•理解整式的乘法法则;•掌握多项式的乘法运算。
2.过程与方法:•运用归纳法整理策略,提高整理信息的能力;•运用数学语言表达数学概念和数学推理,培养数学思维能力。
3.情感态度价值观:•培养学生对数学知识的兴趣和探究欲望;•培养学生的合作意识和共享精神。
三、教学重点•整式的乘法法则;•多项式的乘法运算。
四、教学难点•多项式的乘法运算。
五、教学过程本节课的教学过程分为四个环节:导入新课、讲解新知、练习巩固、课堂小结。
环节一:导入新课通过提问的方式引导学生回顾上节课所学内容,复习整式的基本概念和性质。
例如,让学生回答以下问题:1.什么是整式?它有哪些基本组成部分?2.你能用自己的话解释一下整式的加法和减法运算法则吗?环节二:讲解新知在导入环节复习之后,引入本节课的新知:整式的乘法法则。
首先,提供一个具体的例子让学生观察和思考,例如:已知:(3x + 4)(2x - 5)请你计算乘积(3x + 4)(2x - 5)的结果。
通过学生的思考,引导他们观察并总结出整式的乘法法则,例如:整式的乘法法则:将每个被乘数的每一项依次与乘数的每一项相乘,然后将各项的乘积相加即可。
接下来,通过几个具体的例子向学生展示整式的乘法运算步骤,并注重解释每一步的原理和获得结果的意义。
同时,可以引导学生发现和讨论与整数有关的乘法特殊法则,例如相同项乘积的规律等。
环节三:练习巩固在讲解新知环节结束后,安排一些练习题,以巩固学生对整式的乘法法则的理解和运用能力。
第十四章整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法一、教学目标【知识与技能】在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.【过程与方法】经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感、态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】同底数幂的乘法的运算.【教学难点】同底数幂的乘法运算性质的理解与推导.五、课前准备教师:课件、幂的意义、计算器等。
学生:幂的意义、计算器。
六、教学过程(一)导入新课一种电子计算机每秒可进行1亿亿(1016 )次运算,它工作103 s可进行多少次运算?(出示课件2)教师提出问题:如何列式呢?学生思考回答:1016×103教师问:这里包含着什么运算?学生小组讨论给出答案:乘法运算,乘方运算。
提出问题:怎样计算1016×103呢?(二)探索新知1.创设情境,探究同底数幂的乘法法则我们在七年级学习了整式的加减,在本章我们继续学习整式的乘法与因式分解,它们是代数运算以及解决许多数学问题的基础.我们可以类比数的运算,以运算律为基础,得到关于整式的乘法运算与因式分解的启发.在学习之前,先回答下边的问题:(出示课件4)教师问1:a n表示的意义是什么?学生回答:a n表示的意义是n个a相乘的积。
教师问2:a n中a、n、a n分别叫做什么?学生回答:a是底数,n是指数,a n叫做幂。
教师问3:你能在本子上用数学语言表示a n的意义吗?学生思考写出:a n=a·a····a(n个a)教师问4:能不能再标出各部分的名称?学生回答:可以.教师问5:看看跟老师写的一样吗?教师展示如下:教师问6:(-a)n表示的意义是什么?底数、指数分别是什么?学生回答:(-a)n表示的意义是n个(-a)相乘的积,-a是底数,n是指数.现在我们看下边的问题:教师问7:1016,103我们称之为什么?它们表示什么意义?学生回答:1016我们称之为10的16次幂,1016表示的意义是16个10相乘的积,10是底数,16是指数;103我们称之为10的3次幂,103表示的意义是3个10相乘的积,10是底数,3是指数.出示课件5,学生思考,回答问题。
第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2; (2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1:12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2 ;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x; (2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b; (2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解:(12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab; (4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
整式的乘法教学反思
1、本节知识包括三大块:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。
其中以单项式乘以单项式为基础,因此需要扎实基础。
2、需要强调符号问题。
3、学生容易把两数相乘,负负得正与两个负数相加的运算混为一体,需要注意对比练习。
4、在进行单项式与多项式相乘时,我在两个班尝试了不同的教法。
一班严格按法则进行教学,二班用了法则的前半部分,即把单项式与多项式的每一项分别相乘,后面的再把所得的积相加则没有予以强调,而是用了有理数的乘法的法则,提醒学生要注意符号问题。
结果是两个班的学生都较好的掌握了这部分知识。
5、因为有了前面的铺垫,所以多项式乘以多项式只提了个分配律之后,学生就基本都可以独立运算了。
可见打好基础则后面学起来就会比较轻松,学生心理上也会觉得比较容易控制。
《整式的乘法》教学反思《整式的乘法》教学反思(精选5篇)随着社会一步步向前发展,我们的任务之一就是教学,反思指回头、反过来思考的意思。
反思应该怎么写呢?下面是小编为大家整理的《整式的乘法》教学反思(精选5篇),希望能够帮助到大家。
《整式的乘法》教学反思1这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸。
这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。
整式的乘法这一部分内容主要分成三部分内容。
第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。
这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。
第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。
第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。
在混合运算中注意括号运算,不要漏括号。
在整个这一部分的内容教学中,难点与易错点主要是:1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。
2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。
3、注意实际问题主要是图形的面积问题的正确解决。
注重难点与学习方法。
1、关注对教学难点的教学。
新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。
2、关注对学生学习方法的指导。
第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法◇教学目标◇【知识与技能】在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.【过程与方法】经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感、态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.◇教学重难点◇【教学重点】同底数幂乘法运算性质的推导和应用.【教学难点】同底数幂的乘法的法则的应用以及逆用.◇教学过程◇一、情境导入“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.问题:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?二、合作探究探究点1同底数幂的乘法典例1计算a2·a3的正确结果是()A.a 5B.a 6C.a 8D.a 9 [解析] a 2·a 3=a 2+3=a 5.[答案] A【技巧点拨】本题是同底数幂的乘法运算,直接利用同底数幂的乘法运算法则运算即可,注意底数不变,指数相加.变式训练 化简-b ·b 3·b 4的正确结果是( )A.-b 7B.b 7C.-b 8D.b 8[答案] C探究点2 法则的逆用 典例2 已知3a =1,3b =2,则3a +b 的值为( )A.1B.2C.3D.27[解析] ∵3a ×3b =3a +b ,∴3a +b =3a ×3b =1×2=2.[答案] B三、板书设计同底数幂的乘法同底数幂的乘法{ 同底数幂的乘法法则{法则符号表达字母范围幂的乘法法则逆用◇教学反思◇本节课应注重同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2幂的乘方◇教学目标◇【知识与技能】1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;2.通过推理得出幂的乘方的运算性质,并且掌握这个性质.【过程与方法】经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力.【情感、态度与价值观】培养学生合作交流意义和探索精神,让学生体会数学的应用价值.◇教学重难点◇【教学重点】幂的乘方法则.【教学难点】幂的乘方法则的推导过程及灵活应用.◇教学过程◇一、情境导入木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么太阳和木星的体积是多少?二、合作探究探究点1幂的乘方典例1计算a6(a2)3=.[解析]根据幂的运算法则即可求出答案.原式=a6·a6=a12.[答案]a12变式训练计算:(-a2)2=.[答案]a4探究点2幂的乘方逆用典例2若10m=5,10n=3,则102m+3n=.[解析]102m+3n=102m·103n=(10m)2·(10n)3=52·33=675.[答案]675【技巧点拨】注意幂的乘方公式的逆用,a mn =(a m )n =(a n )m .变式训练 若a m =6,a n =3,则a m +2n 的值为 .[答案] 54三、板书设计幂的乘方幂的乘方{ 幂的乘方法则{法则符号表达字母范围幂的乘方逆用◇教学反思◇本节的内容是幂的乘方,教学过程中,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励,而且有启发、问在有疑之处.本课的主要教学任务是“幂的乘方”,即幂的乘方,底数不变,指数相乘.在课堂教学时,通过幂的意义引导学生探索发现得出这一性质.14.1.3积的乘方◇教学目标◇【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.◇教学重难点◇【教学重点】积的乘方的运算.【教学难点】积的乘方的推导过程的理解和灵活运用.◇教学过程◇一、情境导入我们前面学过同底数幂的运算法则;幂的乘方运算法则的内容,你知道它们的区别和联系吗?请同学们思考怎样计算(2a3)4,每一步的根据是什么?二、合作探究探究点1积的乘方法则典例1计算:(-2xy2)3=.[解析](-2xy2)3=(-2)3x3(y2)3=-8x3y6.[答案]-8x3y6根据积的乘方的性质把问题转化为几个幂的乘方,然后再进行运算,用准法则是解这类问题的关键.a2b)3=.变式训练计算:(-13[答案] -127a 6b 3探究点2 公式的逆用 典例2 阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4,…①归纳得(ab )n = ;(abc )n = ;②计算4100×0.25100= ;(12)5×35×(23)5= ; ③应用上述结论计算:(-0.125)2021×22022×42020.[解析] ①(ab )n =a n b n ,(abc )n =a n b n c n .②4100×0.25100=(4×0.25)100=1,(12)5×35×(23)5 =(12×3×23)5=1.③(-0.125)2021×22022×42020=-0.125×22×(-0.125×2×4)2020=-0.5×(-1)2020=-0.5.探究点3 幂的运算综合练习 典例3 计算:(-2x 2)3+x 2·x 4-(-3x 3)2.[解析] (-2x 2)3+x 2·x 4-(-3x 3)2=-8x 6+x 6-9x 6=-16x 6.三、板书设计积的乘方积的乘方{ 积的乘方法则{法则符号表达字母范围积的乘方逆用幂的运算综合练习◇教学反思◇本节主要是积的乘方,学生很容易得出计算公式,关键是利用公式进行运算,通过练习引导学生明确先利用法则把运算转化为几个幂的乘方的积,然后计算,通过小组练习,讨论,纠错得到正确的解法.14.1.4整式的乘法第1课时单项式与单项式相乘◇教学目标◇【知识与技能】会进行单项式乘单项式的运算.【过程与方法】经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.【情感、态度与价值观】培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.◇教学重难点◇【教学重点】单项式乘法运算法则的推导与应用.【教学难点】单项式乘法运算法则的推导与应用.◇教学过程◇一、情境导入前面我们学习了幂的运算,我们知道整式有两种,分别为单项式与多项式,那么整式的乘法应有几种,哪种最简单?二、合作探究探究点1单项式乘单项式法则典例1计算:4x2y·(-1x)=.4[解析]根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母x)=-x3y.连同它的指数不变,作为积的因式,计算即可.4x2y·(-14[答案]-x3y变式训练计算(-2x3y2)3·4xy2=.[答案]-32x10y8探究点2求代数式的值典例2如果x n y4与2xy m相乘的结果是2x5y7,求mn的值.[解析]由题意可知x n y4×2xy m=2x n+1·y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12.探究点3法则应用典例3计算(9×105)×(2.5×103)=.(用科学记数法表示) [解析](9×105)×(2.5×103)=9×2.5×105×103=22.5×108=2.25×109. [答案]2.25×109探究点4幂的运算综合练习典例4计算:(-3x2y2)2·2xy+(xy)3=.[解析](-3x2y2)2·2xy+(xy)3=9x4y4·2xy+x3y3=18x5y5+x3y3.[答案]18x5y5+x3y3三、板书设计单项式与单项式相乘单项式乘单项式{单项式乘单项式法则{法则符号表达单项式乘法法则的应用◇教学反思◇本节是单项式与单项式的乘法,学生通过面积的计算,或乘方分配律可以得出运算法则;通过学生小组练习、讨论、纠错提高学生的合作能力,以及在运算中提高学生的应用意识,总结出单项式乘单项式的步骤以及易错点,以引起学生的注意.第2课时单项式与多项式相乘◇教学目标◇【知识与技能】掌握单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.【过程与方法】经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.【情感、态度与价值观】培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.◇教学重难点◇【教学重点】单项式与多项式相乘的法则.【教学难点】整式乘法法则的推导与应用.◇教学过程◇一、情境导入有3家超市以相同价格n(单位:元/台)销售A牌电视机,它们在一年内的销售量(单位:台)分别是x,y,z,请你采用不同的方法计算它们在这一年内销售这种电视机的总收入.小明的答案是n(x+y+z),小芳的答案是nx+ny+nz,各说各有理,你能给他们评判一下吗?二、合作探究探究点1单项式乘多项式典例1计算:(x-3y)(-6x)=.[解析]根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.[答案]-6x2+18xyxy2.变式训练计算:(3x3y2-6x2y)·13[解析]原式=x4y4-2x3y3.探究点2求未知系数的值典例2 已知a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,求a ,b ,c 的值.[解析] ∵a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,∴(a +2b )x 2+(a -b )x -(ac +2b )=7x 2+4x +3,∴{a +2b =7,a -b =4,-(ac +2b )=3,解得a =5,b =1,c =-1.求未知系数的值,根据两个多项式相等时,如ax 2+bx =cx 2+dx ,则有a =c ,b =d ,得到方程组即可求解,关键是整式的乘法.探究点3 求代数式的值典例3 已知ab 2=-2,则-ab (a 2b 5-ab 3+b )=( )A.4B.2C.0D.14[解析] -ab (a 2b 5-ab 3+b )=-a 3b 6+a 2b 4-ab 2=-(ab 2)3+(ab 2)2-ab 2,当ab 2=-2时,原式=-(-2)3+(-2)2-(-2)=8+4+2=14.[答案] D【技巧点拨】这类问题先根据单项式的乘法计算得到多项式,然后把多项式用已知式子表示出来,整体代入求值,这种整体思想是我们经常用到的一种方法.三、板书设计单项式与多项式相乘单项式乘多项式{ 单项式乘多项式法则{法则符号表达几何意义法则的应用◇教学反思◇本节的内容是单项式乘多项式,法则的得到比较简单,教学中,应紧扣法则,单项式乘多项式转化为单项式乘单项式的问题计算,同学小组练习讨论理解多项式的每一项,包括它前面的符号.在实施“情境——探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.第3课时多项式与多项式相乘◇教学目标◇【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.◇教学重难点◇【教学重点】多项式与多项式的乘法法则的理解及应用.【教学难点】多项式与多项式的乘法法则的应用.◇教学过程◇一、情境导入试着用不同方式计算下图的面积,探讨你能得到什么结论.二、合作探究探究点1多项式乘多项式典例1计算(2m-3)(m+2).[解析](2m-3)(m+2)=2m×m+2m×2+(-3)×m+(-3)×2=2m2+4m-3m-6=2m2+m-6.整式的乘法就是根据运算法则转化为单项式乘单项式计算,最后把所得结果相加,注意有同类项的要合并同类项,需提醒是的多项式的项包括它前面的符号.注意不要漏项,漏字母,有同类项的合并同类项.探究点2求未知系数的值典例2若(x+m)(x-8)中不含x的一次项,则m的值为()A.8B.-8C.0D.8或-8[解析]∵(x+m)(x-8)=x2-8x+mx-8m=x2+(m-8)x-8m,又结果中不含x的一次项,∴m -8=0,∴m=8.[答案] A变式训练若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6[答案] B探究点3求代数式的值典例3若代数式(x+1)2+m(x+1)+n可以化简为x2+2x-3,则m+n=. [解析]∵(x+1)2+m(x+1)+n=x2+2x+1+mx+m+n=x2+(2+m)x+m+n+1,由题意得{m+2=2,m+n+1=-3,解得{m=0,n=-4,故m+n=-4.[答案]-4探究点4积中不含某项典例4(x2-mx+6)(3x-2)的积中不含x的二次项,则m的值是()A.0B.23C.-23D.-32[解析](x2-mx+6)(3x-2)=3x3-(2+3m)x2+(2m+18)x-12,∵(x2-mx+6)·(3x-2)的积中不含x的二次项,∴2+3m=0,解得m=-23.[答案] C三、板书设计多项式与多项式相乘多项式乘多项式{ 多项式乘多项式法则(法则符号表达几何意义法则的应用:求未知系数◇教学反思◇本节的内容是多项式的乘法,针对本节课学生的易错点,如“漏项”、“忘变号”的情况,在例题后进行强调,并总结规律,让学生以后在练习计算时避免“漏项”“忘变号”的发生.第4课时同底数幂的除法◇教学目标◇【知识与技能】1.掌握同底数幂的除法运算性质,并能运用它解决一些实际问题;2.理解零次幂的意义,了解规定a0=1(a≠0)的合理性;【过程与方法】经历同底数幂的除法运算性质的获得过程,掌握同底数幂的除法运算性质,会用同底数幂的除法运算性质进行有关计算,提高学生的运算能力,进一步体会幂的意义,发展推理能力,提高语言表达能力.【情感、态度与价值观】经历探索同底数幂的除法运算性质的过程,体验通过“转化”构建新知识体系,培养学生大胆猜想,善于观察、归纳的数学品质和创新精神.◇教学重难点◇【教学重点】同底数幂的除法运算.【教学难点】理解零次幂的意义.◇教学过程◇一、情境导入至此,我们已经学习了整式的加法、减法、乘法运算.在整式运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来讨论整式的除法.二、合作探究探究点1同底数幂的除法典例1计算(-a)10÷(-a)3的结果等于.[解析](-a)10÷(-a)3=(-a)10-3=(-a)7=-a7.[答案]-a7【技巧点拨】先把底数-a看作一个整体,直接运用同底数幂的除法法则;也可以将底数化为a,再运用同底数幂的除法法则,即(-a)10÷(-a)3=a10÷(-a3)=-a10-3=-a7.变式训练化简:(x+y)5÷(-x-y)2÷(x+y).[解析] 原式=(x +y )5÷(x +y )2÷(x +y )=(x +y )5-2-1=(x +y )2.探究点2 零次幂典例2 计算:(1)20220+(-3)0-4×(12)0; [解析] 原式=1+1-4×1=-2.三、板书设计同底数幂的除法1.同底数幂的除法法则:底数不变,指数相减.即a m ÷a n =a m -n (a ≠0).2.零指数幂:任何一个不等于零的数的零次幂都等于1.即a 0=1(a ≠0).◇教学反思◇本节课的学习对于学生来说,无论在知识上,还是在类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用.数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识.在培养学生合作与交流的同时,充分调动学生的参与意识和学习积极性,使学生体验到平等、自由和民主,同时也受到了激励和鼓舞,从而形成积极的人生态度.第5课时 整式的除法◇教学目标◇【知识与技能】会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.◇教学重难点◇ 【教学重点】整式除法的法则并应用其法则计算.【教学难点】理解整式除法的法则及其原理.◇教学过程◇一、情境导入一种数码照片的文件大小是28K,一个存储量为26M(1M =210K)的移动存储器能存储多少张这样的数码照片?二、合作探究探究点1 同底数幂的除法 典例1 32x =2,3y =5,则34x -2y = .[解析] 原式=34x 32y =(32x )2(3y )2,当32x =2,3y =5时,原式=2252=425. [答案] 425变式训练 若5=3x ,7=9y ,则3x -2y 的值为 .[答案] 57探究点2 单项式除以单项式 典例2 计算:10ab 3÷(-5ab )= .[解析] 根据单项式除法法则,系数和系数,相同的字母分别相除,作为商的一个因式,只在被除式的字母连同它的指数作为商的一个因式,即可求出答案.原式=-105a 1-1b 3-1=-2b 2.[答案] -2b 2变式训练 4x 2y 3÷(-12xy )2= . [答案] 16y探究点3 多项式除以单项式典例3 小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,商式必须是2xy ,则小亮报一个除式是 .[解析] (x 3y -2xy 2)÷2xy =12x 2-y.[答案] 12x 2-y三、板书设计整式的除法整式的除法{ 同底数幂的除法{法则符号表达单项式除以单项式多项式除以单项式◇教学反思◇本节的内容是整式的除法,内容较多,分三部分,通过运算要求学生说出式子每一步变形的根据,并要求学生养成检验的好习惯,利用乘除互为逆运算,检验商式的正确性.培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力,慢慢培养学生良好的思维习惯和主动参与学习的习惯.14.2乘法公式14.2.1平方差公式◇教学目标◇【知识与技能】会推导平方差公式,并且懂得运用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感、态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】平方差公式的推导和运用,以及对平方差公式的几何背景的了解.【教学难点】准确把握运用平方差公式的特征,应用平方差公式解题.◇教学过程◇一、情境导入从前有一个狡猾的地主,他把一块长为x米的正方形土地租给张老汉种植,有一天,他对张老汉说:“我把这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”张老汉一听觉得没有吃亏,就答应了.你能告诉张老汉他吃亏了吗?二、合作探究探究点1平方差公式的特征典例1下列多项式乘法中可以用平方差公式计算的是()A.(-a+b)(a-b)B.(x+2)(2+x)C.(x3+y)(y-x3) D.(x-2)(x+1)[解析]A项,原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;B项,原式=(x+2)2,故B不能用平方差公式;D项,原式=x2-x+1,故D不能用平方差公式.[答案] C平方差公式的特征:一是左边是两个多项式相乘,这两个多项式中有一项相同,另一项互为相反数;二是右边是相同项与相反项的平方差;三是公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.变式训练计算(2x3-3a)(-2x3-3a)的结果是()A.-4x6-9a2B.-4x6+9a2C.-4x6-12ax3+9a2D.-4x6-12ax3-9a2[答案] B探究点2平方差公式求值整体思想应用典例2如果(a-b-3)(a-b+3)=40,那么a-b的值为()A.49B.7C.-7D.7或-7[解析](a-b-3)(a-b+3)=(a-b)2-9=40,即(a-b)2=49,则a-b=7或-7.[答案] D探究点3平方差公式的计算典例3计算:69×71=.[解析]原式=(70-1)(70+1)=702-1=4900-1=4899.[答案]4899变式训练计算:20212-2020×2022=.[答案] 1探究点4平方差公式的几何意义典例4如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a -b )2=a 2-b 2D.a 2-b 2=(a +b )(a -b )[解析] 第一个图形阴影部分的面积是a 2-b 2,第二个图形的面积是(a +b )(a -b ).则a 2-b 2=(a +b )(a -b ).[答案] D三、板书设计平方差公式平方差公式{平方差公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇ 本节的内容是平方差公式,主要观察是否符合公式特点,只有符合公式特点才能用公式直接求解,利用公式计算.在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.2完全平方公式第1课时完全平方公式◇教学目标◇【知识与技能】会推导完全平方公式,并能运用公式进行简单的运算.【过程与方法】经历利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式的过程.【情感、态度与价值观】通过练习培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】完全平方公式的推导和应用.【教学难点】完全平方公式的应用.◇教学过程◇一、情境导入现有如图所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.二、合作探究探究点1完全平方公式典例1计算(3a-2b)2的结果为()A.9a2+4b2B.9a2+6ab+4b2C.9a2-12ab+4b2D.9a2-4b2[解析]原式=(3a)2-2×3a×2b+(2b)2=9a2-12ab+4b2.[答案] C【技巧点拨】解本题的关键是熟练运用完全平方公式,记忆完全平方公式可用口诀“首平方,尾平方,首位两倍在中间,中间符号随前面”.很多同学遗漏掉中间积的2倍这一项,应引起注意.探究点2简化运算典例2下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=9216[解析]962=(100-4)2=1002-2×100×4+42=9216,A项错误;962=(95+1)(95+1)=952+2×95×1+1=9216,B项错误;962=(90+6)2=902+2×90×6+62=9216,C项错误;962=(100-4)2=1002-2×100×4+42=9216,D项正确.[答案] D应用完全平方公式时,要注意:①公式中的a,b可以是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.探究点3完全平方式典例3若4a2-kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±12D.±6[解析]∵4a2-kab+9b2是完全平方式,∴-kab=±2×2a×3b=±12ab,∴k=±12.[答案] C变式训练已知x2-8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.-16[答案] C探究点4完全平方公式变形应用典例4已知a+b=3,ab=-2,求下列各式的值.(1)a2+b2;(2)a-b.[解析](1)∵a+b=3,ab=-2,∴a2+b2=(a+b)2-2ab=32-2×(-2)=13.(2)∵a +b =3,ab =-2,∴a -b =±√(a -b )2=±√a 2+b 2-2ab =±√13-2×(-2)=±√17.探究点5 完全平方公式的几何背景典例5 如图1是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为( )A.abB.(a +b )2C.(a -b )2D.a 2-b 2[解析] 中间空的部分的面积=大正方形的面积-4个小长方形的面积=(a +b )2-4ab =a 2+2ab +b 2-4ab =(a -b )2.[答案] C三、板书设计完全平方公式完全平方公式{完全平方公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇本节的内容是完全平方公式,在教学中,重视公式的几何背景,较直观地让学生理解代数中的某些问题.利用拼图游戏,调动学生的积极性,让学生关注几何与代数之间的内在联系,增强记忆,也可用口诀的形式让学生形象记忆,尤其针对学生易漏掉中间积的2倍这一项做好针对性的练习.第2课时添括号法则◇教学目标◇【知识与技能】掌握乘法公式的结构特征及公式的含义,理解添括号法则,会正确地添括号运用这些公式进行计算.【过程与方法】通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感、态度与价值观】培养良好的分析思想和与人合作的习惯,体会数学的重要价值.◇教学重难点◇【教学重点】正确应用乘法公式(平方差公式、完全平方公式).【教学难点】对乘法公式的结构特征以及内涵的理解.◇教学过程◇一、情境导入教室里有a名同学,第一次有b名同学被老师喊到办公室去了,第二次有c名同学被老师喊到办公室去了,请你用代数式表示教室里现在有多少名学生?你能用两种形式表示吗?二、合作探究探究点1添括号法则典例1①5x+3x2-4y2=5x-();②-3p+3q-1=3q-().[解析]①5x+3x2-4y2=5x-(4y2-3x2).②-3p+3q-1=3q-(3p+1).[答案]4y2-3x2;3p+1添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.注意遇负全变,遇正不变.探究点2添括号后用公式计算典例2 计算:(a -2b +1)(a +2b -1).[解析] (a -2b +1)(a +2b -1)=[a -(2b -1)][a +(2b -1)]=a 2-(2b -1)2=a 2-4b 2+4b -1.探究点3 用完全平方公式计算典例3 计算:(a +2ab -1)2.[解析] 原式=(a +2ab )2-2(a +2ab )·1+12=a 2+4a 2b +4a 2b 2-2a -4ab +1.变式训练 (a +2b -c )2.[解析] 原式=(a +2b )2+c 2-2c (a +2b )=a 2+4ab +4b 2+c 2-2ac -4bc.探究点4 代数式求值 典例4 先化简,再求值:(a +2b )(a -2b )+(a +2b )2+(2ab 2-8a 2b 2)÷2ab ,其中a =1,b =2.[解析] 原式=a 2-4b 2+a 2+4ab +4b 2-4ab +b =2a 2+b ,∵a =1,b =2,∴原式=2a 2+b =4.三、板书设计添括号法则添括号{ 添括号法则乘法公式{平方差公式完全平方公式应用◇教学反思◇本节的内容是添括号法则,添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确,添括号能利用乘法公式简单计算,重在理解遇负全变,遇正不变的口诀.14.3因式分解14.3.1提公因式法◇教学目标◇【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.◇教学重难点◇【教学重点】了解因式分解的意义,掌握用提公因式法把多项式分解因式.【教学难点】整式乘法与因式分解之间的关系.正确地确定多项式的最大公因式.◇教学过程◇一、情境导入试计算:37×337+63×337.这里用到了什么运算律?二、合作探究探究点1因式分解的意义典例1下列从左边到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.x2+2x+1=x(x+1)+1C.a2b+ab2=ab(a+b)D.(a-b)(n-m)=(b-a)(n-m)[解析](3-x)(3+x)=9-x2,是多项式乘法,故A错误;x2+2x+1=(x+1)2,故B错误;a2b+ab2=ab(a+b),C正确;(a-b)(n-m)≠(b-a)(n-m),不是因式分解,故D错误.[答案] C。
《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。
培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。
二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。
教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。
三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。
教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。
同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。
在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。
四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。
教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。
二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。
2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。
三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。
2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。
3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。
(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。
2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。
3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。
初中数学《整式的乘法》教学反思及体会
本次教学反思:
一、教学内容结构合理,知识点接踵而来。
本课的教学内容结构设计恰当,从基础认知出发,围绕“相乘因式”,“乘法法则”,“公因式”,“标准乘法”等知识点,让学生从浅入深,容易理解,充分发挥教师和学生的主观能动性。
二、教学过程互动性强,教学效果明显。
教学过程中,教师设计了多种教学活动,如课堂对话、活动练习等,增强了教学过程的互动性,学生不单是被动听课,而是积极思考,与老师一起探究,学生的学习兴趣大大提高。
三、教学内容巩固,反馈有益
在复习部分,教师及时将学生忘记的重点知识进行巩固,引导学生回顾前面学过的知识点,这种及时的反馈有利于学生对知识点的形成全面性认知。
培养学生的学习能力,帮助学生掌握新的知识点。
教学体会:
教学过程是一件很有趣的事情,与学生一起成长,有让自己感到欣慰的时刻,也有失败的时候,但是,只要能够在失利中吸取教训,从中学习,找到合理的改进方法,就能获取很大的进步。
教学也不断提升自己的能力,本次教学也给了自己一次大的考验,虽然时效性相对薄弱,但我努力了。
贴近实际,提出合理的解决办法,思路清晰,实施现行,这是教师所应该做到的。
有时教学中会出现困难,但经过耐心和沟通,可以更好地解决教学中出现的问题。
作为一名教师,让自己不忘初心,人人都积极努力,珍惜当下,共同进步,既让学生受益,也得到自己的进步。
第十四章整式的乘法与因式分解14.1整式的乘法14.1.3积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课若已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。
积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n=a m+n (m,n都是正整数).幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103)3km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab)(乘方的意义)=(aa)·(bb)(乘法交换律、结合律)=a2b2(同底数幂相乘的法则)同理:(ab)3=(ab)·(ab)·(ab)(乘方的意义)=(aaa)·(bbb)(乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n=?(出示课件9)学生猜想:(ab)n=a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算:(出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式=23a3=8a3;(2)原式=(–5)3b3=–125b3;(3)原式=x2(y2)2=x2y4;(4)原式=(–2)4(x3)4=16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2计算:(出示课件14)(1)–4xy2·(xy2)2·(–2x2)3;(2)(–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式=–4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12)=[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022×54044=(0.2)4044×54044=(0.2×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022×(25)2022=(0.04×25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是()A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)82024×0.1252023=________;(2)(-3)2023×(-13)2022________;(3)(0.04)2023×[(–5)2023]2=________.4.判断:(1)(ab2)3=ab6()(2)(3xy)3=9x3y3() (3)(–2a2)2=–4a4()(4)–(–ab2)2=a2b4() 5.计算:(1)(ab)8;(2)(2m)3;(3)(–xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(–3×103)3.6.计算:(1)2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3)·(–xy);(3)(–2x3)3·(x2)2.7.如果(a n•b m•b)3=a9b15,求m,n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5.解:(1)原式=a8b8;(2)原式=23·m3=8m3;(3)原式=(–x)5·y5=–x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(–3)3×(103)3=–27×109=–2.7×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7=2x9–27x9+25x9=0;(2)解:原式=9x2y4+4x2y4=13x2y4;(3)解:原式=–8x9·x4=–8x13.7.解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a3n•b3m•b3=a9b15,∴a3n•b3m+3=a9b15,∴3n=9,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。
*学校:智慧都市明泉山镇平坝小学**教师:雷来龙**班级:凤凰1班*《14.1.4 整式的乘法》教学反思本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:(1)成功之处也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。
然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。
在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。
并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。
整堂课中学生参与性较强,气氛活跃,知识落实到位。
(2)不足之处在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。
例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。
在小结时,还可以让学生再次去总结本节课中常犯的错误。
一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。
2022《整式的乘法》教学反思(精选5篇)《整式的乘法》教学反思(精选5篇)1本单元教学分数乘法,是在理解了分数的意义,驾驭了分数加减法的基础上编排的。
它能进一步促使学生理解分数的意义为后面教学分数除法打下基础。
本单元教学内容包括分数乘整数,一个数乘分数、分数混合运算、整数乘法运算定律推广到分数乘法、连续求一个数的几分之几是多少的解决问题和求比一个数的多(或少)几分之几的数是多少的解决问题。
在实际教学中我做到一下几点:一、充分利用教材资源,注意数形结合本单元概念较多,且比较抽象,而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还须要直观形象思维的支撑。
因此,在引入新的数学概念时,我运用适当的图形、图示来说明数学概念的含义,化抽象为详细、直观,帮助学生理解。
例如,在教学分数乘分数时,例3是李伯伯家有一块1/2公顷的地,种土豆的面积占这块地的1/5,种土豆的面积是多少公顷?若只是空洞地讲学生很难理解,于是我画了一个长方形来表示1公顷的地,先让学生找出1/2公顷有多大,用阴影部分表示,有的竖着分,有的横着分,再找出1/2公顷的1/5,就是把1/2公顷平均分成5份,取其中的1份,用反方向的阴影部分表示。
再视察两个阴影重叠部分占了整个1公顷地几分之几,用虚线分好,这样占了1公顷地几分之几也就是几分之几公顷。
结合图示法学生很自然地推导出了分数乘分数的方法。
二、解决问题注意解法多样化,拓展学生思维学生的思维应当是开放的、发散的,老师在教学中应当激励学生从多角度、多方位思索问题,注意算法、解决多样化,让学生更爱动脑,数学水平提高一个层次。
例如在教学例9这类求地一个数多(或少)几分之几的数是多少的解决问题时,我先让学生找出单位“1”,画出线段图,看图思索有哪些解法。
有的学生想到了可以用单位“1”乘对应分率得到对应的详细的量,有的学生想到可以用单位“1”加上或减去多或少的部分得到对应的详细的量,也有的学生想到先求出1份是多少,再求出多份是多少的方法。
14.1.4 整式的乘法(三)说课稿一、教材分析本节课是人教版八年级数学上册第14章《代数式的运算》的第1节《整式的乘法(三)》。
通过本节课的学习,学生将深入了解整式的乘法运算规律,掌握整式的乘法运算方法,为进一步学习多项式提供基础。
二、教学目标知识与能力目标1.理解整式的乘法运算规律;2.掌握整式的乘法运算方法,包括单项式与单项式相乘、单项式与多项式相乘;3.运用整式的乘法运算方法解决实际问题。
过程与方法目标1.通过教师讲解和例题演示,引导学生了解整式的乘法运算规律;2.通过练习和讨论,激发学生的思维能力和分析问题的能力;3.通过探究和实践,培养学生的合作意识和探索精神。
三、教学重点与难点教学重点1.整式的乘法运算规律;2.整式的乘法运算方法。
教学难点1.单项式与多项式相乘的运算方法;2.在解决实际问题中运用整式的乘法运算。
四、教学准备1.教学课件;2.板书工具;3.教学素材:习题、例题、实际问题。
五、教学过程1. 导入新课通过提问方式导入新课,引导学生回顾上节课所学内容,激发学生的学习兴趣。
2. 提出新课问题教师提出问题:如何进行单项式与多项式的乘法运算?3. 教师授课讲解整式的乘法运算规律和运算方法,包括单项式与单项式相乘、单项式与多项式相乘。
4. 例题演示通过设计合适的例题,演示整式的乘法运算过程。
5. 学生练习学生进行个人练习,巩固所学知识。
6. 小组合作学生分成小组,共同解决习题,提高合作能力。
7. 案例探究通过让学生尝试解决实际问题,引导学生将所学知识应用于实际生活中。
8. 总结归纳教师与学生一起共同总结整式的乘法运算规律和运算方法。
9. 家庭作业布置相关的课后习题,巩固复习所学内容。
六、板书设计板书内容:14.1.4 整式的乘法(三)整式的乘法运算规律:1.单项式与单项式相乘–同底数相乘,指数相加;–不同底数相乘,保持底数,指数相加。
2.单项式与多项式相乘–用单项式的每一项分别与多项式相乘,结果相加。
14.1.4 整式的乘法(第1课时)说课稿一、教材分析本节课是人教版八年级上册数学的第14章“代数式的基本操作”中的第1节“整式的乘法”。
在这节课中,我们将学习整式的乘法运算。
二、教学目标1.知识与技能:–掌握整式的乘法运算的基本规则和方法。
–理解乘法的交换律。
–能够应用整式的乘法解决实际问题。
2.过程与方法:–通过观察、实践和思考,培养学生的数学思维能力和解决问题的能力。
–通过讲解、练习和讨论,提高学生的数学运算技巧和策略选择能力。
3.情感态度价值观:–培养学生对数学学科的兴趣和探索精神。
–引导学生正确对待失败和挫折,在解题过程中培养学生的坚持不懈和勇于尝试的品质。
三、教学重点与难点1.教学重点:–整式的乘法运算的基本规则和方法。
–乘法的交换律。
2.教学难点:–整式的乘法运算的应用解决实际问题。
四、教学过程1.导入新课:通过引入一个实际问题,引起学生的兴趣和思考。
例如:小明买了3本数学书和4本英语书,每本数学书的价格是5元,每本英语书的价格是8元,那么小明总共花费了多少钱?让学生思考如何解决这个问题。
2.引入新知:根据学生的思考,引入整式的乘法运算。
解释整式就是由常数项和各种同类项加减而成的代数式,然后引出整式的乘法运算的基本规则和方法。
3.示例演示:通过一些具体的例子,演示整式的乘法运算的步骤和操作方法。
例如:(3x + 4)(2x - 5)的乘法运算过程。
4.理解巩固:让学生通过练习,巩固整式的乘法运算。
设计一些练习题,让学生独立完成,并让学生互相交换答案,进行讨论和纠正。
5.拓展应用:让学生通过一些实际问题,应用整式的乘法运算解决实际问题。
例如:小明的房间长5米,宽3米,他想铺一个长宽相同的正方形地毯,地毯每平方米的价格是10元,那么他需要花费多少钱买地毯?6.归纳总结:引导学生总结整式的乘法运算的基本规则和方法。
强调乘法的交换律,并帮助学生理解乘法的交换律在整式的乘法中的应用。
7.课堂小结:对本节课的内容进行总结,确保学生掌握了整式的乘法运算的基本规则和方法。
课题14.1.1同底数幂的乘法课型新授课主备辅备教学目标知识与技能认识同底数幂的乘法性质,能运用同底数幂的乘法性质进行简单的计算;过程与方法经历探索同底数幂的乘法性质;情感态度与价值观培养推理能力和数学语言表达能力,体会从特殊到一般,从具体到抽象的思想方法.教学重点同底数幂的乘法运算法则的推导过程以及相关计算.教学难点对同底数幂的乘法公式的理解和正确应用教法探究归纳法教学过程主要教学过程个人修改活动一:温故1、回顾一下,什么叫乘方?求几个相同因数的积的运算叫做乘方。
2、想一想(1) a n表示的意义是什么?其中a、n、a n分别叫做什么?(2)(-a)n表示的意义是什么?底数、指数分别是什么?活动二:认识同底数幂的乘法性质1.问题1 一种电子计算机每秒可进行1千万亿(1015 ) 次运算,它工作103 s 可进行多少次运算?.列式 .思考:如何计算?2.(1) 试试看:下面请同学们根据乘方的意义做下面一组题:①23×22=(2×2×2×)×(2×2)=2( )② a3.a2=_____________=a( )③5m×5n=_____________=5( )(2)猜一猜:当m,n为正整数时候,ma.n a=aaaaa个__________)(⨯⨯⨯⨯.aaaaa个_____________)(⨯⨯⨯⨯=aa a a a 个___________⨯⨯⨯⨯=()a 观察上面式子左右两端,你发现它们各自有什么样的特点?你想探究它们之间怎样的运算规律?3.归纳:同底数幂的乘法法则: (完成后,小组合作交流,推选代表把成果展示)根据上面的规律,请以幂的形式直接写出下列各题的结果:421010⨯= 541010⨯=3151010⨯=4.利用同底数幂的乘法运算性质进行计算:(2 )a 7·a(3)23×24×25 (4) y • y 2 • y 3自主完成后,说说解题体会;交流运用底数幂的乘法运算性质进行计算的方法及注意点活动三: 运用同底数幂的乘法性质进行简单的计算1.抢答: (先独立完成,后小组交流并展示)(1)76×74 (2) x 5 ·x 6(3) -a 7 ·(-a)8(4)b 5 · b+b 2·b 4.2.完成课本练习第96页练习【检测反馈】1、判断:(1)b 5 · b 5= 2b 5 ( )(2)b 5 + b 5 = b 10 ( )(3)x 5 ·x 5 = x 25 ( )(4)-y 6 · y 5 = y 11 ( )(5)c · c 3 = c 3 ( )(6)m + m 3 = m 4 ( )2、计算:(1)(-3)7×( -3)6 (2)x 3·x n+1 (3)-x 3 • x 5; m(4)b 2m • b 2m+1 (5)(s -t )n ·(s -t )m +1练习:(1) - a 3 · a 6 ; (2) -x · (-x) 4·x 3(3)(x-y)2· (y-x)3 (4) x 3m · x 2m —1(m 为正整数)52.1(x x ⋅)拓展提高:计算:(结果写成幂的形式)1、23 + 232、34 × 273、a x=9,a y=81,求a x+y活动四、小结1、幂的意义: a n= a·a·…·a2、同底数幂的乘法性质:a m · a n =a m+n(m,n都是正整数)3、运用同底数幂的乘法法则要注意:(1)必须具备同底、相乘两个条件;(2)注意 a m· a n 与a m + a n的区别;(3)同底数幂相乘时,指数是相加的;不能疏忽指数为1的情况;活动五、布置作业:基础训练同步练习。
作品编号:15635478925896743
学校:山黄市鹤仙镇那年小学*
教师:戒悟空*
班级:蝶舞伍班*
《14.1.4 整式的乘法》教学反思
本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:(1)成功之处
也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。
然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。
在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。
并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。
整堂课中学生参与性较强,气氛活跃,知识落实到位。
(2)不足之处
在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。
例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。
在小结时,还可以让学生再次去总结本节课中常犯的错误。
一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。