结构动力学习题解答(一二章)
- 格式:doc
- 大小:1.06 MB
- 文档页数:23
结构动力学问答题答案-武汉理工-研究生结构动力学问答题答案-武汉理工-研究生《结构动力学》思考题第1章1、对于任一振动系统,可划分为由激励、系统和响应三部分组成。
试结合生活或工程分别举例说明:何为响应求解、环境识别和系统识别?响应求解:结构系统和荷载已知,求响应。
又称响应预估问题,是工程正问题的一种,通常在工程中是指结构系统已知,具体指结构的形状构件及离散元件等,环境识别:主要是荷载的识别,结构和响应已知,求荷载。
属于工程反问题的一种。
在工程中,如已知桥梁的结构和响应,根据这些来反推出桥梁所受到的荷载。
系统识别:荷载和响应已知,求结构的参数或数学模型。
又称为参数识别,是工程反问题的一种,在土木工程领域,房屋、桥梁和大坝等工程结构被视为“系统”,而“识别”意味着由振动实验数据求得结构的动力特性(如频率、阻尼比和振型)。
如模态分析和模态试验技术等基本成型并得到广泛应用。
2、如何从物理意义上理解线性振动系统解的可叠加性。
求补充3、正确理解等效刚度的概念,并求解单自由度系统的固有频率。
复杂系统中存在多个弹性元件时,用等效弹性元件来代替原来所有的弹性元件,等效原则是等效元件刚度等于组合元件刚度,则等效元件的刚度称为等效刚度。
4、正确理解固有频率f 和圆频率ω的物理意义。
固有频率f :物体做自由振动时,振动的频率与初始条件无关,而仅与系统的本身的参数有关(如质量、形状、材质等),它是自由振动周期的倒数,表示单位时间内振动的次数。
圆频率ω:ω=2π/T=2πf 。
即为单位时间内位移矢量在复平面内转动的弧度,又叫做角频率。
它只与系统本身的参数m ,k 有关,而与初始条件无关5、正确理解过阻尼、临界阻尼、欠阻尼的概念。
一个系统受初扰动后不再受外界激励,因为受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。
系统的状态按照阻尼比ζ来划分。
把ζ=0的情况称为无阻尼,即周期运动;把0<ζ<1的情况称为欠阻尼,即系统所受的阻尼力较小,振幅在逐渐减小,最后才达到平衡位置;把ζ>1的情况称为过阻尼,如果阻尼再增大,系统需要较长的时间才能达到平衡;把ζ=1的情况称为临界阻尼,即阻尼的大小刚好使系统作非"周期"运动。
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
第一章 单自由度系统1。
1 总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率.2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动.解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T —U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。
解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤.用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法.求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A .(2)由对数衰减率定义 )ln(1+=i iA A δ, 进一步推导有 212ζπζδ-=,因为ζ较小, 所以有πδζ2=。
结构动力学课后答案1.结构动力学是什么?结构动力学是力学领域中实验和理论上探讨结构动态行为方面的分支。
它讨论物体及其某种结构体系的运动特性,以洞察内部活动以及如何令该结构体系受到外力的影响,从而确定结构的性质,推断出其可能存在的破坏模式,以及分析出它将如何受到外力和其他外来因素的影响。
2.结构动力学主要包括哪些内容?结构动力学主要包括:(1)动力学方程——研究结构在外力作用下的运动情况;(2)振型理论:研究结构被动力激励时发生的振动行为;(3)稳定分析:研究结构稳定性;(4)低频动力学:完善弹性动力学;(5)控制力学:考虑施加力的时间变化,以便更准确的研究结构的动态行为。
3.什么是动力学方程?动力学方程是由牛顿第二定律推出的,用于描述结构受到力学影响时的动态行为,主要是用于定义影响结构的外力矩,内力矩以及外力与内力之间的相互作用,以及结构运动的加速度等因素。
根据力学方程,我们能够确定结构对外力的反应,从而有助于推测出可能存在的破坏模式以及抗破坏做出相应的措施。
4.什么是振型理论?振型理论是一种实验和理论研究,用于探讨结构被动力激励的情况下,结构的振动行为。
振型研究的目的是为了确定激励结构的物理特性,如其固有振型,以及自激振型在特定频率下的振幅。
振型理论可以作为一种鉴定有关领域物理属性的重要工具,其研究成果在工程中有着重要的应用,如结构安全性的分析,隔震技术的应用等。
5.什么是稳定分析?稳定分析是指对结构的稳定性进行多维度分析的过程,以期深入地研究结构的力学性质以及受到外力的影响,从而可以准确地预计出特定条件下结构的动态性能,从而设计出满足特定力学要求的合理结构。
其常用技术包括稳振型矩阵法、最大振幅法、偶联杆法、稳定椭圆法等。
6.什么是低频动力学?低频动力学是一种补充性弹性动力学理论,它完善了一般弹性动力学理论在低频谱中所提出的不准确性,它完善了原始方程,能够很好地模拟结构在低频范围内的动力行为,是结构动力学分析的重要补充,在结构设计和控制方向具有多重应用。
第二章自由振动分析2-1(a )由例2 2W Tgk22()W K Tg 因此max()()D t kT 其中k=0、1、2……T D =0.64sec如果很小,T D =T222200()49.9/0.64sec 386/sec kips k kips inin 50/k kips in(b )211ln ln n n v v v v 222121()11.2ln0.3330.86210.05292()10.33320.053025.3%(a ’)21D2T21D TT 249.950/1kkips in(c)2c mW mg2T4cTg21D T T 241WcTg2240.05292000.64sec 386/sec 10.0529kipsc in 0.539sec/ckips inT=T D 0.538sec/ckips in 0.54sec/ckips in2-22k m40 4.472(1/sec )(0)(0)()sin(0)costDDDv v t et v t(0)(0)()sin(0)(0)(0))costDDDv v t et v v v t22(0)(0)()(0)cossinDtDDDv v t ev tt21D()(0)cos(0)(0)sintDDDt ev t v v t2(0)(0)()(0)c o s s i n1tD D v v t ev tt 0.055922(2)(4.47)c c cm(a) c=00D5.6(1)sin 4.470.7cos4.47 1.384.47v t in(1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/secv t in (1) 1.4v in ,(1) 1.7/secv in (b) c=2.80.0559(2.8)0.15724.4710.1574.41D(1/sec )(0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e(1)0.764t in(0.157)(4.41)20.157(5.6) 4.41(0.7)(1) 5.6cos 4.41sin 4.4110.157t e (1) 1.10/sect in (1)0.76v in ,(1) 1.1/secv in 第三章谐振荷载反应3-1根据公式有21sin sin 1R t wt wt0.8w w2.778sin 0.8sin1.25R twt wt将t 以80°为增量计算)(t R 并绘制曲线如下:0 80°160°240°320°400°480°560°640°720°800°00.5471.71 -0.481 -3.214 0.357 4.33-0.19 -4.9244.9241.25w wt)(t R3-2解:由题意得:22mkips s in ,20kkips in ,(0)(0)0v v ,w w20 3.162sec2k w rad m8wt(a )0c1sin cos 2R twt wt wt将8wt 代入上式得:()412.566R t (b )0.5ck s in0.50.0395222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:()7.967R t (c ) 2.0ck s in2.00.158222 3.162cc c c mw1exp1cos exp sin 2R twtwtwt wt将8wt 代入上式得:() 3.105R t 3-3解:(a ):依据共振条件可知:1003860.0810.983sec4000k kg wwrad m W由2LTVw 得:10.9833662.96022wL V ft s(b ):122max2221212tgovv 1w w 0.41.2gov in 代入公式可得:max1.921tv in(c ):2L T Vw45m i n 66Vhf t s226611.51336V wrad secL11.513 1.04810.983w w0.4代入数据得:122max22212=1.85512t govv in3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比2下运行,在这种情况下,隔振体系可能有小的阻尼。
第一章 单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。
解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。
(2)由对数衰减率定义 )ln(1+=i iA A δ, 进一步推导有 212ζπζδ-=,因为ζ较小, 所以有πδζ2=。
方法二:共振法求单自由度系统的阻尼比。
(1)通过实验,绘出系统的幅频曲线, 如下图:单自由度系统的幅频曲线(2)分析以上幅频曲线图,得到:4/22/max 2,1ζββ==;于是221)21(n ωζω-=;进一步222)21(n ωζω+=;最后()n n ωωωωωζ2/2/12∆=-=;1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。
用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。
方法一:幅频(相频)曲线法 当单自由度系统在正弦激励t F ωsin 0作用下其稳态响应为:)sin(αω-=t A x ,其中: ()()222222020414ωζωωωω+-=+-=stnx n mF A ; (1)()()21/2arctan ωωζα-= (2)从实验所得的幅频曲线和相频曲线图上查的相关差数,由上述(1),(2)式求得阻尼比ζ。
方法二:功率法:(1) 单自由度系统在t F ωsin 0作用下的振动过程中,在一个周期内, 弹性力作功为 0=c W 、 阻尼力做功为 2A W c d πω-=、 激振力做作功为 απsin 0F W f -=;(2) 由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零, 即: c W +d W +0=f W ;于是 παsin 0F -02=A c πω 进一步得: ωαc F A sin 0=; (3) 当ωω=n 时,1sin =α,则 ζ2max st x A =,得 ζβ21max =, max 2βζ=。
1.4 求图1-35中标出参数的系统的固有频率。
(1)此系统相当于两个弹簧串联,弹簧刚度为k 1、简支梁刚度为 3248LEIk =; 等效刚度为k;有21111k k k +;31214848111lk EI EIk k k k +=⎪⎪⎭⎫⎝⎛+=L/2 L/2则固有频率为:()ml k EI EIl mk3134848+==ω; 图1-33(a ) (2)此系统相当于两个弹簧串联, 等效刚度为: 3148lEIk k +=; L/2 L/21k 则固有频率为: 33148mlEIl k mk +==ω 图1-33(b ) (3)系统的等效刚度为m k1 k1113333EI EIk k k l l=+=+ mm则系统的固有频率为 3133k l EI km ml ω+==图1-33(c )(4) 由动量距定理()θ 0I F m =∑得:(l k l l k l 2121212111⋅⋅+⋅⋅θθ)=θ 221ml 1k 1k 得: 021=+θθmk , 则 mk 21=ω 。
图1-33(d )1.5 求下图所示系统的固有频率。
图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k.解:以θ 为广义坐标,则系统的动能为()2022121θ I x m T T T +=+=)(轮子重物 ()2222244)21(21221xg P x g P R x R g P x g P +=⎪⎭⎫ ⎝⎛+=)( 图1-34 22x gP =系统的势能能为:221kx Px U U U +=+=弹簧重物 ;拉格朗日函数为L=T-U ;由拉格朗日方程0)(=∂∂-∂∂∂xL x L dt 得 0=+kx x gP则,0ω=Pkg 所以:系统的固有频率为Pkg 1.6求图1-35所示系统的固有频率。
图中磙子半径为R ,质量为M ,作纯滚动。
弹簧刚度mABθθ 0xk为K 。
解:磙子作平面运动, K其动能T=T 平动 +T 转动 。
x图1-3522221;211;222T Mx x MR x T I R R =⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭平动转动222434121x M x M x M T =+=; 而势能221Kx U =; 系统机械能C Kx x M U T =+=+222143 ; 由()0=+U T td d得系统运动微分方程 023=+Kx x M ; 得系统的固有频率MKn 32=ω ; 1.7求图1-36所示齿轮系统的固有频率。
已知齿轮A 的质量为m A ,半径为r A ,齿轮B 的质量为m B ,半径为r B,杆AC 的扭转刚度为K A , ,杆BD 的扭转刚度为K B ,解:由齿轮转速之间的关系B B A A r r ωω= 得角速度 A B A B r r ωω=;转角A B A B r rϕϕ=;系统的动能为:222121B B A A B A J J T T T ωω+=+= C A()22222241221221A A B A B B B A A A r m m r m r m T ωωω+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=; B D 图1-36系统的势能为:()222222221212121A B AB A B B A A B B A A r r K K K K K K U ϕϕϕϕϕ⎪⎪⎭⎫ ⎝⎛+=+=+=; 系统的机械能为()C r r K K r m m U T A B A B A A A B A =⎪⎪⎭⎫ ⎝⎛+++=+222222141ϕϕ ; R M由()0=+U T td d得系统运动微分方程 ()021222=⎪⎪⎭⎫⎝⎛+++A B A B A A A B A r r K K r m m ϕϕ; 因此系统的固有频率为:()()B A B A B A AA B A B A B A n m m r r K K r r m m r r K K +⎪⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=22222212ω;1.8已知图1-37所示振动系统中,匀质杆长为L ,质量为m ,两弹簧刚度皆为K ,阻尼系数为C ,求当初始条件000==θθ 时 (1)t F t f ωsin )(=的稳态解; C f(t)(2)t t t f )()(δ=的解; L/2 L/2 解:利用动量矩定理建立系统运动微分方程θθθθ22222)(22⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=L K L t f L K L C J ; K K 而 ⎰⎰--===222222212L LLL mL dr L m r dm r J ;得 )(663222t Lf KL CL mL =++θθθ; 化简得)(663t f mLm K m C =++θθθ(1) (1) 求t F t f ωsin )(=的稳态解; 将t F t f ωsin )(=代入方程(1)得t F mLm K m C ωθθθsin 663=++ (2) 令;6;6;322mLFh m K m C n n ===ω 得 t h n nωθωθθsin 22=++ (3) 设方程(3)的稳态解为)sin(αω-=t A x (4) 将(4)式代入方程(3)可以求得:()()2222222229664ωωωωωC m K L Fn hA n+-=+-=;222632ωωωωωαm K C arctgn arctgn -=-= ;(2) 求)()(t t f δ=的解; 将)()(t t f δ=代入方程(1)得)(663t mLm K m C δθθθ=++ (5) 令;6;6;322mLh m K m C n n ===ω 得 )(22t h n nδθωθθ=++ (6) 方程(6)成为求有阻尼的单自由度系统对于脉冲激励)(t h δ的响应。
由方程(6)可以得到初始加速度)(0t h δθ= ; 然后积分求初始速度h t d t h t d t h t d ====⎰⎰⎰+++0000000)()(δδθθ ; 再积分求初位移0)00000====⎰⎰++t d h t d θθ ; 这样方程(6)的解就是系统对于初始条件0θ 、0θ 和0θ的瞬态响应 ()ϕω+=-t Ae x d t n sin ;将其代入方程(6)可以求得:;0;==ϕωd m h A最后得()()t e m h t Ae x d t n dd t n ωωϕωsin sin --=+=1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下和地面粘住后弹簧振子的振动历程及振动频率。
解:因为在自由落体过程中弹簧无变形,所以振子和盒子之间无相对位移。
在粘地瞬间, 由机械能守恒定理 2021mV mgH =的振子的初速度gH V 20=; 底版和地面粘住后,弹簧振子的振动是对于初速度 gH V 20=的主动隔振系统的运动微分方程为:0=++Kx x C xm ; K/2 c K/2 或 ;0=++x mKx m C x或 ;022=++x x n x n ωH m系统的运动方程是对于初始条件的响应:()ϕω+=-t Ae x d t n sin ;d d d n gH xx x x A ωωωζω2020020==⎪⎪⎭⎫ ⎝⎛++= ; 0000=+=x xx arctgn d ζωωϕ ;();sin 2t gHx d dωω=1.10汽车以速度V 在水平路面行使。