2范数和条件数病态方程组
- 格式:ppt
- 大小:1.36 MB
- 文档页数:40
病态矩阵
病态矩阵的最根本的特征:病态矩阵的条件数(||A||*||A^(-1)||定义为A 的条件数,||A||为A的范数,MATLAB中范数的求法c = cond(A,p),p为几范数,默认情况下为二范数)很大(可以用机器精度的一半来衡量,比如双精度浮点数的精度大约是10^(-16),那么条件数大于10^8就算比较坏了.),即最大特征值与最小特征值的比值很大。
病态矩阵对扰动特别敏感。
病态矩阵矩阵不能求逆。
例如,有一个变量是其他三个变量之和,这个变量也存在于模型中,这个矩阵就是病态矩阵。
解决方法:
1.利用正则化方法可以解决这一问题
最经典的正则化方法就是Tikhonov正则化,另外一种方法就是Total Variation
2.奇异值分解
将病态矩阵分解为A=SVD
3.模拟退火算法
/view/3a75ad82bceb19e8b8f6baad.html#opennewwindow
4./link?url=ripw0P7tMkcEl2x5zmkOJ-_iDFdfOLQ0Ox9ao cKY3sAJMFXEBQa__Yq6OVb3R41__nvgiWEQhA0bxXWzZzpQiFH7_IlNWlvqyrkKjLqvQ qC。
正规矩阵的算子二范数概述及解释说明1. 引言1.1 概述在线性代数和矩阵理论中,正规矩阵是一类特殊的方阵,具有重要的性质和应用价值。
算子二范数是衡量线性变换操作对向量长度影响程度的指标。
本文将探讨正规矩阵的算子二范数及其计算方法,并解释二范数在正规矩阵中的作用。
1.2 文章结构本文分为五个主要部分。
引言部分进行整体概述,介绍文章内容和结构安排;第二部分将详细解释正规矩阵和算子范数的概念;第三部分将介绍计算算子二范数的三种方法:奇异值分解法、特征值分解法和迭代法估计法;第四部分将探讨算子二范数与正规矩阵性质之间的关系;最后,第五部分总结全文并展望未来可能涉及的问题和研究方向。
1.3 目的本文旨在提供一个全面而清晰的概述,以便读者了解正规矩阵的算子二范数及其相应性质。
通过本文可以更好地理解算子二范数对正规矩阵的描述和刻画,并了解到如何计算算子二范数。
同时,本文还将探讨算子二范数与正规矩阵性质之间的关系,帮助读者深入理解这一主题及其应用。
以上是“1. 引言”部分的内容,用于概述文章主要内容、介绍文章结构以及明确文章目的。
接下来的章节将更详细地解释和讨论相关概念和方法。
2. 正规矩阵的算子二范数2.1 正规矩阵概念解释正规矩阵是指满足以下条件的方阵:若A 是正规矩阵,则A 的共轭转置(A*) 与自身的乘积等于自身与其共轭转置的乘积,即A*A* = AA*。
这意味着正规矩阵的特征向量可以相互正交。
2.2 算子范数概念解释算子范数是一种衡量线性变换(或算子)大小的方法。
在本文中,我们关注算子二范数,也称为谱范数。
对于一个n x n 的方阵A,它的算子二范数可以定义为:||A||₂= max { ||Ax||₂: ||x||₂= 1 },其中||x||₂表示向量x 的二范数。
2.3 解释说明二范数在正规矩阵中的作用正规矩阵中的算子二范数有许多应用和重要性质。
首先,二范数可以用于衡量一个正规矩阵A 所导致的线性变换对向量长度的影响程度。
现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。
全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。
使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。
《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。
基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。
其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。
目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。
实验3.1 Gauss消去法的数值稳定性实验实验目的:观察和理解高斯消元过程中出现小主元(即|a(k)kk|很小)时引起方程组解数值不稳定性.实验内容:求解方程组Ax=b,其中实验要求:(1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的.(2)用高斯列主元消去法求得L和U及解向量x1,x2 .(3)用不选主元的高斯消去法求得L和U及解向量x1,x2 .(4)观察小主元并分析对计算结果的影响.解:(1)cond(A1)=68.4296cond(A2)=8.9939A1矩阵条件数远大于1,A1矩阵为病态;A2矩阵条件数没有远远大于1,A2矩阵为良态。
(2)高斯列主元消去法:程序如下ClearA1=[0.3*power(10,-15),59.14,3,1;5.291,-6.130,-1,2;11.2,9,5,2;1,2,1,1];b1=[59.17;46.18;1;2];% A1=[1,2,-1,1;1,1,2,-1;3,-1,1,1;2,1,3,-1];%b1=[1;-2;6;-1];A2=[10,-7,0,1;-3,2.0999********,6,2;5,-1,5,-1;0,1,0,2];b2=[8;5.900000000001;5;1];A=A1; b=b1;n=input('n=');for k=1:n-1 [a,b3]=max(A(k:n,k)); A([k k-1+b3],:)=A([k-1+b3 k],:); b([k k-1+b3],:)=b([k-1+b3 k],:); if A(k,k)~=0A(k+1:n,k)=A(k+1:n,k)./A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else stop end endA; b; L=tril(A,-1);U=triu(A,0); for i=1:1:n L(i,i)=1;end L; for j=1:n-1 b(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);end b(n)=b(n)/L(n,n); b; y=b;for j=n:-1:2 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j);end y(1)=y(1)/U(1,1);结果如下:方程组一:L1: U1:解向量x1结果如下:方程组二结果如下:L2:U2:解向量x2结果如下:(3)不选主元的分解程序如下:ClearA1=[0.3*power(10,-15),59.14,3,1;5.291,-6.130,-1,2;11.2,9,5,2;1,2,1,1]; b1=[59.17;46.18;1;2];%A1=[6,2,1,-1;2,4,1,0;1,1,4,-1;-1,0,-1,3];%b1=[6;-1;5;-5];A2=[10,-7,0,1;-3,2.0999********,6,2;5,-1,5,-1;0,1,0,2];b2=[ 8;5.900000000001;5;1]; A=A2; b=b2; n=input('n='); for k=1:n-1A(k+1:n,k)= A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end L=tril(A,-1); U=triu(A,0); for i=1:1:n L(i,i)=1; end L ;for j=1:n-1 b(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); b; y=b;for j=n:-1:2 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1);方程组一结果:L1: U1:解向量x1结果如下:方程组二结果:L2: U2:解向量x2结果如下:(4) 观察方程在两种不同方法下的结果可知:由于计算机字长是一定的,小主元会造成大数除以小数的结果超出字长,结果发生很大的变化。
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
病态线性方程组的求解理论分析表明,数值求解病态线性方程组很困难。
考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ⨯=,11ij h i j =+-,i ,j = 1,2,…,n1. 估计矩阵的2条件数和阶数的关系2. 对不同的n ,取(1,1,,1)n x =∈ ,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。
3. 结合计算结果,试讨论病态线性方程组的求解。
1)估计矩阵的2-条件数和阶数的关系矩阵的2-条件数定义为:1222()Cond A A A-=⨯,将Hilbert 矩阵带入有:1222()Cond H H H -=⨯。
使用MA TLAB 自带的cond2函数进行计算并画出log10(cond2)和阶数n 的关系曲线如下:可见当n 小于13的时候,条件数的对数与阶数有较好的线性关系,但是随着阶数的提高,条件数趋于“稳定”地振荡。
但是事实上,n较大时,H矩阵已经奇异,直接使用cond函数计算结果可能存在不准确性。
原因是对于条件数过大的矩阵使用inv函数求逆矩阵是不可靠的,应该使用invhilb函数进行求逆,并代入定义式中求解,生成的结果如下所示。
线性度较好,可知,Hilbert矩阵的2-条件数会随其阶数n的增加呈指数增大趋势,因此当n 较大时Hilbert矩阵将是严重病态的。
对不同的n,采用各种方法求解方程编写程序,选取n=2,3,5,10,15,20,迭代条件为迭代100000次或者是计算精度达到1e-6,若迭代次数少于设定最大值,表示相邻两次迭代达到精度要求,或者是计算结果超出范围。
X0取零向量,w取1.2,计算结果如下所示:由上可见,当n大于2时,Jacobi法已经不收敛,故其迭代次数已经没有意义。
当n=15时,Gauss消去法已经不收敛。
并且随着阶数的上升,gauss消去法的误差也随之上升。
Solution (1)猜想:()()ln cond Hn n 成线性比例关系。
验证:猜想部分正确。
根据不同n 建立对应的Hilbert 矩阵,计算该矩阵的2-范数的条件数,并绘制曲线。
编程实现见附录1中solution(1)。
实际编程中,分别取N=5,=10N ,=20N ,N=30,可以发现()()ln cond Hn n 曲线先是按线性规律变化;当n 达到大约12以后,()()ln cond Hn 的取值在40~50之间产生振荡。
各结果如下:N=5时 N=10时ln(cond(Hn))-nnl n (c o n d (H n ))ln(cond(Hn))-nnl n (c o n d (H n ))ln(cond(Hn))-nnl n (c o n d (H n ))ln(cond(Hn))-nnl n (c o n d (H n ))N=20时N=30时Solution (2)猜想:通过对Hilbert 矩阵的预处理,能改善Hilbert 的病态性质。
验证:根据不同n 建立对应的Hilbert 矩阵,计算该矩阵的2-范数的条件数,其次计算经过预处理后的H^矩阵的2-范数的条件数,并绘制()()()ln ^/cond Hn cond Hn n 曲线。
编程实现见附录1中的solution(2)。
实际编程中,分别取N=5,=12N ,=50N ,N=100,可以发现所得到的变化曲线()()()ln ^/cond Hn cond Hn n 在12n ≤时,()()()ln ^/cond Hn cond Hn 的取值较为平缓的减小,且均小于0。
而随着Hilbert 矩阵阶数的增大,()()()ln ^/cond Hn cond Hn 的取值在[]-7,3区间中振荡,主要集中在[]-31,,且多数取值()()()ln ^/0cond Hn cond Hn ≤。
则对多数的Hilbert 矩阵,其条件数在经过预处理后,有()()^cond Hn cond Hn ≤,即预处理在一定程度上改善了原Hilbert 矩阵的病态性质。