北师大版九年级数学上册【教案】矩形及其性质【新版】
- 格式:doc
- 大小:391.50 KB
- 文档页数:4
北师大版九年级上册2矩形的性质与判定课程设计一、课程目标通过本节课程的学习,旨在让学生掌握矩形的定义、性质和判定方法,了解矩形在生活和实际应用中的重要地位,培养学生的推理和证明能力,探索靠近实际的数学教学方法。
二、教学内容1. 知识点1.矩形的定义与性质2.矩形的判定方法2. 教学形式本次课程主要采用启发式教学方法,通过学生自主探究与合作学习,逐步引导学生掌握矩形的定义、性质和判定方法。
3. 教学过程3.1 导入环节通过提问和数学游戏等形式,快速激发学生学习矩形知识的兴趣,预告本堂课的主要内容。
3.2 自主学习1.学生自主研究矩形的定义,通过组内讨论和解决问题的形式,加深对矩形的认识。
2.学生结合生活中常见矩形的客观事物,如文具盒、窗户等,讨论矩形的特点。
3.学生通过实验探究和举例分析,总结矩形的性质。
4.学生总结出矩形的四个判定条件,讨论对矩形的判定方法。
3.3 合作探究1.将学生分成小组,每组依次讲述矩形的定义、性质、判定方法,其他组进行点评和补充。
2.学生通过小组合作完成课堂练习和课后作业,帮助他们巩固所学知识。
3.4 总结归纳在学生完成课堂练习后,对矩形的定义、性质和判定方法进行总结归纳,强化学生对所学知识的掌握。
3.5 展示交流学生通过展示和交流方式,对所学知识和掌握的方法进行分享和交流,增强沟通和表达能力。
三、教学评价1.采用启发式教学方法,让学生在自主学习与合作探究中获得知识和技能,达到了良好的教学效果。
2.通过课堂练习和课后作业巩固所学知识,培养了学生的学习兴趣和学习计划能力。
3.通过小组互动和展示交流的形式,增强学生的沟通和表达能力,有助于提升学生的综合素质。
四、教学反思在本次课程中,虽然采用了启发式教学方法,但在课堂组织和教学内容设置上还需要进一步探讨和改进,如加强学生的自学能力,提高教师的指导能力等,以更好地完成教学目标。
同时,还应该注重教学评价环节,在课堂评价和教学效果评估上进行更加全面的考虑。
九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版第一篇:九年级数学上册 1.2 矩形的性质与判定(第1课时)教案 (新版)北师大版矩形的性质与判定教学目标(1)掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边上的中线等于斜边的一半”的推导及性质定理的运用教学过程:一、创设情境,引入新课师:展示教具(平行四边形),演示平行四边形变为菱形的过程.当我们给平行四边形其他的特殊条件时,是否还会得出其他图形呢?比如,我们平行四边形的一个内角变为90度,你发现了什么特殊图形呢?生:长方形.师:原来是大家非常熟悉的图形,他还有个高大上的名字——矩形.板书课题师:根据前面大家对菱形,平行四边形的学习过程,对于矩形,你想从哪些方面认识它呢?生:矩形的定义.生:矩形的性质.生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究师:根据下面的自学指导,自主学习课本11至12页议一议前的内容.1、定义:有的叫做矩形.12、矩形是平行四边形吗?3、如图,四边形ABCD是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)边:.角:.对角线:.对称性:.4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方式:生自主学习和小组合作相结合,通过自学——猜想——推理三个步骤,掌握矩形的性质.以小组为单位,提出学习过程中的疑问,由其它同学讨论答疑.【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.师归纳板书:定义:有一个角是直角的平行四边形是矩形.性质:1、矩形的四个角都是直角.2、矩形的对角线相等.2.自学检测生完成导学案上的自学检测习题,然后借助投影仪展示结果,查缺补漏.3.例题解析展示课本P13例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长。
北师大版九年级上册2矩形的性质与判定教学设计一、教学目标1.知识目标:了解矩形的定义及其性质,并能够判定矩形的形状。
2.技能目标:通过观察、分析和判断等方式,能够判定一个图形是否为矩形,从而提高学生的思维逻辑能力和判断能力。
3.情感目标:培养学生对于几何图形的兴趣爱好,提高学生的学科成绩和综合素质。
二、教学内容1.矩形的定义及其性质;2.矩形的判定方法。
三、教学重点和难点1.教学重点:矩形的性质及其判定方法;2.教学难点:如何将抽象的几何图形性质和判定方法转化为具体的观察和判断。
四、教学方法1.课堂讲授法;2.课堂讨论法;3.案例分析法。
五、教学过程设计1. 热身(5分钟)通过展示不同的图形,让学生说出其中矩形的形状。
例如:长方形、正方形等。
2. 导入(10分钟)将矩形的定义和性质讲解给学生,并通过举例、图像展示等方式让学生初步了解矩形的性质和形状。
3. 学生自主探究(20分钟)在黑板和课件上展示多个图形,其中几个为矩形,剩余的不是。
让学生根据矩形的性质和判定方法,自行判定哪些是矩形。
同时,鼓励学生提出自己的判定过程和方法,并在班级进行比较和讨论。
4. 教师巩固(10分钟)针对学生自主探究环节中出现的问题和错误,进行补充讲解并展示正确的判定方法和过程。
5. 合作探究(20分钟)将学生分组,让他们自行设计图形,并根据矩形的性质和判定方法,判定自己设计的图形是否为矩形。
同时,组内成员之间进行互相判定和评价。
最后,让学生将设计的图形展示给全班,并由班级评出最佳设计。
6. 结语(5分钟)对本节课的学习内容进行回顾,并展望下一节课的内容。
六、教学评价1.通过观察和讨论等方式,学生能够初步了解矩形的性质和判定方法;2.学生能够根据矩形的性质和判定方法,准确地判定一个图形是否为矩形;3.学生通过设计自己的几何图形,加深了对矩形的理解;4.通过小组讨论和班级展示,增强了学生的合作意识和交流能力。
七、教学反思本节课通过多种教学方法和环节,让学生深入了解了矩形的性质和判定方法。
第一章特殊的平行四边形1.2 矩形的性质与判定第2课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=.∴□ABCD是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°.∴AD∥BC.∵∠B+∠C=180°,∴AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴.∴S□ABCD=AB·BC=4×=.设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案C2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.参考答案12.3.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC.求证:四边形ABCD是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD是平行四边形,∴AB=DC.∵M是AD边的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS).∴∠A=∠D.又∵AB∥DC,∴∠A+∠D=180°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD中,对角线AC,BD相交于点O,点E是□ABCD外一点,且∠AEC=∠BED=90°.求证:□ABCD是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠AEC=∠BED=90°,∴OE=AC=BD.∴AC=BD.∴□ABCD是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
1.2矩形的性质与判定第2课时矩形的判定教学目标【知识与能力】熟练运用矩形的定义和判定定理判定四边形是矩形.【过程与方法】经历探索、猜想、证明的过程,进一步发展推理论证的能力.【情感态度价值观】通过学生独立完成证明的过程,体会数学是严谨的科学,增强学生严谨的治学态度,从而养成良好的习惯.教学重难点【教学重点】能够用综合法证明矩形的判定定理并利用定义和定理进行证明.【教学难点】灵活运用矩形的性质和判定定理及其相关结论解决问题.课前准备多媒体课件、三角板.教学过程学生:定义,符合定义就是,不符合就不是.教师:说得非常好,我们来看一看下面的四边形是否符合矩形的定义.(课件展示)图1-2-441.已知:如图1-2-44,在ABCD中,AC=BD.求证:四边形ABCD是矩形,注意:学生思考、交流后,教师可以适当地引导:给出的条件与矩形的定义相比,少了哪个条件?怎么办?教师:分析后课件展示过程.证明:∵AB=DC,CA=BD,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.在ABCD中,∵AB∥CD,∴∠ABC+∠DCB=180°,∴2∠ABC=180°,即∠ABC=90°,∴四边形ABCD是矩形.教师:在菱形中,对角线互相垂直,而对角线互相垂直的平行四边形是菱形.类似地,在矩形中,对角线相等,反过来,对角线相等的平行四边形是矩形.我们判定的着手点就是看看图形“特殊”的地方,比如菱形的边也比较特殊,四条边都相等,所以四条边都相等的四边形是菱形.那么矩形有没有比较特殊的地方呢?学生:矩形的角特殊,四个角都是直角.教师:如果一个四边形的四个角都是直角,那么这个四边形是不是矩形呢?我们来试一试(课件展示):2. 如图1-2-45,已知∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形吗?图1-2-45学生:思考、交流后尝试给出证明过程.教师:学生展示过程后点评、规范相应的步骤.证明:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.教师:我怎么感觉有一个条件没有用到呢?学生:∠D=90°.。
矩形的性质与判定教学目标1.掌握矩形的定义,知道矩形与平行四边形的关系.2.掌握矩形的性质定理.教学重点:矩形的性质及其推论.教学难点:矩形的本质属性及性质定理的综合应用.教学过程:复习提问:什么叫平行四边形?它和四边形有什么区别?引入新课:我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形——矩形.讲解新课制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.矩形性质1:矩形的四个角都是直角.已知四边形ABCD是矩形.求证:∠A=∠B=∠C=∠D=90°.证明:∵四边形ABCD 是//四边形,∴∠A =90°,四边形ABCD 是.∴∠A=∠C ,∠B =∠D∠A+∠D =180°.∴∠B =∠C :∠D =∠A =90°.矩形性质2:矩形对角线相等.已知矩形ABCD ,求证:AC =DB .证明:在矩形ABCD 中,∵∠ABC =∠DCB =90°,(矩形的四个角都是直角)AB =DC ,(平行四边形的对边相等)BC =CB ,∴△ABC ≌DCB .∴AC=DB .推论:直角三角形斜边上的中线等于斜边的一半.已知BE 是Rt △ABC 的斜边AC 上的中线.求证:BE = 21AC .证明:过点A 作BC 的平行线与BE 的延长线交于点D ,连接CD .(如图)则∠DAE =∠BCE .∵BE 是Rt △ABC 的斜边AC 上的中线,∴AE =EC .又∵∠AED =∠CEB ,∴△AED ≌△CEB .∴AD =BC .∵AD//BC .∠ABC =90°,∴四边形ABCD 是矩形.∴AC=BD ,BE =ED =21BD .∴BE =21AC .知识应用例题、如图,矩形ABCD 的两条对角线相交于点O ,已知∠AOD =120°,AB =2.5 cm .求矩形对角线的长.解:∵四边形ABCD 是矩形,∴AC =BD ,且OA=OC=21AC ,OB =OD=21BD ,(矩形的对角线相等且互相平分)∴OA =OD .∵∠AOD=120°,∴∠OAD=∠ODA=2120180︒-︒=30°.∵∠DAB=90°.(矩形的四个角都是直角) ∴BD=2AB=2×2.5=5(cm)故这个矩形的对角线的长为5 cm.巩固练习:课本随堂练习小结:矩形的性质.布置作业:课本习题。
北师大版初三上册第一章2教学目标:1.经历并了解矩形判定方法的探究过程,使学生逐步把握说理的差不多方法.2.把握矩形的判定方法,能依照判定方法进行初步运用.教学重难点:【重点】矩形的判定定理.【难点】矩形的判定定理的证明及灵活应用.教学过程:一、新课导入【问题1】投影展现门窗、建筑物墙砖、数学教材,观看所展现物体的形状差不多上什么图形?【问题2】一天,小丽和小娟到一个商店预备给今天要过生日的小华买生日礼物,选了半天,她们最后决定买相框送给她,在里面摆放她们三个人的合影,为了相框摆放的美观性,她们选择了矩形的相框,那么用什么方法能够确定她们拿的确实是矩形的相框呢?二、新知构建矩形的判定(一)[处理方式]边说明、边演示,用上、下一样长,左、右一样长的四根木条,长对长,短对短,首尾相接,做成一个木条框一定是矩形吗?还要满足什么条件?教具演示由平行四边形矩形平行四边形的过程,得出“有一个角是直角的平行四边形叫做矩形”.矩形的判定(二)【教师活动】提出问题,激发学生探究的积极性,还有没有其他的判定方法呢?下面我们再来做一做如此的试验,用刚才演示的木条框,对角线用橡皮筋连接.教师逐步演示,配合多媒体课件的出现,引导学生得出结论.矩形的判定(三)【教师活动】通过谈话,引导探究其他判定方法,判定方法2实际上是矩形的对角线性质定理的逆定理,那么矩形的其他性质的逆命题,能否作为矩形的判定方法呢?引导从矩形性质的逆命题中探究.得出结论之后,引导证明结论.设置问题:想一想:矩形的四个角是直角,反过来,一个四边形至少有几个角是直角时,那个四边形确实是矩形呢?三、学生活动积极探究多种解题方法,尝试用不同的方法解决问题,小组合作交流探究的成果,体验成功的欢乐.四、课堂小结1.矩形的判定方法(1)有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.五、课堂练习1.下列说法正确的是()(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等且有一个角是直角的四边形是矩形;(7)对角线相等且互相垂直的四边形是矩形.A.(1)(2)(3)B.(2)(4)(5)C.(4)(5)(6)D.(3)(4)(7)2.已知矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4㎝,则矩形的对角线长为.3.下列条件中,不能判定四边形ABCD为矩形的是()A.AB∥CD,AB=CD,AC=BDB.∠A=∠B=∠D=90°C.AB=BC,AD=CD,∠C=90°D.AB=CD,AD=BC,∠A=90°六、布置作业1、下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2、满足下列条件()的四边形是矩形.A.有三个角相等 B.有一个角是直角C.对角线相等且互相垂直D.对角线相等且互相平分3、如图,点B在MN上,过AB的中点O作MN的平行线,分别交∠ABM的平分线和∠ABN的平分线于点C,D,试判定四边形ACBD的形状,并证明你的结论.4、如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?说明理由.5、如图所示,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线CE于点E, 交△ABC的外角∠A CD的平分线CF于点F.(1)求证:OE=OF(2)当O点动动到何处时,四边形AECF为矩形?并证明你的结论.。
矩形及其性质
教学目标
知识与技能了解矩形的有关概念,理解并掌握矩形的有关性质.
过程与方法:
经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.
情感态度与价值观
培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.
重难点、关键
重点:掌握矩形的性质,并学会应用.
难点:理解矩形的特殊性.
关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.
教学准备
教师准备:投影仪,收集有关矩形的图片,制作教具.
学生准备:复习平行四边形性质,预习矩形这节内容.
学法解析
1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.
2.知识线索:情境与操作→平行四边形→矩形→矩形性质.
3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程
一、联系生活,形象感知
【显示投影片】
教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.
矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).
教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:
问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.
问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质
呢?(教师提问)
学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.
评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.
教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).
学生活动:观察发现:矩形的两条对角线相等。
口述证明过程是:充分利用(SAS)三角形全等来证明.
口述:∵四边形ABCD是矩形
∴∠ABC=∠DCB=90°,AB=DC,又∵BC
为公共边,
∴△ABC≌△DCB(SAS)∴AC=BD
教师提问:AO=_____AC,BO=______BD呢?
(1
2,
1
2)BO是Rt△ABC的什么线?•由此你可以得到什么结论?
学生活动:观察、思考后发现AO=
1
2AC,BO=
1
2BD,BO是Rt△ABC的中线.•
由此归纳直角三角形的一个性质:
直角三角形斜边上的中线等于斜边的一半.
直角三角形中,30°角所对的边等于斜边的一半(师生回忆).
【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点.
二、范例点击,应用所学
例1 如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,•求矩形对角线的长.(投影显示)
思路点拨:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,•可以发现△AOB为等边三角形,这样可求出OA=AB=4cm,∴AC=BD=2OA=8cm.【活动方略】
教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程.
学生活动:参与教师讲例,总结几何分析思路.
【问题探究】(投影显示)
如图,△ABC 中,∠A=2∠B ,CD 是△ABC 的高,E 是AB 的中点,求证:DE=1/2AC .
思路点拨:本题可从E 是AB 的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC 中点F ,也可以取AC 的中点G 为尝试.
【活动方略】
教师活动:操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线. 学生活动:分四人小组,合作探索,想出几种不同的证法
证法一:取BC 的中点F ,连结EF 、DF ,如图(1)
∵E 为AB 中点,∴EF //12AC ,∴∠FEB=∠A ,
∵∠A=2∠B ,∴∠FEB=2∠B .DF=1
2BC=BF ,∴∠1=∠B ,∴∠FEB=2∠B=2∠1=∠1+∠2,
∴∠1=∠2,∴DE=EF=1
2AC .
证法二:取AC 的中点G ,连结DG 、EG ,∵CD 是△ABC 的高,
∴在Rt △ADC 中,DG=1
2AC=AG ,
∵E 是AB 的中点,∴GE ∥BC ,∴∠1=∠B .
∴∠GDA=∠A=2∠B=2∠1,
又∠GDA=∠1+∠2,•∴∠1+∠2=2∠1,
∴∠2=∠1,∴DE=DG=1
2AC.
【设计意图】
补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路.
三、随堂练习,巩固深化
【探研时空】
已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E.求证:AC=CE.
思路点拨:要证AC=CE,可以考虑∠E=∠CAE,AE平分∠BAD,所以∠DAE=∠BAE,•因此,从中发现∠CAE=∠DAE-∠DAC.
另外一个条件是CE⊥BD,这样过A作AF⊥BD于F,则AF∥CE,•可以将∠E•转化为∠FAE,∠FAE=∠BAE-∠FAE.现在只要证明∠BAF=∠DAC即可,而实际上,∠BAF=∠BDA=•∠DAC,问题迎刃而解.
四、课堂总结,发展潜能
矩形定义:有一个角是直角的平行四边形叫做矩形,因此,•矩形是平行四边形的特例,具有平行四边形所有性质.
2.性质归纳:
(1)边的性质:对边平行且相等.
(2)角的性质:四个角都是直角.
(3)对角线性质:对角线互相平分且相等.
(4)对称性:矩形是轴对称图形.。