费米积分在半导体物理中的应用第一期
- 格式:pdf
- 大小:63.18 KB
- 文档页数:2
第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。
答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。
金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。
闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。
以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。
2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。
因而,电子可以在整个晶体上运动。
因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。
由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。
3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。
外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。
4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。
绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。
西安电子科技大学2020年硕士研究生招生考试初试试题考试科目代码及名称801半导体物理考试时间2019年12月22日下午(3小时)答题要求:所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!一、填空题(30分,每空1分)1、根据晶体对称性, Si的导带底在(1) 晶向上共有(2)个等价的能谷, Si的导带极小值位于(3) , Si 的导带电子有效质量是(4) 的。
2、有效质量各向异性时电导有效质量(me)l=(5) ,半导体Si的mi=0.98ma,m,=0.19ma 它的电导有效质量是(6) 。
3、半导体的导电能力会受到外界的(7) 、(8) 、(9) 和电场强度、磁场强度的影响而发生显著变化,半导体的电阻率通常在(10) 2 cm 范围内,4、室温下Si 的Nc=2.8×10/⁹cm³,如果Ep=Ec 为简并化条件,则发生简并时Si的导带电子浓度为. (11)c m³ (费米积分Fiz(O)=0.6); 室温下Ge 中掺P(4Ep=0.012eV), 若选取Ep=EckoT 为简并化条件,发生简并时电离杂质浓度占总杂质浓度的比例为(12) %。
5、根据杂质在半导体中所处位置,可将杂质分为. (13) 式杂质和(14) 式杂质;根据杂质在半导体中得失电子或空穴情况,可将杂质分为. (15) 和(16) 杂质;若将Au 掺入Ge 中可以引入(17) 个杂质能级,存在着(18) 种荷电状态;若将Au掺入Si中可以引入(19) 个杂质能级,这些能级都是有效的(20)6、一维情况下的空穴连续性方程是(21) ,其中方程等号左边项表示(22) ,方程等号右边第一项表示(23) ,等号右边第二和第三项表示(24), 等号右边第四项表示 (25) ,等号右边第五项表示(26) 。
稳态扩散方程只是连续性方程的一个特例,当连续性方程中的(27)= 0、(28)= 0、(29)= 0、(30)= 0时,就由连续性方程得到了稳态扩散方程。
半导体物理学练习题(刘恩科)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(1)能带宽度;(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
半导体物理知识点及重点习题总结基本概念题:第⼀章半导体电⼦状态1.1 半导体通常是指导电能⼒介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的⼩许多。
1.2能带晶体中,电⼦的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.3导带与价带1.4有效质量有效质量是在描述晶体中载流⼦运动时引进的物理量。
它概括了周期性势场对载流⼦运动的影响,从⽽使外场⼒与加速度的关系具有⽜顿定律的形式。
其⼤⼩由晶体⾃⾝的E-k 关系决定。
1.5本征半导体既⽆杂质有⽆缺陷的理想半导体材料。
1.6空⽳空⽳是为处理价带电⼦导电问题⽽引进的概念。
设想价带中的每个空电⼦状态带有⼀个正的基本电荷,并赋予其与电⼦符号相反、⼤⼩相等的有效质量,这样就引进了⼀个假想的粒⼦,称其为空⽳。
它引起的假想电流正好等于价带中的电⼦电流。
1.7空⽳是如何引⼊的,其导电的实质是什么?答:空⽳是为处理价带电⼦导电问题⽽引进的概念。
设想价带中的每个空电⼦状态带有⼀个正的基本电荷,并赋予其与电⼦符号相反、⼤⼩相等的有效质量,这样就引进了⼀个假想的粒⼦,称其为空⽳。
这样引⼊的空⽳,其产⽣的电流正好等于能带中其它电⼦的电流。
所以空⽳导电的实质是能带中其它电⼦的导电作⽤,⽽事实上这种粒⼦是不存在的。
1.8 半导体的回旋共振现象是怎样发⽣的(以n型半导体为例)答案:⾸先将半导体置于匀强磁场中。
⼀般n型半导体中⼤多数导带电⼦位于导带底附近,对于特定的能⾕⽽⾔,这些电⼦的有效质量相近,所以⽆论这些电⼦的热运动速度如何,它们在磁场作⽤下做回旋运动的频率近似相等。
当⽤电磁波辐照该半导体时,如若频率与电⼦的回旋运动频率相等,则半导体对电磁波的吸收⾮常显著,通过调节电磁波的频率可观测到共振吸收峰。
这就是回旋共振的机理。
1.9 简要说明回旋共振现象是如何发⽣的。
半导体样品置于均匀恒定磁场,晶体中电⼦在磁场作⽤下运动运动轨迹为螺旋线,圆周半径为r ,回旋频率为当晶体受到电磁波辐射时,在频率为时便观测到共振吸收现象。
第三章 半导体中载流子的统计半导体靠电子和空穴传导电流,为了了解和描述半导体的导电过程,必须首先了解其中电子和空穴按能量分布的基本规律,掌握用统计物理学的方法求解处于热平衡状态的一块半导体中的载流子密度及其随温度变化的规律。
这就是本章要讨论的主要问题。
§3.1 状态密度为了计算半导体中热平衡载流子的密度及其随温度变化的规律,我们需要两方面的知识:第一,载流子的允许量子态按能量如何分布;第二,载流子在这些允许的量子态中如何分布。
一、 热平衡状态下的电子和空穴1、 热平衡状态在一定温度下,如果没有其他外界作用,半导体中能量较低的价带和施主能级上的电子依靠热激发跃迁到能量较高的受主或(和)导带,分别在价带和导带中引入可以导电的空穴和电子。
同时,高能量状态上电子也有一定的几率退回到它原来的低能量状态。
于是,电子和空穴在所有允许量子态间的可逆跃迁达到稳定的动态平衡,使导带和价带分别具有稳定的电子密度和空穴密度,这种状态即是热平衡状态。
处于热平衡状态下的导带电子和价带空穴称为热平衡载流子。
热平衡载流子具有稳定的、与温度相关的密度。
因此,需要解决如何计算确定温度下半导体热平衡载流子密度的问题。
2、 热平衡状态下的载流子密度由于导电电子和空穴分别分布在导带和价带的量子态中,所以电子和空穴的密度必取决于这些状态的密度分布,以及电子和空穴占据这些状态的几率。
如果状态密度是与能量无关的常数N C 和N V ,则电子和空穴的热平衡密度n 0和p 0直接由N C 和N V 分别与相应的几率函数相乘得出;如果状态密度是能量的函数g C (E) 和g V (E),则载流子密度的计算须采用积分方式,即dE E f E g n CE C )()(0⎰∞=;dE E f E g p VE V )()(0⎰∞-=因此,须了解态密度函数和几率函数的具体函数形式。
二、 态密度的定义及求解思路假定在能带中无限小的能量间隔d E 内有d Z 个量子态,则状态密度g (E )定义为dE dZ E g /)(=也就是说,状态密度g (E )就是在能带中能量E 的附近每单位能量间隔内的量子态数。
第二章半导体物理基础一般而言,制作太阳能电池的最基本材料是半导体材料,因而本章将介绍一些半导体物理的基本知识,包括半导体中的电子状态和能带、本征与掺杂半导体、pn结以及半导体的光学性质等内容。
一、半导体中的电子状态和能带1、原子的能级和晶体的能带(m)一般的晶体结合,可以概括为离子性结合,共价结合,金属性结合和分子结合(范得瓦尔斯结合)四种不同的基本形式。
晶体的结合形式半导体材料主要靠的是共价键结合。
饱和性:一个原子只能形成一定数目的共价键;方向性:原子只能在特定方向上形成共价键;共价键的特点:电子的共有化运动当原子相互接近形成晶体时,不同原子的内外各电子壳层之间就有一定程度的交叠,相邻原子最外层交叠最多,内壳层交叠较少。
原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动称为电子的共有化运动。
电子只能在相似壳层间转移;最外层电子的共有化运动最显著;当两个原子相距很远时,如同两个孤立的原子,每个能级是二度简并的。
当两个原子互相靠近时,每个原子中的电子除了受到本身原子势场的作用,还要受到另一个原子势场的作用,其结果是每一个二度简并的能级都分裂为二个彼此相距很近的能级,两个原子靠得越近,分裂得越厉害。
当N个原子互相靠近形成晶体后,每一个N度简并的能级都分裂成N个彼此相距很近的能级,这N 个能级组成一个能带,这时电子不再属于某一个原子而是在晶体中作共有化运动。
分裂的每一个能带都称为允带,允带之间因没有能级称为禁带。
所有固体中均含有大量的电子,但其导电性却相差很大。
量子力学与固体能带论的发展,使人们认识到固体导电性可根据电子填充能带的情况来说明。
2、金属、绝缘体与半导体固体能够导电,是固体中电子在外电场作用下作定向运动的结果。
由于电场力对电子的加速作用,使电子的运动速度和能量都发生了变化。
也就是说,电子与外电场间发生了能量交换。
半导体物理第一~第五章自测题及参考答案[1]每立方厘米(cm3)体积的硅(Si)或锗(Ge)中,Si或Ge原子个数为5.00 × 1022个或4.42 × 1022个。
Si和Ge的外层电子结构分别为3s23p2和4s24p2。
它们的价带和导带是由sp3杂化轨道形成的准连续能级构成。
那么,1 cm3硅的导带(或价带)中,准连续能级的个数为 2 × 5.00 × 1022个。
1 cm3锗的导带(或价带)中,准连续能级的个数为2 × 4.42 × 1022个。
Si和Ge的外层价电子数均为4。
那么,1 cm3的Si和Ge中价电子数分别为4 × 5.00 × 1022个和 4 × 4.42 × 1022个。
在0 K温度下,这些价电子均填空在导带还是价带(答:价带)?此时,导带中电子数和价带空穴数均为0 ,半导体呈金属性还是绝缘性(答:绝缘性)?当存在本征激发时,本征Si和Ge 的导带和价带中就会产生电子和空穴,设导带电子浓度和价带空穴浓度分别为n0和p0,那么,电中性条件为n0 = p0。
本征载流子浓度用n i表示,室温下,Si的n i相较于Ge的n i更大还是更小(答更小)?n i随温度升高而迅速增加还是减小(答:增加)?导致本征半导体的电阻率随温度升高而增加还是减小(答:减小)?[2]如果将Si的能带图画成图1形式,那么,半导体中有杂质或/和缺陷吗(答:无)?半导体是无限大吗(答:是)?其中,E c代表导带底,E v代表价带顶。
带隙宽度为E c−E v。
如果导带顶部的能量为E cʹ,则导带的能带宽度为E cʹ−E c。
E c处电子的有效质量m n∗ A (A. > 0;B. < 0;C. = 0;D. 不确定);E v处电子的有效质量m n∗ B (A. > 0;B. < 0;C. = 0;D.不确定);E v处空穴的有效质量m p∗ A (A. > 0;B. < 0;C. = 0;D. 不确定)图1 Si的简单能带图图2 掺杂Si的简单能带图(虚线为杂质能级)能带越宽,则能带中电子的有效质量是越大还是越小(答:越小)?相较于内层电子轨道交叠形成的能带,外层电子轨道交叠形成的能带更宽还是更窄(答:更宽)?更宽能带中的电子对导电的贡献更小还是更大(答:更大)?[3]若Si中掺杂少量Ⅴ族元素如P、As、Sb,则能带图为图2中的a,相应的半导体是p型还是n型(答:n型)?若掺杂少量Ⅴ族元素如B、Al、Ga,则能带图为图2中的b。
半导体物理学简答题及答案(精)第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念,用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k )随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。