生物药剂学与药代动力学计算公式汇总
- 格式:ppt
- 大小:143.50 KB
- 文档页数:5
和药代动力学参数计算
药代动力学参数是用来描述药物在人体内的吸收、分布、代谢和排泄
等过程的数值指标。
药代动力学参数的计算可以根据药物的浓度-时间数
据采用不同的方法进行。
常见的药代动力学参数包括血浆药物浓度的最大峰值(Cmax)、达到
最大峰值的时间(Tmax)、药物的消除半衰期(T1/2)等。
以下是一些常
见的计算方法:
1. 最大峰值(Cmax):最大峰值是指血浆中药物浓度达到的最大值。
计算方法为浓度-时间曲线上的最高点浓度。
2.时间-浓度曲线下面积(AUC):时间-浓度曲线下面积表示药物在
一定时间段内的总体曲线面积,是评价药物在体内的总体暴露程度的指标。
计算方法可以使用梯形法、线性法或者非线性法。
3.消除半衰期(T1/2):消除半衰期是指药物浓度下降到初始浓度的
一半所需要的时间。
可以通过斜率法、直线法或者回归分析法进行估算。
4.药物清除速率(CL):药物清除速率是指单位时间内药物被清除出
体内的速度。
可以通过AUC和剂量来计算。
5.分布容积(Vd):分布容积表示药物在体内分布的范围,是评价药
物分布时所需的体积。
可以通过药物剂量和血浆药物浓度的比值计算。
此外,还有一些参数如生物利用度(F)、绝对生物利用度(Fabs)、相对生物利用度(Frel)、表观分布容积(Vdss)等也常常被用来评价药
物的药代动力学性质。
总的来说,药代动力学参数的计算要根据药物特性和实验数据的收集情况来选择合适的方法。
同时,药代动力学参数计算的结果需结合临床和药物效应等因素进行综合分析,以进一步指导药物的合理使用。
Harvard-MIT 卫生科学与技术部HST.151: 药理学原理授课教师: Carl Rosow 博士药物代谢动力学公式计算总结下列公式来自Steven Shafer博士的药理学讲义,对药物代谢动力学有关概念进行了总结和描述。
1.一室模型注射用药时体内药量变化(降低)的速率(公式为一级消除动力学)2.瞬时药物浓度C(t),其中C0为0时刻时的药物浓度3.半衰期t½,为血浆药物浓度下降一半所需的时间4.根据半衰期可以得到速率常数K5.药物浓度定义为药物剂量与体积的比值,其中X为剂量,V为体积6.一次静脉注射给药中药物的浓度以下式表示,其中X0/V为起始药物浓度7.如果一室模型中药物总清除率以Cl T表示,则药物清除速率可以下式计算8.将第7项和第8项的公式合并为将半衰期的公式带入,可得到更为有意义的公式从公式中可以得到。
当清除率(Cl T)增加,k值增加,半衰期降低;容积(V)增大,k值降低,半衰期增加。
9.如果药物以k0的速率滴注,则达到平衡是药物的浓度以下式表示,其中Css表示稳态浓度10.稳态浓度Css可以通过滴注速率和清除率计算11.半衰期为给药后浓度下降一半所需的时间,同样也可理解为静脉滴注达到稳态浓度的50%时的时间。
一次用药,药物浓度降至起始浓度的25%、13%、6%和3%时分别需经历2、3、4、5个半衰期;恒速静脉滴注,药物浓度达到稳态浓度的45%、88%、94%和97%时分别需经历2、3、4、5个半衰期。
应用这些公式有何意义?1.如果知道注射剂量和药物浓度,则可以计算药物分布体积2.如果知道注射剂量X0、药物分布体积V和速率常数k,则可以计算出任意时刻的药物浓度3.如果知道两个时间点t1和t2,以及相应的浓度C1和C2,则可以计算出速率常数k4.如欲求清除率(一室模型),可以根据速率常数k和分布体积V求得,但若是多室模型,即速率常数k值有多个,或者k和V不知,则可按照以下公式,其中AUC为药时曲线下的面积5.根据欲达到的靶浓度(C target)可以求得出负荷剂量(X loading)6.欲维持靶浓度(C target)恒定,则需要恒速静脉滴注药物,滴注的速度与药物消除的速度相同。
第一章概述一、什么是药物代谢动力学药物进入机体后,出现两种不同的效应。
一是药物对机体产生的生物效应,包括药物对机体产生的治疗作用和毒副作用,即所谓的药效学(pharmacodynamics)和毒理学(toxicology)。
另一个是机体对药物的作用,包括药物的吸收(Absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion),即所谓ADME。
药物代谢动力学是定量研究药物(包括外来化学物质)在生物体内吸收、分布、排泄和代谢(简称体内过程)规律的一门学科。
第二章药物体内转运第一节概述第三节药物的吸收吸收是指药物从给药部位进入血液循环的过程。
除了动脉和静脉给药物外,其它给药途径均存在吸收过程。
药物从给药部位进入血液循环过程通常用吸收速度和吸收程度来描述。
药物吸收程度通常指生物利用度(bioavailability),即药物由给药部位到达血液循环中的相对量。
口服给药,药物在到达体循环之前,经肠道、肠壁和肝脏的代谢分解,使进入体内的相对药量降低,这种现象称之为首过效应(first pass effect)。
第三章药物的代谢研究第一节药物代谢方式及代谢后的活性变化一.药物代谢方式药物进入机体后主要以两种方式消除:一种是药物不经任何代谢而直接以原型随粪便和尿液排出体外;另一种是部分药物在体内经代谢后,再以原型和代谢物的形式随粪便和尿液排出体外。
将药物的代谢和排泄统称为消除(elimination)。
药物的代谢(metabolism),也称为生物转化(biotransformation),是药物从体内消除的主要方式之一。
第一节房室模型及其基本原理房室模型中的房室划分主要是依据药物在体内各组织或器官的转运速率而确定的,只要药物在其间的转运速率相同或相似,就可归纳成为一个房室一房室模型是指药物在体内迅速达到动态平衡,即药物在全身各组织部位的转运速率是相同或相似的,此时把整个机体视为一个房室,称之为一房室模型在药物动力学里把N级速率过程简称为N级动力学,k为N级速率常数。
●Ph-分配假说药物的吸收取决于药物在胃肠道的解离状态或油/水分配系数的学说●崩解(disintegration)系指固体制剂在检查时限内全部崩解或溶散成碎粒的过程。
●表观分布容积:在假设药物充分分布的前提下,体内药物按血中浓度分布时所需体液总容积。
V = X/C (单位:L 或L/kg)●表观分布容积V:是体内药量与血药浓度间相互关系的一个比例常数。
表示该药物的分布特性,对于某一具体药物,V通常是定值。
●波动百分数:稳态最大血药浓度与稳态最小血药浓度之差,与稳态最大血药浓度的百分比。
●波动度(DF):稳态最大血药浓度与稳态最小血药浓度差,与平均稳态血药浓度的比值,用DF表示。
●肠肝循环:是指在胆汁中排泄的药物或其代谢物在小肠中移动期间重新被吸收返回肝门静脉血的现象。
某些药物因肝肠循环可出现第二个血药浓度高峰,被称为双峰现象。
●代谢又称生物转化,是药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变。
代谢产物通常极性●单室模型:某些药物进入体内后迅速向全身组织器官分布,并迅速达到分布动态平衡●二阶矩:平均滞留时间的方差(VRT)表示药物在体内滞留时间的变异程度。
●非线性速度过程:当药物在体内动态变化过程不具有上述特征,其半衰期与剂量有关、血药浓度—时间曲线下面积与剂量不成正比时,其速度过程被称为非线性速度过程。
●负荷剂量:在滴注开始时,需要静注一个负荷剂量,使血药浓度迅速达到或接近C ss的95%或99%,继之以静脉滴注来维持改浓度。
●肝首过作用:在肝药酶作用下,药物可产生生物转化而使药物进入体循环前降解或失活,这种作用称为“肝首过作用”或“肝首过效应”。
●隔室模型又称房室模型,是将身体视为一个系统,系统内部按动力学特点分为若干室。
●解离度通常脂溶性较大未解离型分子容易通过类脂膜,而解离后的离子型不易透过,难以吸收。
●绝对生物利用度(Fabs):是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药制剂(通常认为静脉给药制剂生物利用度为100%)为参比制剂获得的药物吸收进入体循环的相对量。