PLC高速脉冲输出PTO
- 格式:doc
- 大小:39.00 KB
- 文档页数:34
西门子S7-200PLC的介绍及控制伺服和步进电机的详细资料概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。
当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。
置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。
但应用程序必须通过PLC内置I/O 提供方向和限位控制。
为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。
向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。
2、开环位控用于步进电机或伺服电机的基本信息借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下:⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED)图1是这2 个概念的示意图。
MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。
驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。
图1 最大速度和启动/停止速度示意SS_SPEED:该数值应满足电机在低速时驱动负载的能力,如果SS_SPEED 的数值过低,电机和负载在运动的开始和结束时可能会摇摆或颤动。
如果SS_SPEED 的数值过高,电机会在启动时丢失脉冲,并且负载在试图停止时会使电机超速。
通常,SS_SPEED 值是MAX_SPEED 值的5%至15%。
⑵加速和减速时间加速时间ACCEL_TIME:电机从SS_SPEED速度加速到MAX_SPEED速度所需的时间。
减速时间DECEL_TIME:电机从MAX_SPEED速度减速到SS_SPEED速度所需要的时间。
一、 S7-200 PLC 高速脉冲输出功能1、概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。
当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。
置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。
但应用程序必须通过PLC内置I/O 提供方向和限位控制。
为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。
向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。
2、开环位控用于步进电机或伺服电机的基本信息借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下:⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED)图1是这2 个概念的示意图。
MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。
驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。
图1 最大速度和启动/停止速度示意SS_SPEED:该数值应满足电机在低速时驱动负载的能力,如果SS_SPEED 的数值过低,电机和负载在运动的开始和结束时可能会摇摆或颤动。
如果SS_SPEED 的数值过高,电机会在启动时丢失脉冲,并且负载在试图停止时会使电机超速。
通常,SS_SPEED 值是MAX_SPEED 值的5%至15%。
⑵加速和减速时间加速时间ACCEL_TIME:电机从 SS_SPEED速度加速到MAX_SPEED速度所需的时间。
减速时间DECEL_TIME:电机从MAX_SPEED速度减速到SS_SPEED速度所需要的时间。
图2 加速和减速时间加速时间和减速时间的缺省设置都是1000 毫秒。
通常,电机可在小于1000 毫秒的时间工作。
参见图2。
这2 个值设定时要以毫秒为单位。
S7—200PLC的PTO在步进电机位置控制中的应用研究了高速脉冲串输出在步进电机位置控制中的应用,包括应用PLS指令、MAP指令库及位置控制指令向导等方法。
给出了系统构成,说明了各种方法的应用。
对步进电机的位置控制有实际意义。
标签:S7-200;步进电机;位置控制;PTO;MAP;PLS引言作为自动控制系统中的执行元件,步进电机的应用十分广泛,主要原因是步进电机有很多优点,其中它的控制方法比较简单。
步进电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数。
可以通过控制脉冲频率来控制电机转动的速度和加速度,进行调速;可以通过控制脉冲个数来控制角位移量,进行准确定位。
控制步进电机的方法较多,目前流行的是采用PLC通过步进电机驱动器来控制步进电机。
为了配合步进电机的控制,许多PLC都内置脉冲输出功能,并设置了相应的控制指令,可以很好地对步进电机进行控制。
为了实现对步进电机的开环定位控制,可以通过PLC控制输出脉冲来实现。
本文应用SIEMENS公司S7-200PLC来控制步进电机。
SIEMENS公司S7-200PLC 主要提供了以下几种方式的开环定位控制:脉冲串输出(PTO)、EM253位控模块、自由口通信等。
文章主要探讨PTO这种方式。
1 步进电机位置控制系统1.1 硬件系统步进电机位置控制系统由PLC、步进电机驱动器、步进电机和丝杠组成。
系统选择的PLC为SIEMENS公司CPU226DC/DC/DC型。
選用的步进电机是42H2P4812A4的两相混合式步进电机,该型号的步进电机步矩角为1.8°,相电流1.2A,静转矩4.5kg·cm,额定转速400rmp。
选用的驱动器型号为2MA320,该驱动器的供电电压DC12-36V ,驱动电流0.3-2.0A,细分精度1-128细分,可驱动任何2.0A相电流以下两相、四相混合式步进电机。
由于上述步进电机的相电流为1.2A,驱动器的SW1-SW3分别设置为:ON、OFF、OFF,即输出峰值电流为1.5A,SW5-SW7分别设置为ON、ON、ON,即细分设定为200步/圈。
脉冲列输出实验(PTO)
一、实验目的
了解PTO(脉冲列)方式的脉冲发生原理及工作模式,掌握PTO单段脉冲列的编程。
二、预习要求
阅读教材中有关PLC脉冲输出的章节,了解PLC脉冲输出的两种常见方式:PTO(脉冲列输出)和PWM(脉宽调制),理解这两种方式的工作原理,并结合实际,考虑它们各自的用途。
三、实验内容及要求
1. 实验原理
PTO(脉冲列)是PLC提供的一种脉冲输出功能,它可以根据用户的要求发出的方波脉冲序列,其中脉冲序列的周期及数目都可以由用户自己设定,但脉冲序列中的每一脉冲均为方波,即占空比固定(50%)。
脉冲列可以微秒或毫秒为递增单位指定循环时间,循环时间范围从50微秒至65,535微秒,或从2毫秒至65,535毫秒。
脉冲计数范围可从1至4,294,967,295个脉冲。
脉冲序列有两种方式:单段序列和多段序列。
2. 动作要求
设计程序在PLC的输出Q0.0上发出一定频率的脉冲列(周期为1秒或者10秒)。
3.注意事项
由于实验板上的PLC为继电器输出型。
所以不能应用PLC的PTO功能发出过高的脉冲。
为了安全起见,PTO发出的脉冲周期不能低于200ms。
四、实验要求与实验报告
1.理解PTO功能的工作过程,尤其是掌握初始化程序的编写。
2.实验程序需经指导老师检查确认运行正确才能通过。
3.完成实验报告的相关内容,包括控制程序及注释等。
PLC控制伺服电机实现定位控制【摘要】随着科学技术的不断发展,各种机械已逐渐得到广泛的应用。
PLC 在机械的运用中越来越普遍,尤其是在伺服电机的定位控制中。
本文主要介绍利用PLC控制伺服电机实现定位的几种方法,并通过深入分析控制系统在实施过程中需要注意的问题,从而提出了控制系统的设计思路及参考方案,为工业生产中定位控制的实现提供了较高的参考价值。
【关键词】PLC;伺服电机;定位控制0.引言在工业自动化的生产及加工过程中,通常要准确定位控制机械设备的移动距离或生产工件的尺寸。
在定位控制中,关键便是实现对伺服电机的控制。
由于PLC体积小,可靠性高,抗干扰能力强,是一种专门应用于工业的控制计算机,因而其能有效实现机电一体化的控制。
PLC的有效运用,给工业带来了巨大的经济效益的同时,也为工业技术的发展奠定了良好的基础。
1.PLC旋转编码器及高速计数器指令控制三相交流异步伺服电机实现定位控制1.1 控制系统的工作原理PLC的旋转编码器与高速计数器的联合运用能有效进行长度测量和精确定位控制,其中,高速计数器在不增加特殊功能单元的情况下,就能准确计算出小于PLC主机扫描周期脉宽的高速脉冲,而PLC的旋转编码器则可以将电机轴上的角位移有效转换成脉冲值。
在此种控制系统中,其原理为利用光电旋转编码器将电机角位移转换成脉冲值后,高速计数器将编码器发出的脉冲个数进行统计,进而达到定位控制的目的[1]。
1.2 控制系统的设计方案本文以定位电机传输带的控制设计为例。
假设传输带现要将货物运送到距离为20cm的终点,且货物到达终点后,电机停止工作。
在此系统中,硬件设施主要包括PLC、三相交流异步伺服电机、光电旋转编码器以及变频器等,其工作原理是将光电旋转编码器的机械轴连接由三相交流异步伺服电机拖动的传动辊,通传动辊的转动,带动机械轴转动,从而将脉冲信号输出,并利用PLC的高速计数器指令计数产生的脉冲个数,此时,如果计数器的值与预置值相等时,电动机便由变频器控制停止工作,进而准确定位控制传输带的运行距离。
1 概述S7--200提供了三种方式的开环运动控制:•脉宽调制(PWM)--内置于S7--200,用于速度、位置或占空比控制。
•脉冲串输出(PTO)--内置于S7--200,用于速度和位置控制。
•EM253位控模块--用于速度和位置控制的附加模块。
S7—200的内置脉冲串输出提供了两个数字输出通道(Q0.0和Q0.1),该数字输出可以通过位控向导组态为PWM或PTO的输出。
当组态一个输出为PTO操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。
内置PTO功能仅提供了脉冲串输出。
您的应用程序必须通过PLC内置I/O或扩展模块提供方向和限位控制。
PTO按照给定的脉冲个数和周期输出一串方波(占空比50%),如图1。
PTO可以产生单段脉冲串或者多段脉冲串(使用脉冲包络)。
可以指定脉冲数和周期(以微秒或毫秒为增加量): •脉冲个数:1到4,294,967,295•周期:10μs(100K)到65535μs或者2ms到65535ms。
200系列的PLC的最大脉冲输出频率除CPU224XP 以外均为20kHz。
CPU224XP可达100kHz。
如表1所示:表12 MAP库的应用2.1 MAP库的基本描述现在,200系列PLC 本体PTO 提供了应用库MAP SERV Q0.0 和MAP SERV Q0.1,分别用于Q0.0 和Q0.1 的脉冲串输出。
如图2所示:图2注:这两个库可同时应用于同一项目。
各个块的功能如表2所示:表2总体描述该功能块可驱动线性轴。
为了很好的应用该库,需要在运动轨迹上添加三个限位开关,如图3:•一个参考点接近开关(home),用于定义绝对位置C_Pos 的零点。
•两个边界限位开关,一个是正向限位开关(Fwd_Limit),一个是反向限位开关(Rev_Limit)。
•C_Pos 的计数值格式为DINT ,所以其计数范围为(-2.147.483.648 to+2.147.483.647).•如果一个限位开关被运动物件触碰,则该运动物件会减速停止,因此,限位开关的安置位置应Smin 以避免物件滑出轨道尽头。
位装置,而控制伺服电机和步进电机需要使用脉冲输出。
S7-200系列PLC可以输出20--100KHz的脉冲。
使用PTO和PWM指令可以输出普通脉冲和脉宽调制输出。
通过smb66-75,smb166-175来控制Q0.0的输出,通过smb76-85,smb176-185来控制Q0.1的脉冲输出。
控制伺服电机伺服电机是运动控制中一个很重要的器件,通过它可以进行精确的位置控制。
它一般带有编码器,通过高速计数功能,中断功能和脉冲输出功能,构成一个闭环系统,来进行精确的位置控制。
PLC的脉冲输出由于PLC在进行高速输出时需要使用晶体管输出。
当将高速输出点作为普通输出而带电感性负载时,例如电磁阀,继电器线圈等,一定要注意,在负载端加保护,例如并联二极管等。
以保护输出点。
心得二:步进电机的控制方法我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。
以下是我这个作为教练参加大赛的心得二:步进电机的控制方法《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。
但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。
一、 S7-200 PLC 的脉冲输出功能1、概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。
当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。
置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。
但应用程序必须通过PLC内置I/O 提供方向和限位控制。
1、指令概述以指定的参数分段产生相对位置脉冲的指令。
3、适用软元件PTO 指令具备两种控制模式,以下将一一作出介绍。
《32位指令形式》《不带方向》《带方向》参数地址功能分配如下所示(各参数均为32位,占用两个字节):●S1 :总段数N,范围1~255●S1+2 :内部保留●S1+4 :脉冲无限段(即脉冲个数为0的段)的方向,0为正向;1为反向一条指令中只允许配置1段脉冲个数为0的段。
●S1+6 :脉冲下降斜率,即每秒递减频率或单位时间内脉冲频率变化值,0表示急停●S1+8 :第1段脉冲的起始频率●S1+10:第1段脉冲的终止频率●S1+12:第1段脉冲的脉冲个数●S1+14:第2段脉冲的起始频率●S1+16:第2段脉冲的终止频率●S1+18:第2段脉冲的脉冲个数●S1+20:第3段脉冲的起始频率●S1+22:第3段脉冲的终止频率●S1+24:第3段脉冲的脉冲个数……●依此类推第N段脉冲的参数地址●参数地址是以Dn或FDn为起始地址的一段区域。
上例:(D1,D0)设定脉冲总段数、(D5,D4)设定无脉冲段的方向,(D7,D6)设定脉冲的下降频率;(D9,D8)设定第1段脉冲的起始频率,(D11,D10)设定第1段脉冲的终止频率,(D13,D12)设定第1段脉冲的脉冲个数……,最多可设定255段。
●脉冲输出:一般为Y0、Y1;不同型号PLC,脉冲输出点不同,请根据使用型号设定。
●用户可设置第m段的脉冲个数为0,表示脉冲个数无限。
●如果设置第m段脉冲个数为0(脉冲个数无限段),必须第m段的起始频率和终止频率相等(平稳段),否则不执行发脉冲操作。
●脉冲个数不为零的段,脉冲的方向由脉冲个数的正负来决定;脉冲个数为零的段,脉冲的方向由S1+4参数设置来决定。
●S1+6参数,决定了在执行PSTOP指令(详细请参见PSTOP指令)时的缓停斜率。
●脉冲数据块占用寄存器空间大小为[(N*3+4)+(N*3+4)+(N*4+5)]*2。