2020年新高考下的高三教学探索与备考建议【百强校】海南海口市第一中学高三数学高考复习pdf课件
- 格式:pdf
- 大小:1.36 MB
- 文档页数:27
海南省海口市第一中学2019-2020学年高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若是上的奇函数,且在上单调递增,则下列结论:①是偶函数;②对任意的都有;③在上单调递增;④在上单调递增.其中正确结论的个数为()A.1 B.2 C.3 D.4参考答案:B2. 已知平面向量=(1,2),=(﹣2,k),若与共线,则|3+|=( )A.3 B.4 C.D.5参考答案:C考点:平面向量数量积的运算.专题:平面向量及应用.分析:由与共线,求出k的值,从而计算出3+及其模长.解答:解:∵向量=(1,2),=(﹣2,k),且与共线,∴k﹣2×(﹣2)=0,解得k=﹣4,∴=(﹣2,﹣4);∴3+=(3×1﹣2,2×2﹣4)=(1,2),∴|3+|==;故选C.点评:本题考查了平面向量的坐标运算问题,是基础题.3. 右图为一个求20个数的平均数的程序,在横线上应填充的()A. B.C. D.参考答案:D略4. 学校为了解学生在课外读物方面的支出情况,抽取了个同学进行调查,结果显示这些同学的支出都在(单位:元),其中支出在(单位:元)的同学有人,其频率分布直方图如右图所示,则的值为()A.100 B.120 C.130 D.390参考答案:A5. 已知函数是奇函数,当时,=,则的值等于(A)(B)(C)(D)参考答案:D略6. 已知函数,其图象上两点的横坐标,满足,且,则有( )A.B.C.D.的大小不确定参考答案:C7. 已知全集,集合,,则A. B. C. D.参考答案:A8. 若复数z满足(3﹣4i)?=|4+3i|,为z的共轭复数,则z的虚部为()A.﹣B.C.﹣i D. i参考答案:A【考点】复数代数形式的乘除运算.【分析】由(3﹣4i)?=|4+3i|,得,然后由复数代数形式的乘除运算以及复数求模公式化简,再由已知条件即可求出z,则z的虚部可求.【解答】解:由(3﹣4i)?=|4+3i|,得=,又∵为z的共轭复数,∴.则z的虚部为:.故选:A.9. 已知双曲线的右顶点、左焦点分别为A、F,点B(0,-b),若,则双曲线的离心率值为()(A)(B)(C)(D)参考答案:B由得,又,,则,,所以有,即,从而解得,又,所以,故选.10. 设, 那么“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 在5道题中有3道历史类,两道诗词鉴赏类,如果不放回地依次抽取2道题,则在第一次抽到历史题的条件下,第二次抽到历史类问题的概率为_________ .参考答案:略12. 在等比数列中,若,则.参考答案:3略13. 公比为的等比数列的各项都是正数,且,则.参考答案:14. 数列,满足,则_参考答案:略15. 给出下列结论:①一条直线垂直于一个平面,则这条直线就和这个平面内的任何直线垂直;②过平面外一点有只有一个平面和这个平面垂直;③过直线外一点有且只有一个平面和这条直线平行;④如果两个平面平行,那么其中一个平面内的任一直线平行于另一个平面.其中正确的是__________.(写出所有正确结论的序号)参考答案:①④①由直线与平面垂直的定义可知①正确;②过平面外一点有无数个平面和这个平面垂直,故②错误;③过直线外一点有无数个平面和这条直线平行,故③错误;④由面面平行的性质定理可知④正确.综上,正确的是①④.16. 对于函数,若存在区间,当时,函数的值域为,则称为倍值函数. 若是倍值函数,则实数的取值范围是_____▲______.参考答案:略17. 下图所示的程序框图是将一系列指令和问题用框图的形式排列而成的.阅读下面的程序框图,并回答问题.若a>b>c,则输出的数是.参考答案:a三、解答题:本大题共5小题,共72分。
2022年海南省海口一中高考数学一模试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3、非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若全集U =R ,A ={x |x <1},B ={x |x >﹣1},则( ) A .A ⊆BB .B ⊆AC .B ⊆∁U AD .∁U A ⊆B2.(5分)设(1+2i )•z =3+i (i 为虚数单位),则|z |=( ) A .√3B .√2C .3D .23.(5分)已知a →,b →,c →为非零平面向量,则下列说法正确的是( ) A .(a →⋅b →)⋅c →=a →⋅(b →⋅c →) B .若a →⋅c →=b →⋅c →,则a →=b →C .若a →∥b →,则∃λ∈R ,b →=λa →D .|a →⋅b →|=|a →|⋅|b →|4.(5分)设等差数列的前n 项和为S n ,已知S 6=36,S n ﹣6=144,S n =324,则n 的值为( ) A .15B .16C .17D .185.(5分)在锐角△ABC 中,已知cos A (sin B +cos B )=sin C ,则下列正确的结论为( ) A .A =π4B .B =π3C .A =BD .B =π46.(5分)杭州的三潭印月是西湖十景之一,被誉为“西湖第一胜境”.所谓三潭,实际上是3个石塔和其周围水域,石塔建于宋代元四年(公元1089年),每个高2米,分别矗立在水光潋滟的湖面上,形成一个每边长为62米的等边三角形,记该三角形为△A 1B 1C 1,小瀛洲之南的湖面上是湖上赏月的极佳去处,水深若潭,月影幽深.设△A 1B 1C 1的边长为a 1,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,设其边长为a 2,依此类推,由这些三角形的边长构成一个数列{a n },则{a n }的前8项和为( )A .790564B .7905128C .780564D .78051287.(5分)已知等比数列{a n }前n 项和S n =(x +2y +1)2n +(x −y −3)(其中x >0,y >0).则1x+2y的最小值是( )A .3B .2+2√2C .4D .88.(5分)已知函数f (x )=ax +xlnx ,g (x )=x 3﹣x 2﹣3,若∀x 1,x 2∈[12,2],都有f (x 1)﹣g (x 2)≥0,则实数a 的取值范围为( ) A .[0,+∞)B .[1,+∞)C .[2,+∞)D .[3,+∞)二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)(多选)9.(5分)设m ,n 为不重合的两条直线,α,β为不重合的两个平面,下列命题正确的是( )A .若m ∥α且n ∥α,则m ∥nB .若m ⊥α且n ⊥α,则m ∥nC .若m ∥α且m ∥β,则α∥βD .若m ⊥α且m ⊥β,则α∥β(多选)10.(5分)已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设c n =a b n ,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .11(多选)11.(5分)设A 1、A 2、A 3、A 4是平面直角坐标系中相异的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( ) A .A 、B 、C 、D 四点共线 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D.C、D不可能同时在线段AB的延长线上(多选)12.(5分)关于函数f(x)=2+xlnxx,下列说法正确的是()A.函数f(x)的极小值为2B.函数y=f(x)﹣x2有且只有1个零点C.当a>0时,f(x)+ax2﹣4ax+4a﹣1>0恒成立D.对任意两个正实数x1,x2,且x1≠x2,若f(x1)=f(x2),则x1+x2<4三、填空题:(本题共4小题,每小题5分,共20分)13.(5分)写出一个同时具有下列性质①②③的数列{a n},①无穷数列;②递减数列;③每一项都是正数,则a n=.14.(5分)在正方体ABCD﹣A1B1C1D1中,与AC平行,且过正方体三个顶点的截面是.15.(5分)某旅行社现有北京、哈尔滨、呼伦贝尔、三亚、西双版纳、成都6条线路可供旅客选择,北京线路只剩一个名额,其余线路名额充足.甲、乙、丙、丁4人前去报名,每人只选择其中一条线路,4人选完后,恰好选择了3条不同路线,则他们报名的可能情况有种(用数字作答).16.(5分)已知数列{a n}中,a1=1,a n﹣a n﹣1=n(n≥2,n∈N),设b n=1a n+1+1a n+2+1a n+3+⋯+1a2n ,若对任意的正整数n,当m∈[1,2]时,不等式m2﹣mt+13>b n恒成立,则实数t的取值范围是.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(10分)如图,在扇形POQ中,半径OP=2,圆心角∠POQ=π3,B是扇形弧上的动点,矩形ABCD内接于扇形.其中CD在半径OQ上,记∠BOC=α.(1)当∠BOC=45°时,求矩形ABCD的面积;(2)求当角α取何值时,矩形ABCD的面积最大?并求出这个最大值.18.(12分)已知数列{a n},a1=1,且a n+1=2a n+1.(1)求证:{a n+1}是等比数列;(2)设b n=2n a n,求{b n}的前n项和.19.(12分)在长方体AC1中,AB=BC=2,AA1=2√2,点EF分别是直线A1C1,直线BC1的中点.(1)求证:BE∥平面D1AC;(2)求证:点F到平面D1AC的距离;(3)求直线AB与平面D1AC的夹角的余弦值.20.(12分)为了推进新高考改革,某中学组织教师开设了丰富多样的校本选修课,同时为了增加学生对校本选修课的了解和兴趣,该校还组织高二年级300名学生参加了一次知识竞答活动,本次活动共进行两轮比赛,第一轮是综合知识小测验,满分100分,并规定得分从高到低排名在前20%的学生可进入第二轮答题,回答3个难度升级的题目A ,B ,C ,分别涉及“体育健康”、“天文地理”和“逻辑推理”三个方面,答对A 题得10积分,答对B 题得20积分,答对C 题得30积分以下是300名学生在第一轮比赛中的得分按照[0,20),[20,40),[40,60),[60,80),[80,100],进行分组绘制而成的频率分布直方图如图所示:(1)根据频率分布直方图估计学生在第一轮比赛中至少得到多少分才能进入第二轮比赛?(2)若李华成功进入了第二轮比赛,并且他答对A 题的概率为12,答对B 题的概率为13,答对C 题的概率为14,设他在第二轮比赛中的所得积分为ξ,求ξ的分布列和期望.21.(12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (√2,√22),左焦点为F ,PF 与y 轴交于点Q ,且满足PQ →+√63FQ →=0→.(Ⅰ)求椭圆C 的方程;(Ⅱ)设圆O :x 2+y 2=1,直线l :y =kx +m 与圆O 相切且与椭圆C 交于不同两点A ,B ,当λ=OA →⋅OB →且λ∈[12,1)时,求弦长|AB |的范围,并求当弦长|AB |最大时,直线l 的方程.22.(12分)已知函数f (x )=x 3﹣3x 2+2x ,g (x )=tx ,t ∈R .(1)求函数φ(x)=f(x)⋅e xx的单调增区间;(2)令h(x)=f(x)﹣g(x),且函数h(x)有三个彼此不相等的零点0,m,n,其中m<n.①若m=12n,求函数h(x)在x=m处的切线方程;②若对∀x∈[m,n],h(x)≤16﹣t恒成立,求实数t的取值范围.2022年海南省海口一中高考数学一模试卷参考答案与试题解析一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若全集U =R ,A ={x |x <1},B ={x |x >﹣1},则( ) A .A ⊆BB .B ⊆AC .B ⊆∁U AD .∁U A ⊆B【解答】解:∵∁R A ={x |x ≥1},∁R B ={x |x ≤﹣1},∴∁R A ⊆B , 故选:D .2.(5分)设(1+2i )•z =3+i (i 为虚数单位),则|z |=( ) A .√3B .√2C .3D .2【解答】解:因为(1+2i )•z =3+i , 所以z =3+i 1+2i =(3+i)(1−2i)(1+2i)(1−2i)=5−5i5=1﹣i , 所以|z |=√2. 故选:B .3.(5分)已知a →,b →,c →为非零平面向量,则下列说法正确的是( ) A .(a →⋅b →)⋅c →=a →⋅(b →⋅c →) B .若a →⋅c →=b →⋅c →,则a →=b →C .若a →∥b →,则∃λ∈R ,b →=λa →D .|a →⋅b →|=|a →|⋅|b →|【解答】解:根据题意,依次分析选项:对于A ,根据平面向量数量积的定义知(a →•b →)•c →与c →共线,a →•(b →•c →)与a →共线,所以选项A 错误;对于B ,a →•c →=b →•c →时,a →与b →不一定相等,如a →⊥b →和b →⊥c →时它们的数量积为0,a →、b →不相等,所以选项B 错误;对于C ,根据平面向量的共线定理知,若a →∥b →,则∃λ∈R ,使b →=λa →,所以选项C 正确; 对于D ,根据平面向量数量积的定义知,a →•b →=|a →|×|b →|×cos <a →,b →>,所以|a →•b →|≤|a →|•|b →|,选项D 错误. 故选:C .4.(5分)设等差数列的前n项和为S n,已知S6=36,S n﹣6=144,S n=324,则n的值为()A.15B.16C.17D.18【解答】解:因为等差数列中,S6=a1+a2+a3+a4+a5+a6=36,S n﹣6=144,S n=324,则S n﹣S n﹣6=a n+a n﹣1+a n﹣2+a n﹣3+a n﹣4+a n﹣5=180,两式相加得,6(a1+a n)=216,即a1+a n=36,因为S n=n(a1+a n)2=18n=324,所以n=18.故选:D.5.(5分)在锐角△ABC中,已知cos A(sin B+cos B)=sin C,则下列正确的结论为()A.A=π4B.B=π3C.A=B D.B=π4【解答】解:因为cos A(sin B+cos B)=sin C=sin(A+B)=sin A cos B+sin B cos A,所以cos B(sin A﹣cos A)=0,由题意B为锐角,所以cos B>0,所以sin A=cos A,即tan A=π4,故A=π4.故选:A.6.(5分)杭州的三潭印月是西湖十景之一,被誉为“西湖第一胜境”.所谓三潭,实际上是3个石塔和其周围水域,石塔建于宋代元四年(公元1089年),每个高2米,分别矗立在水光潋滟的湖面上,形成一个每边长为62米的等边三角形,记该三角形为△A1B1C1,小瀛洲之南的湖面上是湖上赏月的极佳去处,水深若潭,月影幽深.设△A1B1C1的边长为a1,取△A1B1C1每边的中点构成△A2B2C2,设其边长为a2,依此类推,由这些三角形的边长构成一个数列{a n},则{a n}的前8项和为()A .790564B .7905128C .780564D .7805128【解答】解:由题设知,数列{a n }是首项a 1=62,公比为q =12的等比数列.则{a n }的前8项和为S 8=[62+31+⋅⋅⋅+62×(12)7]=62⋅[1−(12)8]1−12=790564. 故选:A .7.(5分)已知等比数列{a n }前n 项和S n =(x +2y +1)2n +(x −y −3)(其中x >0,y >0).则1x+2y的最小值是( )A .3B .2+2√2C .4D .8【解答】解:由题意知,等比数列{a n }的公比为2, a 1=S 1=2(x +2y +1)+x ﹣y ﹣3=3x +3y ﹣1, a 2=S 2﹣S 1=2(x +2y +1), 故2(x +2y +1)=2(3x +3y ﹣1), 即2x +y =2,1x+2y=12(1x+2y )(2x +y )=12(2+2+yx +4xy ) ≥12(2+2+4)=4, (当且仅当yx =4x y,x =12,y =1时,等号成立)故选:C .8.(5分)已知函数f (x )=a x +xlnx ,g (x )=x 3﹣x 2﹣3,若∀x 1,x 2∈[12,2],都有f (x 1)﹣g (x 2)≥0,则实数a 的取值范围为( ) A .[0,+∞)B .[1,+∞)C .[2,+∞)D .[3,+∞)【解答】解:函数g (x )的导数g '(x )=3x 2﹣2x =x (3x ﹣2), ∴函数g (x )在[12,23]上单调递减,在[23,2]上单调递增,g(12)=18−14−5=−418,g(2)=8−4−5=−1,则g (x )max =﹣1, 若对任意x 1,x 2∈[12,2],都有f (x 1)﹣g (x 2)≥2成立,即当12≤x ≤2时,f (x )≥1恒成立,即ax+xlnx ≥1恒成立,即a ≥x ﹣x 2lnx 在x ∈[12,2]上恒成立,令h (x )=x ﹣x 2lnx ,则h '(x )=1﹣2xlnx ﹣x ,h ′′(x )=﹣3﹣2lnx ,当12≤x ≤2时,h ''(x )=﹣3﹣2lnx <0,即h '(x )=1﹣2xlnx ﹣x 在[12,2]上单调递减,由于h '(1)=0,则当12≤x ≤1时,h '(x )>0;当1≤x ≤2时,h '(x )<0,∴h (x )≤h (1)=1, ∴a ≥1, 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)(多选)9.(5分)设m ,n 为不重合的两条直线,α,β为不重合的两个平面,下列命题正确的是( )A .若m ∥α且n ∥α,则m ∥nB .若m ⊥α且n ⊥α,则m ∥nC .若m ∥α且m ∥β,则α∥βD .若m ⊥α且m ⊥β,则α∥β【解答】解:对于A ,若m ∥α且n ∥α,则m ,n 平行,或相交,或异面,故A 错误; 对于B ,若m ⊥α且n ⊥α,由线面垂直的性质定理可得m ∥n ,故B 正确; 对于C ,若m ∥α且m ∥β,则α、β相交,或平行,故C 错误;对于D ,若m ⊥α且m ⊥β,由面面平行的判定定理可得α∥β,故D 正确. 故选:BD .(多选)10.(5分)已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设c n =a b n ,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .11【解答】解:由题意,a n =1+2(n ﹣1)=2n ﹣1,b n =2n−1, c n =a b n =2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)=(21+22+ (2))﹣n =2(1−2n)1−2−n =2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB .(多选)11.(5分)设A 1、A 2、A 3、A 4是平面直角坐标系中相异的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( ) A .A 、B 、C 、D 四点共线 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上【解答】解:选项A :因为A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ), 所以A 1A 3∥A 1A 2,A 1A 4∥A 1A 2,所以A 1,A 2,A 3,A 4四点共线,又A 3,A 4调和分割A 1A 2,而C ,D 调和分割AB ,故A ,B ,C ,D 四点共线,故A 正确, 选项B :若D 为AB 的中点,则μ=12,1λ=0,矛盾,故B 错误, 选项C :若C ,D 同时在线段AB 上,0<λ<1且0<μ<1,故1λ+1μ>2与已知矛盾,故C 错误,选项D :若C ,D 同时在AB 的延长线上,则λ>1且μ>1,所以1λ+1μ<2矛盾,故C ,D 不可能同时在AB 的延长线上,故D 正确, 故选:AD .(多选)12.(5分)关于函数f(x)=2+xlnxx,下列说法正确的是( ) A .函数f (x )的极小值为2B .函数y =f (x )﹣x 2有且只有1个零点C .当a >0时,f (x )+ax 2﹣4ax +4a ﹣1>0恒成立D .对任意两个正实数x 1,x 2,且x 1≠x 2,若f (x 1)=f (x 2),则x 1+x 2<4 【解答】解:对于A :函数的定义域是(0,+∞),f ′(x )=−2x 2+1x =x−2x2, 令f ′(x )>0,解得x >2,令f ′(x )<0,解得x <2, 故f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, ∴f (x )极小值=f (2)=1+ln 2,故A 错误; 对于B :令g (x )=y =f (x )﹣x 2=lnx +2x −x 2,则g ′(x )=−2x 2+1x −2x =−2x 3−x+2x 2,令h (x )=2x 3﹣x +2,则h ′(x )=6x 2﹣1, 令h ′(x )>0,解得x >√66,令h ′(x )<0,解得:0<x <√66,故h (x )在(0,√66)上单调递减,在(√66,+∞)上单调递增,故h (x )≥h (√66)=2×16×√66−√66+2=2−2√63=6−2√63>0(x >0),故g ′(x )<0,故函数在(0,+∞)上单调递减, 又f (1)﹣1=1>0,f (2)﹣2=ln 2﹣3<0, 故函数y =f (x )﹣x 2有且只有1个零点,故B 正确; 对于C :结合A 选项可知f (x )≥1+ln 2,当a >0,f (x )+ax 2﹣4ax +4a ﹣1=f (x )+a (x ﹣2)2﹣1≥lna +a (x ﹣2)2>0恒成立,故C 正确;对于D :设x 1>x 2,f (x 1)=f (x 2),结合A 选项可知x 1>2,0<x 2<2, 构造函数F (x )=f (x )﹣f (4﹣x ),其中0<x <2, 则F ′(x )=f ′(x )+f ′(4﹣x )=−8(x−2)2x 2(4−x)2<0,故F (x )在(0,2)上单调递减,∵x 1>2,0<x 2<2,则4﹣x 2>2,故F (x 2)=f (x 2)﹣f (4﹣x 2)>F (2)=0, 即f (4﹣x 2)<f (x 2)=f (x 1),∵f (x )在(2,+∞)上单调递增,∴4﹣x 2<x 1, 可得x 1+x 2>4,故D 错误. 故选:BC .三、填空题:(本题共4小题,每小题5分,共20分)13.(5分)写出一个同时具有下列性质①②③的数列{a n },①无穷数列;②递减数列;③每一项都是正数,则a n =1n 2(答案不唯一) .【解答】解:根据题意,要求的数列可以为a n=1n2,故答案为:1n2(答案不唯一).14.(5分)在正方体ABCD﹣A1B1C1D1中,与AC平行,且过正方体三个顶点的截面是平面A1C1D,平面A1C1B.【解答】解:在正方体ABCD﹣A1B1C1D1中,与AC平行,且过正方体三个顶点的截面是平面A1C1D,平面A1C1B.∵AA1∥CC1,AA1=CC1,∴四边形ACC1A1是平行四边形;∴AC∥A1C1,又AC⊄平面A1C1D,A1C1⊂平面A1C1D,∴AC∥平面A1C1D;同理AC∥平面A1C1B.故答案为:平面A1C1D,平面A1C1B.15.(5分)某旅行社现有北京、哈尔滨、呼伦贝尔、三亚、西双版纳、成都6条线路可供旅客选择,北京线路只剩一个名额,其余线路名额充足.甲、乙、丙、丁4人前去报名,每人只选择其中一条线路,4人选完后,恰好选择了3条不同路线,则他们报名的可能情况有600种(用数字作答).【解答】解:①当有北京线的3条不同路线时,则报名的可能情况为C52•C42C21A22=240,②当没有北京线的3条不同路线时,则报名的可能情况为C52•C42A33=360,综上,他们报名的可能情况有240+360=600种.故答案为:600.16.(5分)已知数列{a n}中,a1=1,a n﹣a n﹣1=n(n≥2,n∈N),设b n=1a n+1+1a n+2+1a n+3+⋯+1a2n ,若对任意的正整数n,当m∈[1,2]时,不等式m2﹣mt+13>b n恒成立,则实数t的取值范围是(﹣∞,1).【解答】解:∵a1=1,a n﹣a n﹣1=n(n≥2,n∈N),当n≥2时,a n﹣a n﹣1=n,a n﹣1﹣a n﹣2=n﹣1,…,a2﹣a1=2,并项相加,得:a n﹣a1=n+(n﹣1)+…+3+2,∴a n=1+2+3+…+n=12n(n+1),又∵当n=1时,a1=12×1×(1+1)=1也满足上式,∴数列{a n}的通项公式为a n=12n(n+1),∴b n=1a n+1+1a n+2+1a n+3+⋯+1a2n=2(n+1)(n+2)+2(n+2)(n+3)+⋯+22n(2n+1)=2(1n+1−1n+2+1n+2−1n+3+⋯+12n−12n+1)=2(1n+1−12n+1)=2n2n2+3n+1=22n+1n+3,令f(x)=2x+1x(x≥1),则f′(x)=2−1x2,∵当x≥1时,f'(x)>0恒成立,∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(b n)max=1 3,对任意的正整数n,当m∈[1,2]时,不等式m2﹣mt+13>b n恒成立,则须使m2﹣mt+13>(b n)max=13,即m2﹣mt>0对∀m∈[1,2]恒成立,即t<m的最小值,可得t<1,∴实数t的取值范围为(﹣∞,1),故答案为:(﹣∞,1).四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(10分)如图,在扇形POQ中,半径OP=2,圆心角∠POQ=π3,B是扇形弧上的动点,矩形ABCD内接于扇形.其中CD在半径OQ上,记∠BOC=α.(1)当∠BOC=45°时,求矩形ABCD的面积;(2)求当角α取何值时,矩形ABCD的面积最大?并求出这个最大值.【解答】解:(1)在Rt△OBC中,BC=2sin45°=√2,OC=2cos45°=√2.在Rt△ADO中,ADOD =tanπ3=√3,所以OD=1√3=1√3=√2√3=√63,所以CD=OC−OD=√2−√63⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(2分)设矩形ABCD的面积为S,则S=CD⋅BC=(√2−√63)⋅√2=2−2√33⋯⋯⋯⋯⋯⋯.(4分)(2)在Rt△OBC中,BC=2sinα,OC=2cosα.在Rt△ADO中,ADOD =tanπ3=√3,所以OD=√3=√3=√3,所以CD=OC−OD=2cosα√3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(6分)设矩形ABCD的面积为S,则S=CD⋅BC=(2cosα√3⋅2sinα=4sinαcosα√32α=2sin2α+√3√3=√3+π6)√3⋯⋯⋯⋯⋯⋯⋯⋯⋯.(8分)由0<α<π3,得π6<2α+π6<5π6,所以当2α+π6=π2,即α=π6时………………………………………………….(10分)S max=√3√3=2√33.因此,当α=π6时,矩形ABCD的面积,最大面积为2√33⋯⋯⋯⋯⋯⋯⋯..(12分)18.(12分)已知数列{a n},a1=1,且a n+1=2a n+1.(1)求证:{a n +1}是等比数列; (2)设b n =2n a n ,求{b n }的前n 项和.【解答】(1)证明:依题意,由a n +1=2a n +1两边同时加1, 可得a n +1+1=2a n +1+1=2(a n +1), ∵a 1+1=1+1=2,∴数列{a n +1}是以2为首项,2为公比的等比数列. (2)解:由(1),可知a n +1=2•2n ﹣1=2n ,故a n =2n ﹣1,∴b n =2n a n =2n •(2n ﹣1)=4n ﹣2n , 设数列{b n }的前n 项和为S n , 则S n =b 1+b 2+•+b n=(41﹣21)+(42﹣22)+•+(4n ﹣2n ) =(41+42+•+4n )﹣(21+22+•+2n )=4−4n+11−4−2−2n+11−2 =4n+1+23−2n +1.19.(12分)在长方体AC 1中,AB =BC =2,AA 1=2√2,点EF 分别是直线A 1C 1,直线BC 1的中点.(1)求证:BE ∥平面D 1AC ;(2)求证:点F 到平面D 1AC 的距离; (3)求直线AB 与平面D 1AC 的夹角的余弦值.【解答】(1)证明:建系如图,A (2,0,0),C (0,2,0),D 1(0,0,2√2),E (1,1,2√2),AC →=(﹣2,2,0),AD 1→=(﹣2,0,2√2),BE →=(﹣1,﹣1,2√2),令m →=(√2,√2,1),因为AC →•m →=0,AD 1→•m →=0,所以m →是平面D 1AC 的法向量, 因为BE →•m →=0,BE ⊄平面D 1AC ,所以BE ∥平面D 1AC . (2)证明:因为F (1,2,√2),AF →=(﹣1,2,√2),所以点F 到平面D 1AC 的距离为|m →⋅AF →||m →|=√2√5=2√105;(3)解:因为B (2,2,0),AB →=(0,2,0),所以直线AB 与平面D 1AC 的夹角的正弦值为|m →⋅AB →||m →|⋅|AB →|=√2√5⋅2=√105,所以直线AB 与平面D 1AC 的夹角的余弦值为1−(√105)2=√155.20.(12分)为了推进新高考改革,某中学组织教师开设了丰富多样的校本选修课,同时为了增加学生对校本选修课的了解和兴趣,该校还组织高二年级300名学生参加了一次知识竞答活动,本次活动共进行两轮比赛,第一轮是综合知识小测验,满分100分,并规定得分从高到低排名在前20%的学生可进入第二轮答题,回答3个难度升级的题目A ,B ,C ,分别涉及“体育健康”、“天文地理”和“逻辑推理”三个方面,答对A 题得10积分,答对B 题得20积分,答对C 题得30积分以下是300名学生在第一轮比赛中的得分按照[0,20),[20,40),[40,60),[60,80),[80,100],进行分组绘制而成的频率分布直方图如图所示:(1)根据频率分布直方图估计学生在第一轮比赛中至少得到多少分才能进入第二轮比赛?(2)若李华成功进入了第二轮比赛,并且他答对A 题的概率为12,答对B 题的概率为13,答对C 题的概率为14,设他在第二轮比赛中的所得积分为ξ,求ξ的分布列和期望.【解答】解:(1)设学生在第一轮比赛中至少得到x 分才能进入第二轮比赛, 则(0.0025+0.003+0.0225)×20+0.015×(x ﹣60)=1﹣20%,解得x =76, 故学生在第一轮比赛中至少得到76分.(2)由题意可知,ξ的所有可能取值为0,10,20,30,40,50,60, P (ξ=0)=(1−12)×(1−13)×(1−14)=14, P (ξ=10)=12×(1−13)×(1−14)=14,P (ξ=20)=(1−12)×13×(1−14)=18, P (ξ=30)=(1−12)×(1−13)×14+12×13×(1−14)=524,P (ξ=40)=12×(1−13)×14=112, P (ξ=50)=(1−12)×13×14=124,P (ξ=60)=12×13×14=124, 故ξ的分布列为: ξ 0 10 2030 405060P141418524112124124故E (ξ)=0×14+10×14+20×18+30×524+40×112+50×124+60×124=66512. 21.(12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (√2,√22),左焦点为F ,PF 与y 轴交于点Q ,且满足PQ →+√63FQ →=0→. (Ⅰ)求椭圆C 的方程;(Ⅱ)设圆O :x 2+y 2=1,直线l :y =kx +m 与圆O 相切且与椭圆C 交于不同两点A ,B ,当λ=OA →⋅OB →且λ∈[12,1)时,求弦长|AB |的范围,并求当弦长|AB |最大时,直线l 的方程.【解答】(Ⅰ)由题意椭圆过点P (√2,√22),设左焦点 F (﹣c ,0),满足PQ →+√63FQ →=0→.所以P 、F 、Q 三点在一条直线上,,∵PQ →+√63FQ →=0→#/DEL/#∴−√2+√63(0+c)=0#/DEL/#∴c =√3#/DEL/#∴{2a 2+12b2=1a 2−b 2=3#/DEL/#∴a 2=4,b 2=1,C :x 24+y 2=1#/DEL/#(Ⅱ)因为直线l :y =kx +m 与椭圆C 交于不同两点A ,B ,设A (x 1,y 1),B (x 2,y 2) 则{y =kx +m x 2+4y 2−4=0, 联立可得(1+4k 2)x 2+8kmx +4m 2﹣4=0,① 则韦达定理有{x 1+x 2=−8km1+4k2x 1⋅x 2=4m 2−41+4k2,②Δ=(8km )2﹣4(1+4k 2)(4m 2﹣4)>0,因为直线l :y =kx +m 与圆O :x 2+y 2=1相切,所以d =|m|√1+k =1⇒m 2=1+k 2,③当λ=OA →⋅OB →且λ∈[12,1)时,λ=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,④ 将②③代入④可得 λ=5m 2−4k 2−41+4k 2=1+k21+4k2,k 2=1−λ4λ−1,λ∈[12,1);⑤|AB |=√1+k 2|x1﹣x 2|=4√1+k 2√3k 21+4k2⑥将⑥代入⑤可得|AB |=√1+k 2|x 1﹣x 2|=4√−λ2+λ,λ∈[12,1);所以|AB |∈(0,2]当|AB|max =2时,k 2=12,m 2=32,l :y =±√22x ±√62;22.(12分)已知函数f (x )=x 3﹣3x 2+2x ,g (x )=tx ,t ∈R .(1)求函数φ(x )=f(x)⋅e xx的单调增区间; (2)令h (x )=f (x )﹣g (x ),且函数h (x )有三个彼此不相等的零点0,m ,n ,其中m <n .①若m =12n ,求函数h (x )在x =m 处的切线方程;②若对∀x ∈[m ,n ],h (x )≤16﹣t 恒成立,求实数t 的取值范围.【解答】解:(1)φ(x)=(x 3−3x 2+2x)e x x=(x 2−3x +2)e x (x ≠0),∴φ′(x )=(2x ﹣3)e x +(x 2﹣3x +2)e x =(x 2﹣x ﹣1)e x , 令φ′(x )>0,解得x <1−√52或x >1+√52, ∴φ(x )的单调递增区间为(−∞,1−√52),(1+√52,+∞); (2)h (x )=x 3﹣3x 2+2x ﹣tx =x (x 2﹣3x +2﹣t ),由题意,{9−4(2−t)>0t ≠2,即t >−14且t ≠2,∴{m +n =3mn =2−t, ①若m =12n ,则m =1,n =2, ∴t =0,则h (x )=x 3﹣3x 2+2x ,∴h ′(x )=3x 2﹣6x +2,k =h ′(1)=﹣1,切点为(1,0), ∴切线方程为:x +y ﹣1=0; ②(i )当−14<t <2时,m ,n >0, ∴h (x )=x (x ﹣m )(x ﹣n ),当x ∈[m ,n ]时,h (x )≤0,故只需0≤16﹣t ,即t ≤16, ∴当−14<t <2时,符合题意;(ii )当t >2时,m <0,n >0,此时h ′(x )=3x 2﹣6x +2﹣t ,令h ′(x )=0,解得x 1=1−√t+13,x 2=1+√t+13,且x 1为函数h (x )的极大值点,也为函数h (x )在[m ,n ]上的最大值点,3x 12−6x 1+2−t =0,则2−t =6x 1−3x 12,ℎ(x)max =ℎ(x 1)=x 13−3x 12+2x 1−tx1=x13−3x12+(6x1−3x12)x1=3x12−2x13,∴3x12−2x13≤16−2+6x1−3x12,∴x13−3x12+3x1+7≥0,即x13+1−3(x12−x1−2)≥0,∴(x1+1)(x12−4x1+7)≥0,∴﹣1≤x1<0,∴t=2−6x1+3x12∈(2,11],综上,实数t的取值范围为:(−14,2)∪(2,11].。
考向08 函数的奇偶性、周期性与对称性【2022年新高考全国Ⅰ卷】(多选题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( ) A .(0)0f = B .102g ⎛⎫-= ⎪⎝⎭ C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC. 【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.【2022年新高考全国II 卷】已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .1.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶; 奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++ ④函数2()log (1)a f x x x =+或函数2()log (1)a f x x x =+. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数 2.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数3.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.4.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-. (2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(1)如果一个奇函数()f x 在原点处有定义,即(0)f 有意义,那么一定有(0)0f =. (2)如果函数()f x 是偶函数,那么()(||)f x f x =.2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性3.函数周期性常用结论对()f x 定义域内任一自变量的值x : (1)若()()f x a f x +=-,则2(0)T a a =>. (2)若1()()f x a f x +=,则2(0)T a a =>. (3)若1()()f x a f x +=-,则2(0)T a a =>. 4.对称性的三个常用结论(1)若函数()y f x a =+是偶函数,则函数()y f x =的图象关于直线x a =对称.(2)若对于R 上的任意x 都有(2)()f a x f x -=或()(2)f x f a x -=+,则()y f x =的图象关于直线x a =对称.(3)若函数()y f x b =+是奇函数,则函数()y f x =的图象关于点(,0)b 中心对称. 5.两个奇偶函数四则运算的性质 (1)两个奇函数的和仍为奇函数; (2)两个偶函数的和仍为偶函数; (3)两个奇函数的积是偶函数; (4)两个偶函数的积是偶函数;(5)一个奇函数与一个偶函数的积是奇函数。
第24讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin_αsin β. S (α+β):sin(α+β)=sin αcos β+cos_αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z . T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .➢考点1 公式的直接应用[名师点睛]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. 1.(2022·福建厦门·模拟预测)已知(),0,αβπ∈,且cos21tan 2sin 2βαβ-==,则()cos αβ-=( ) A .45-B .35C .35D .452.(2022·湖南·宁乡市教育研究中心模拟预测)若3sin ,(,)52πααπ=∈,则sin()3πα-=( )A 334-B 334+ C 343-343+3.(2022·江苏·高三专题练习)()2cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,且sin 0θ≠,则tan 6πθ⎛⎫+ ⎪⎝⎭的值为( )A 33.23D .23+4.(2022·江苏徐州·模拟预测)已知tan 2α=,则1sin 2cos 2αα+=( )A .3-B .13-C .3D .13[举一反三]1.(2022·北京四中高三阶段练习)角θ的终边过点()2,4P ,则tan 4πθ⎛⎫+= ⎪⎝⎭( )A .13-B .3-C .13D .32.(2022·广东肇庆·模拟预测)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .7210C .210-D .7210-3.(2022·福建南平·三模)在单位圆中,已知角α的终边与单位圆交于点13,22P ⎛⎫⎪ ⎪⎝⎭,现将角α的终边按逆时针方向旋转3π,记此时角α的终边与单位圆交于点Q ,则点Q 的坐标为( )A .3,221⎛⎫- ⎪ ⎪⎝⎭B .13,22⎛⎫- ⎪ ⎪⎝⎭C .()1,0D .()0,1 4.(2022·江苏扬州·模拟预测)已知sin sin 62ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则tan2α=( )A .3-B .33-C .3±D .33± 5.(2022·湖南师大附中二模)中国古代数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”).如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角α为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积1S 与大正方形面积2S 之比为1:25,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .2.7210D .726.(2022·海南海口·模拟预测)若tan tan 2αβ⋅=,则()()cos cos αβαβ-+的值为( )A .3-B .13-C .13D .37.(多选)(2022·重庆巴蜀中学高三阶段练习)已知()54cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是( ) A .3sin 25α=B .()25cos αβ-=C .3cos cos αβ=.1tan tan 3αβ=8.(2022·浙江绍兴·模拟预测)已知tan 2α=,则tan2α=________,2sin 2cos αα+=__________.9.(2022·山东淄博·模拟预测)已知()0,απ∈,tan 2α,则cos 4πα⎛⎫-= ⎪⎝⎭______.10.(2022·湖南·长沙一中高三阶段练习)已知1cos cos 5αβ=,2sin sin 5αβ=,则()cos βα-的值为________.➢考点2 三角函数公式的逆用与变形用1.(2022·浙江·高三专题练习)sin 45cos15cos225sin15︒︒-︒︒的值为( )A .B .12-C .12D 2.(2022·福建泉州·模拟预测)已知090α︒≤<︒,且()2sin361sin 22cos 18cos2αα︒+=︒,则α=( )A .18︒B .27︒C .54︒D .63︒3.(2022·江苏苏州·模拟预测)已知sin20tan203m +=,则实数m 的值为( ) A.2C .4D .84.(2022·全国·高三专题练习)在△ABC 中,tan A +tan B A ·tan B ,则C 的值为( ) A .23π-B .3π-C .3πD .23π[举一反三]1.(2022·江苏·高三专题练习)cos15cos75sin15sin75︒︒+︒︒的值为( )A .1B .0C .-0.5D .0.52.(2022·重庆八中高三阶段练习)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点()cos15sin15,cos15sin15P ︒-︒︒+︒,则tan α=( )A .2B .23.(2022·全国·高三专题练习)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值,该值恰好等于2sin18︒),则sin100cos26cos100sin 26︒︒+︒︒=( )A .. 4.(2022·浙江·高三专题练习)tan1tan 441tan1tan 44︒︒︒︒+=-( ) A .1B .1-C .2D .2-5.(多选)(2022·全国·高三专题练习)下列等式成立的是( ) A .1sin21cos81sin69cos92-=-B .223cos 75cos 152-= C .2cos10sin203cos20-=D .()sin5013tan101+=6.(2022·重庆·三模)cos40cos80cos50sin100︒︒-︒︒=___________. 7.(2022·全国·高三专题练习)2cos16cos29cos13︒︒-︒的值等于_________. 8.(2022·江苏南通·高三期末)写出一个满足tan20°+4cos θθ=_________. 9.(2022·山东·青岛二中高三开学考试)tan10tan35tan10tan35︒+︒+︒︒=______.10.(2022·全国·高三专题练习)()()1tan 201tan 25︒︒+⋅+=________.➢考点3 角的变换与名的变换1.(2022·河北唐山·二模)已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=( ) A .2325B .2325-C .35D .352.(2022·江苏·华罗庚中学高三阶段练习)已知cos α=,()sin βα-=,,αβ均为锐角,则β=( ) A .12πB .6πC .4πD .3π3.(2022·海南·模拟预测)设α为第一象限角,若1cos 65πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B4.(2022·全国·高三专题练习)已知(),0,παβ∈,πcos 2αβ⎛⎫-+ ⎪⎝⎭()tan π7β-=,则tan α=( ) A .3-B .139-C .3D .139[举一反三]1.(2022·全国·高三专题练习)已知3,2παπ⎛⎫∈ ⎪⎝⎭,若tan 23πα⎛⎫+=- ⎪⎝⎭,则cos 12πα⎛⎫+= ⎪⎝⎭( )A B ..2.(2022·湖南·模拟预测)我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距()0180θθ︒≤≤︒的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.对同一“表高”两次测量,第一次和第二次太阳天顶距分别为α,β,若第一次的“晷影长”是“表高”的3倍,且()1tan 2αβ-=,则第二次的“晷影长”是“表高”的( )倍. A .1B .23C .52D .723.(2022·湖南株洲·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,sin 4πθ⎛⎫-= ⎪⎝⎭tan θ=( )A .2B .12C .3D .134.(2022·浙江·高三专题练习)已知,36ππα⎛⎫∈- ⎪⎝⎭,29cos 2610απ⎛⎫+= ⎪⎝⎭,则sin 6πα⎛⎫+= ⎪⎝⎭( )ABC5.(多选)(2022·全国·高三专题练习)已知cos()αβ+=5cos213α=-,其中α,β为锐角,以下判断正确的是( ) A .sin 21312α=B.cos()αβ-C.cos cos αβ=.11tan tan 8αβ=6.(2022·广东湛江·二模)若()3tan 2αβ-=,tan 2β=,则tan α=___________. 7.(2022·全国·高三专题练习)已知02πα<<,4sin 5α,1tan()3αβ-=-,则tan β=_______;sin())4βππβ+=+_______.8.(2022·山东烟台·高三期末)已知π(0,)2α∈,cos()4πα+=cos α的值为______.9.(2022·江苏·模拟预测)已知1sin(),(0,)43x x ππ+=∈,则sin x =_________.10.(2022·广东·三模)已知tan 2α=,则sin 24πα⎛⎫-= ⎪⎝⎭___________.11.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫-=∈+= ⎪⎝⎭,则tan β=__________.12.(2022·全国·高三专题练习)已知α,β为锐角,25sin 5α=,()10sin 10αβ-=-. (1)求sin 2α的值; (2)求()tan αβ+的值第24讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin_αsin β. S (α+β):sin(α+β)=sin αcos β+cos_αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z . T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .➢考点1 公式的直接应用[名师点睛]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. 1.(2022·福建厦门·模拟预测)已知(),0,αβπ∈,且cos21tan 2sin 2βαβ-==,则()cos αβ-=( ) A .45-B .35C .35D .45【答案】C 【解析】2cos 212sin tan sin 22sin cos ββββββ--==-,tan 2α∴=,tan 2β=-,(),0,αβπ∈,0,2πα⎛⎫∴∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,25sin α∴=,5cos α=,25sin β=5cos β=, ()5525253cos cos cos sin sin 5αβαβαβ⎛∴-=++= ⎝⎭. 故选:C.2.(2022·湖南·宁乡市教育研究中心模拟预测)若3sin ,(,)52πααπ=∈,则sin()3πα-=( )ABC【答案】D 【解析】解:因为2απ<<π,3sin 5α=,所以4cos 5α=-,所以sin()sin cos cos sin 333αααπππ-=-=314525⨯+=故选:D .3.(2022·江苏·高三专题练习)()cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,且sin 0θ≠,则tan 6πθ⎛⎫+ ⎪⎝⎭的值为( )A.2D.2+【答案】D【解析】()cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,22cos cos sin )(cos )cos sin 44ππθθθθθ--=-,即(sin cos )(cos )(cos sin )(cos sin )θθθθθθθ--=-+,sin (cos sin )0θθθ-=, ∵sin 0θ≠,∴cos sin 0θθ-=,即tan 1θ=,∴tan tan16tan 261tan tan 6πθπθπθ++⎛⎫+=== ⎪⎝⎭-.故选:D .4.(2022·江苏徐州·模拟预测)已知tan 2α=,则1sin 2cos 2αα+=( )A .3-B .13-C .3D .13【答案】A【解析】2221sin 2(sin cos )cos sin 1tan 123cos2cos sin cos sin 1tan 12αααααααααααα+++++=====-----. 故选:A .[举一反三]1.(2022·北京四中高三阶段练习)角θ的终边过点()2,4P ,则tan 4πθ⎛⎫+= ⎪⎝⎭( )A .13-B .3-C .13D .3【答案】B【解析】角θ的终边过点()2,4P ,tan 2θ∴=,tan tan214tan 34121tan tan 4πθπθπθ++⎛⎫∴+===- ⎪-⎝⎭-. 故选:B.2.(2022·广东肇庆·模拟预测)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )AC..【答案】B 【解析】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 455πααα⎛⎫+== ⎪⎝⎭故选:B.3.(2022·福建南平·三模)在单位圆中,已知角α的终边与单位圆交于点12P ⎛ ⎝⎭,现将角α的终边按逆时针方向旋转3π,记此时角α的终边与单位圆交于点Q ,则点Q 的坐标为( )A.21⎛⎫ ⎪ ⎪⎝⎭B.12⎛-⎝⎭C .()1,0D .()0,1 【答案】B【解析】由三角函数定义知:1sin 2αα==,将角α的终边按逆时针方向旋转3π,此时角变为3πα+,故点Q 的横坐标为1cos()cos cos sin sin 3332πππααα+=-=-,点Q的纵坐标为sin()sin cos cos sin 333πππααα+=+=,故点Q 的坐标为13,22⎛⎫- ⎪ ⎪⎝⎭.故选: B.4.(2022·江苏扬州·模拟预测)已知sin sin 62ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则tan2α=( )A .3-B .33-C .3±D .33± 【答案】A【解析】由两角差的正弦公式展开可得:13cos sin cos 22ααα-=,则3tan 3α=-, 所以2232tan 3tan2321tan 3ααα-===--. 故选:A.5.(2022·湖南师大附中二模)中国古代数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”).如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角α为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积1S 与大正方形面积2S 之比为1:25,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .2.7210D .72【答案】C【解析】如图所示,由图中小正方形的面积1S 与大正方形面积2S 之比为1:25,可得5DC EH =,因为sin CE DC α=,可得1cos sin 5DE DC EC EH DC DC αα==-=-,所以1sin cos 5αα-=,所以112sin cos 25αα-=,所以242sin cos 25αα=,所以()249sin cos 12sin cos 25αααα+=+=, 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以7sin cos 5αα+=,所以()272sin sin cos cos sin sin cos 444210πππααααα⎛⎫+=+=+=⎪⎝⎭. 故选:C.6.(2022·海南海口·模拟预测)若tan tan 2αβ⋅=,则()()cos cos αβαβ-+的值为( )A .3-B .13-C .13D .3【答案】A【解析】由题意得,()()cos cos cos sin sin cos cos sin sin cos αβαβαβαβαβαβ-+=-+1tan tan 1231tan tan 12αβαβ++===---. 故选:A7.(多选)(2022·重庆巴蜀中学高三阶段练习)已知()54cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是( ) A .3sin 25α=B .()25cos αβ-=C .3cos cos αβ=.1tan tan 3αβ=【答案】AB【解析】因为4cos 25α=-,π0,02π2αα<<∴<<,所以23sin 21cos 25αα=-=,故A 正确;因为()5cos αβ+=ππ0,0,0π22αβαβ<<<<∴<+<,所以()()225sin 1cos αβαβ+=-+=所以cos()cos[2()]cos2cos()sin 2sin()αβααβααβααβ-=-+=+++ ⎛⎛⎫=-⨯+= ⎪ ⎝⎭⎝⎭453252555,故B 正确;cos()cos cos sin sin αβαβαβ-=+=,cos()cos cos sin sin αβαβαβ+=-=②, 由+①②得,2cos co s αβ=,解得cos cos αβ=C 不正确; 由①-②得,2sin sin αβ=,解得sin sin αβ=sin sin tan tan 3cos c os αβαβαβ===,故D 不正确.故选:AB.8.(2022·浙江绍兴·模拟预测)已知tan 2α=,则tan2α=________,2sin 2cos αα+=__________.【答案】 43- 1【解析】22tan 4tan 2,1tan 3ααα==--222222sin cos cos 2tan 1sin 2cos 1sin cos tan 1ααααααααα+++===++故答案为:43-,1.9.(2022·山东淄博·模拟预测)已知()0,απ∈,tan 2α,则cos 4πα⎛⎫-= ⎪⎝⎭______.【解析】由tan 2α得sin 2cos αα=-,又22sin cos 1αα+=,所以21cos 5α=,因为()0,απ∈,tan 2α,,2παπ⎛⎫∈ ⎪⎝⎭,所以cos αα==因为πππcos()cos cos sin sin 444ααα-=+,所以cos()4πα-=22=.10.(2022·湖南·长沙一中高三阶段练习)已知1cos cos 5αβ=,2sin sin 5αβ=,则()cos βα-的值为________.【答案】35【解析】解:∵12cos cos ,sin sin 55αβαβ==,∴3cos()cos cos sin sin 5βααβαβ-=+=.故答案为:35.➢考点2 三角函数公式的逆用与变形用1.(2022·浙江·高三专题练习)sin 45cos15cos225sin15︒︒-︒︒的值为( )A .B .12-C .12D 【答案】D【解析】原式=sin 45cos15cos 45sin15sin(4515)sin 60︒︒+︒︒=︒+︒=︒=故选:D.2.(2022·福建泉州·模拟预测)已知090α︒≤<︒,且()2sin361sin 22cos 18cos2αα︒+=︒,则α=( )A .18︒B .27︒C .54︒D .63︒【答案】B【解析】因为()()sin361sin 22sin18cos181sin 2αα︒+=︒︒+所以()22cos 18cos22sin18cos181sin 2αα︒=︒︒+,整理得:cos18cos2sin18sin 2sin18αα︒=︒+︒,cos18cos2sin18sin 2sin18αα︒-︒=︒()cos 218sin18α+︒=︒因为090α︒≤<︒, 所以18218198α︒≤+︒<︒, 所以2189018α+︒=︒-︒, 解得:27α=︒ 故选:B3.(2022·江苏苏州·模拟预测)已知sin20tan203m +=,则实数m 的值为( ) A.2C .4D .8 【答案】C【解析】解:∵tan20°+msin20°=∴msin20cos20sin20︒︒==︒=12sin2021sin402⎫︒-︒⎪⎝⎭=︒ ()2sin 60201sin402︒-︒==︒ 4 故选:C4.(2022·全国·高三专题练习)在△ABC 中,tan A +tan BA ·tanB ,则C 的值为( ) A .23π-B .3π-C .3πD .23π【答案】C【解析】由已知可得tan A +tan BA ·tanB -1), ∴ tan(A +B )=tan tan1tan tan A BA B+-又0<A +B <π,∴ A +B =23π,∴ C =3π.故选:C [举一反三]1.(2022·江苏·高三专题练习)cos15cos75sin15sin75︒︒+︒︒的值为( ) A .1B .0C .-0.5D .0.5 【答案】D【解析】()1cos15cos75sin15sin 75cos 1575cos(60)2︒︒+︒︒=︒-︒=-︒=. 故选:D.2.(2022·重庆八中高三阶段练习)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点()cos15sin15,cos15sin15P ︒-︒︒+︒,则tan α=( )A .2B .2【答案】D【解析】cos15sin1515)︒-︒=︒+︒=cos15sin1515)︒+︒=︒-︒=,即(2P ,则tan α= 故选:D.3.(2022·全国·高三专题练习)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值,该值恰好等于2sin18︒),则sin100cos26cos100sin 26︒︒+︒︒=( )A .. 【答案】D【解析】由已知可得2sin18︒=,故sin18︒=则()sin100cos26cos100sin 26sin126sin 3690cos36︒︒+︒︒=︒=︒+︒=︒ 2212sin 1812=-︒=-⨯=⎝⎭. 故选:D.4.(2022·浙江·高三专题练习)tan1tan 441tan1tan 44︒︒︒︒+=-( )A .1B .1-C .2D .2- 【答案】A【解析】tan1tan 44tan 4511tan1tan 44︒︒︒︒+==-.故选:A.5.(多选)(2022·全国·高三专题练习)下列等式成立的是( ) A .1sin21cos81sin69cos92-=-B .223cos 75cos 152-= C .2cos10sin203cos20-=D .()sin5013tan101+= 【答案】CD【解析】因为sin21cos81sin69cos9sin21cos81cos 21sin81-=-︒︒()sin 2181=︒-︒= 故选项A 错误;因为221cos1501cos30cos 75cos 1522+︒+︒-=-=, 故选项B 错误;因为()1cos10cos 3020sin 202︒=︒-︒︒+︒,所以()3cos 20sin 20sin202cos10sin203cos20cos20︒+︒--==故选项C 正确;因为()2sin 301011cos10︒+︒︒==︒, 所以()2sin 402sin 40cos 401cos10s sin5013tan10s in80in50︒+=︒︒⨯==︒︒,故选项D 正确;故选:CD.6.(2022·重庆·三模)cos40cos80cos50sin100︒︒-︒︒=___________. 【答案】12-【解析】解:原式=1cos 40cos80sin 40sin80cos(4080)cos1202︒︒-︒︒=+==-.故答案为:12-7.(2022·全国·高三专题练习)2cos16cos29cos13︒︒-︒的值等于_________. 【解析】()2cos16cos29cos132cos16cos16cos13sin16sin13cos13︒︒-︒=︒︒︒-︒︒-︒cos32cos13sin32sin13cos 45=︒︒-︒︒=︒=8.(2022·江苏南通·高三期末)写出一个满足tan20°+4cosθθ=_________. 【答案】70︒(答案不唯一). 【解析】由题意sin 60sin 20sin 60cos 20cos60sin 204cos tan 20tan 60tan 20cos60cos 20cos60cos 20θ︒︒︒︒-︒︒=︒=︒-︒=-=︒︒︒︒sin 402sin 20cos 204sin 204cos701cos60cos 20cos 202︒︒︒===︒=︒︒︒︒, 因此70θ=︒(实际上36070,k k Z θ=⋅︒±︒∈). 故答案为:70︒(答案不唯一).9.(2022·山东·青岛二中高三开学考试)tan10tan35tan10tan35︒+︒+︒︒=______. 【答案】1【解析】因为()tan10tan 351tan 45tan 10351tan10tan 35︒+︒=︒=︒+︒=-︒︒,所以tan35tan10tan10tan351︒+︒+︒︒=. 故答案为:110.(2022·全国·高三专题练习)()()1tan 201tan 25︒︒+⋅+=________.【答案】2【解析】因为()()1tan 201tan 251tan 25tan 20tan 20tan 25︒︒︒︒︒︒+⋅+=+++,又tan 25tan 20tan 4511tan 20tan 25︒︒︒︒︒+==-,所以tan 25tan 201tan 20tan 25︒︒︒︒+=-, 所以()()1tan 201tan 251tan 25tan 20tan 20tan 252︒︒︒︒︒︒+⋅+=+++=.故答案为:2.➢考点3 角的变换与名的变换1.(2022·河北唐山·二模)已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=( ) A .2325B .2325-C .35D .35【答案】B【解析】解:令()5sin 06f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则6x π=或76x π=,令()5sin 56f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则23x π=,又02αβπ<<<,()()1f f αβ==, 所以263ππα<<,2736ππβ<<,1sin 65πα⎛⎫-= ⎪⎝⎭,1sin 65πβ⎛⎫-= ⎪⎝⎭,因为062ππα<-<,26ππβπ<-<,所以cos 6πα⎛⎫-= ⎪⎝⎭cos 6πβ⎛⎫-= ⎪⎝⎭所以()cos cos cos cos sin sin 666666ππππππβαβαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11235525⨯=-=+, 故选:B.2.(2022·江苏·华罗庚中学高三阶段练习)已知cos α=,()sin βα-=,,αβ均为锐角,则β=( ) A .12πB .6πC .4πD .3π【答案】C【解析】,αβ均为锐角,即,0,2παβ⎛⎫∈ ⎪⎝⎭,,22ππβα⎛⎫∴-∈- ⎪⎝⎭,()cos βα∴-=sin α= ()()()cos cos cos cos sin sin ββααβααβαα∴=-+=---⎡⎤⎣⎦⎛=-= ⎝⎭, 又0,2πβ⎛⎫∈ ⎪⎝⎭,4πβ∴=.故选:C.3.(2022·海南·模拟预测)设α为第一象限角,若1cos 65πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B 【答案】A【解析】1cos 65πα⎛⎫+= ⎪⎝⎭,且2π2π,Z 2k k k πα<<+∈,得π22π2π,663k k k Z ππα+<+<+∈, 则sin 0α>,sin()06πα+>,sin()6πα+=,sin sin ()sin()cos cos()sin 666666ππππππαααα⎡⎤=+-=+-+⎢⎥⎣⎦1152=⨯=故选:A4.(2022·全国·高三专题练习)已知(),0,παβ∈,πcos 2αβ⎛⎫-+ ⎪⎝⎭()tan π7β-=,则tan α=( )A .3-B .139-C .3D .139【答案】B【解析】∵(),0,παβ∈,πcos 2αβ⎛⎫-+= ⎪⎝⎭∴()()ππcos cos =sin 22αβαβαβ⎛⎫⎛⎫-+=--- ⎪ ⎪⎝⎭⎝⎭∵()tan π7β-=,∴tan 7β=-,又()0,πβ∈,∴,π2πβ⎛∈⎫⎪⎝⎭∵()0,πα∈,∴π,2αβπ⎛⎫ ⎪⎝-∈⎭-∵()sin 0αβ-=>,∴π0,2αβ⎛⎫-∈ ⎪⎝⎭,∴()cos αβ-=()()()sin 1tan cos 2αβαβαβ--==- ∴()()()()17tan tan 132tan tan 11tan tan 9172αββααββαββ--+=-+===---⨯-⨯-. 故选:B. [举一反三]1.(2022·全国·高三专题练习)已知3,2παπ⎛⎫∈ ⎪⎝⎭,若tan 23πα⎛⎫+=- ⎪⎝⎭,则cos 12πα⎛⎫+= ⎪⎝⎭( )AB..【答案】C【解析】因为3,2παπ⎛⎫∈ ⎪⎝⎭,则411,336παππ⎛⎫+∈ ⎪⎝⎭,又tan 203πα⎛⎫+=-< ⎪⎝⎭,故311,326παππ⎛⎫+∈ ⎪⎝⎭,则cos 33ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭故cos cos cos cos sin sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛=+= ⎝⎭故选:C.2.(2022·湖南·模拟预测)我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距()0180θθ︒≤≤︒的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.对同一“表高”两次测量,第一次和第二次太阳天顶距分别为α,β,若第一次的“晷影长”是“表高”的3倍,且()1tan 2αβ-=,则第二次的“晷影长”是“表高”的( )倍. A .1B .23C .52D .72【答案】A【解析】解:由题意可得tan 3α=,1tan()2αβ-=, 所以[]13tan tan()2tan tan ()111tan tan()132ααββααβααβ---=--===+-+⨯, 即第二次的“晷影长”是“表高”的1倍. 故选:A.3.(2022·湖南株洲·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,sin 4πθ⎛⎫-= ⎪⎝⎭tan θ=( )A .2B .12C .3D .13【答案】C【解析】因为0,2πθ⎛⎫∈ ⎪⎝⎭,则444πππθ-<-<,故cos 4πθ⎛⎫- ⎪⎝⎭,所以,sin sin sin cos 4444ππππθθθθ⎡⎤⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦故cos θ=sin tan 3cos θθθ==. 故选:C.4.(2022·浙江·高三专题练习)已知,36ππα⎛⎫∈- ⎪⎝⎭,29cos 2610απ⎛⎫+= ⎪⎝⎭,则sin 6πα⎛⎫+= ⎪⎝⎭( )A B C 【答案】A【解析】解:由已知可得29cos 2cos 12132610παπα⎛⎫⎛⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭45,,36ππα⎛⎫∈- ⎪⎝⎭,0,32ππα⎛⎫∴+∈ ⎪⎝⎭,3sin 35πα⎛⎫∴+= ⎪⎝⎭,sin sin sin cos cos sin 6363636πππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=+⋅-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.5.(多选)(2022·全国·高三专题练习)已知cos()αβ+=5cos213α=-,其中α,β为锐角,以下判断正确的是( )A .sin 21312α=B .cos()αβ-C .cos cos αβ=.11tan tan 8αβ=【答案】AC【解析】解:因为cos()αβ+=5cos213α=-,其中α,β为锐角,所以:12sin 213α,故A 正确;因为sin()αβ+, 所以cos()cos[2()]cos2cos()sin 2sin()αβααβααβααβ-=-+=+++512()(1313=-⨯+B 错误;可得11cos cos [cos()cos()](22αβαβαβ=++-==C 正确;可得11sin sin [cos()cos()](22αβαβαβ=--+=-所以21tan tan 8αβ=,故D 错误.故选:AC .6.(2022·广东湛江·二模)若()3tan 2αβ-=,tan 2β=,则tan α=___________. 【答案】74-【解析】因为()3tan 2αβ-=,tan 2β=, 所以()()()32tan tan 72tan tan 31tan tan 4122αββααββαββ+-+=-+===-⎡⎤⎣⎦--⋅-⨯, 故答案为:74-7.(2022·全国·高三专题练习)已知02πα<<,4sin 5α,1tan()3αβ-=-,则tan β=_______;sin())4βππβ+=+_______. 【答案】 332【解析】因为02πα<<,4sin 5α,所以3cos 5α==, 所以sin 4tan cos 3ααα==,因为1tan()3αβ-=-,所以tan tan()tan tan[()]1tan tan()ααββααβααβ--=--=+- 41533335411933⎛⎫-- ⎪⎝⎭===⎛⎫+⨯- ⎪⎝⎭所以sin()sin tan 33cos sin 1tan 1324βπββπββββ+---====---⎛⎫+ ⎪⎝⎭,故答案为:3;32.8.(2022·山东烟台·高三期末)已知π(0,)2α∈,cos()4πα+=cos α的值为______.【解析】因π(0,)2α∈,即3444πππα<+<,又cos()4πα+=sin()4πα+==所以cos cos[()]cos()cos sin()sin 444444ππππππαααα=+-=+++==.9.(2022·江苏·模拟预测)已知1sin(),(0,)43x x ππ+=∈,则sin x =_________.【解析】由(0,)x π∈,可得5(,)444x πππ+∈,因为1sin()sin 434x ππ+=<=,所以3(,)422x πππ+∈,所以cos()4x π+=又由sin sin[()]))4444x x x x ππππ=+-=++13==10.(2022·广东·三模)已知tan 2α=,则sin 24πα⎛⎫-= ⎪⎝⎭___________.【解析】原式αα=()222sin cos cos sin αααα⎤--⎦2222222sin cos cos sin cos sin cos sin αααααααα⎤⎛⎫-=-⎢⎥ ⎪++⎝⎭⎣⎦2222tan 1tan 1tan 1tan αααα⎤⎛⎫-=-⎢⎥ ⎪++⎝⎭⎣⎦=.11.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫-=∈+= ⎪⎝⎭,则tan β=__________.【答案】17【解析】因为()sin 0,2ππαα⎛⎫-=∈ ⎪⎝⎭,所以sin α=所以cos α==,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα-+-=+-===⎡⎤⎣⎦+++⨯又 故答案为:1712.(2022·全国·高三专题练习)已知α,β为锐角,sin α=,()sin αβ-=. (1)求sin 2α的值; (2)求()tan αβ+的值.【解】(1)因为α为锐角,sin α=所以cos α=,所以4sin 22sin cos 25ααα===; (2)因为α,β为锐角,所以π02α<<,π02β<<,所以π02β-<-<,所以ππ22αβ-<-<, 因为()sin 0αβ-=<,所以π02αβ-<-<,所以()cos αβ-=, 所以()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=---⎣⎦10⎛= ⎝⎭=,所以cos 10β==所以tan 2cos sin ααα===,tan 7cos sin βββ===, 所以()tan tan 279tan 1tan tan 12713αβαβαβ+++===---⨯。
数学常态课教研活动总结数学常态课教研活动总结范文篇一:数学教研组常态课教学活动总结为促进和提高每位教师的课堂高效性和实效性,实现向课堂要能力、要发展、要质量的目的,我校开学初就开展了随点随听教师常态课和青年教师汇报课活动。
在活动中,我们数学组十一位教师对学校的“师导生探,实践应用”教学模式进行了认真地研究和学习,并根据“五代”即以题代议,以题代思,以题代解,以题代练,以题代测进行精心地备课,使教学环节紧紧相扣,将知识融入到习题中,提高了学生应用知识解决问题的能力,彰显了数学的魅力。
同时又将“体验式”教学融入到课堂,灵活运用着教室内的壁板,充分体现了以学生为主体,教师为主导的教学理念。
一、课堂中的亮点每位教师的课听完以后,我们进行了集体评课。
大家一致感到现在每位教师的课堂,无论是教学流程,还是教学组织形式都有了很大的改变,这充分显示了教师们在学习完校长的讲座后进行了积极地尝试并应用到课堂实践中。
1、把时间还给学生,放手就是一种关爱,教学最大的悲哀是包办,学习最大的悲哀是依赖。
赵小明、张燕、唐国敏三位教师课上充分发挥了学生的能动性,给学生大量的独思、独学、群思、群学的时间,给学生创造了很多的展示空间,一节课下来,老师说的话不多,学生在思考中、讨论中学会了知识,在老师的引导下应用了知识解决了问题,为各位老师做出了榜样。
2、“五代”教学法体现明显,李凤娟、阙惠玉、刘也习题设计由易到难、由简到繁,符合知识的递进规律和学生的认知规律,课堂起点低、容量大、节奏快。
习题的设计突出重点,同时分散了难点。
注重一题多解、开放习题的设计,注重了对学生开放性和严密性思维训练。
3、只有学生动起来、课堂才能活起来、学习效果才能好起来。
苏秋云、张志良、王宝良老师的课能够关注学困生,对学困生耐心有加。
提问时充分给学困生回答的机会,让每一个学生都有事干,都能动起来。
4、刚来的张玉龙老师的课上的很老练,课上氛围融洽,教态自然大方。
二、存在的不足每个人的课堂教学都不可能做到十分完美,都会存在缺憾,通过听课我们还需不断吸取别人的优点,存在的不足大致有以下几点:1、多数教师缺乏课堂的导入语、过渡语、结束语、诱导性问题的语言、规律性的总结。
考点30 排列、组合1、掌握分布计数原理和分类计数原理;2、能运用计数原理解决简单的排列与组合问题;1、从2020年高考情况看,考题难度以中档题目为主,主要以选择题、填空题的形式出现,分值为5分;2、本章内容在高考中以排列组合的综合应用为主;1、从2020年高考情况来看,考查的方式及题目的难度与往年变化不大,延伸以前的考试风格;2、考查内容主要体现以下几个方面:利用排列组合解决实际问题;利用排列着解决概率有关的问题;1、【2020年新高考全国Ⅰ卷】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种2、【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1183、【2020年高考全国II 卷理数】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.4、【2018年高考全国Ⅰ卷理数】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字填写答案)5、【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.5、【2018年高考浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成__________个没有重复数字的四位数.(用数字作答)题型一 排列组合的简单运用1、(2020届浙江省嘉兴市3月模拟)用2与0两个数字排成7位的数码,其中“20”和“02”各至少...出现两次(如0020020、2020200、0220220等),则这样的数码的个数是( )A .54B .44C .32D .222、(2020届北京市通州区高三第一学期期末考试数学试题)甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为( )A .24B .12C .8D .63、(2020届北京市昌平区新学道临川学校高三上学期第三次月考数学(理)试题)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A .3600种B .1440种C .4820种D .4800种4、(2020届北京市通州区高三第一学期期末)某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有( )A .80种B .90种C .120种D .150种5、(2020·浙江省温州市新力量联盟高三上期末)若用0,1,2,3,4,5这6个数字组成无重复数字且奇数数字互不相邻的六位数,则这样的六位数共有( )个A .120B .132C .144D .1566、(2020·浙江温州中学3月高考模拟)本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A .72种B .144种C .288种D .360种7、(2020届浙江省嘉兴市高三5月模拟)将,,,,,A B C D E F 六个字母排成一排,若,,A B C 均互不相邻且,A B 在C 的同一侧,则不同的排法有________种.(用数字作答)8、(2020届浙江省绍兴市高三4月一模)某地区有3个不同值班地点,每个值班地点需配一名医务人员和两名警察,现将3名医务人员(1男2女)和6名警察(4男2女)分配到这3个地点去值班,要求每个值班地点至少有一名女性,则共有______种不同分配方案.(用具体数字作答)9、(2020届浙江省十校联盟高三下学期开学)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)题型二、排列组合的综合运用1、(2020·浙江高三)从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85 B .95 C .2040 D .22802、(2020届北京市陈经纶高三上学期开学)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )A .46B .44C .42D .403、(2020届浙江省杭州市第二中学高三3月月考)如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有_____个.4、(2020届浙江省杭州市高三3月模拟)从0,1,2,3,4,5这6个数中随机抽取5个数构成一个五位数abcde ,则满足条件“a b c d e <<>>”的五位数的个数有____.5、(2020届北京市东城区五中高三开学)某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是_________________(用数字作答).6、(2019年北京市清华大学附属中学高三月考)对于各数互不相等的整数数组()12,,,n i i i (其中n 是不小于3的正整数),若{},1,2,,p q n ∀∈⋅⋅⋅,当p q <时,有p q i i >,则称p i ,q i 为该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组()2,3,1的逆序数等于2. (1)数组()5,2,4,3,1的逆序数等于______.(2)若数组()12,,,n i i i 的逆序数为n ,则数组()11,,,n n i i i -的逆序数为______.7、(2019年清华大学附属中学高三月考)《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)题型三、运用排列组合解决概率问题1、(2020届山东省德州市高三上期末)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( )A .166B .155C .566D .5112、(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .3203、(2020届浙江省宁波市余姚中学高考模拟)将1,2,3,4,5,6随机排成一列,记为a ,b ,c ,d ,e ,f ,则abc def +是偶数的概率为______4、(2020·浙江温州中学高三3月月考)海面上漂浮着A 、B 、C 、D 、E 、F 、G 七个岛屿,岛与岛之间都没有桥连接,小昊住在A 岛,小皓住在B 岛.现政府计划在这七个岛之间建造n 座桥(每两个岛之间至多建造一座桥).若1n =,则桥建完后,小吴和小皓可以往来的概率为______;若3n =,则桥建完后,小昊和小皓可以往来的概率为______.5、(2020·浙江镇海中学高三3月模拟)小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.6、(2020届浙江省杭州市建人高复高三4月模拟)将字母,,,,,a a b b c c 放入32⨯的方表格,每个格子各放一个字母,则每一行的字母互不相同,每一列的字母也互不相同的概率为_______;若共有k 行字母相同,则得k 分,则所得分数ξ的数学期望为______;(注:横的为行,竖的为列;比如以下填法第二行的两个字母相同,第1,3行字母不同,该情况下1ξ=)。
第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。
七种零点问题方法技巧1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下:(1)确定内层函数()u g x =和外层函数()y f u =;(2)确定外层函数()y f u =的零点()1,2,3,,i u u i n == ;(3)确定直线()1,2,3,,i u u i n == 与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、L 、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++ .能力拓展题型一:零点存在定理法判断函数零点所在区间一、单选题1.(2022·河南河南·三模(理))若实数a ,b ,c 满足13log 4a =,37b =,2ln c c=,则()A .a b c <<B .b c a<<C .a c b <<D .b a c<<2.(2022·黑龙江·双鸭山一中高三期末(理))函数1()2ln 3f x x x=--的零点所在的区间为()ln 20.693,ln 3 1.099,ln 5 1.609≈≈≈()A .3,4()B .4,5()C .5,6()D .8,9()3.(2022·北京密云·高三期末)心理学家有时使用函数()()1e kt L t A -=-来测定在时间()t min 内能够记忆的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生有200个单词要记忆,心理学家测定在5min内该学生记忆20个单词.则记忆率k 所在区间为()A .1(0,20B .11(,)2015C .11(,)1510D .1(,1)104.(2022·河南焦作·一模(理))设函数()23xxf x =+的零点为0x ,则0x ∈()A .()4,2--B .()2,1--C .()1,2D .()2,45.(2021·江苏·泰州中学高三阶段练习)已知2log 3a =,函数()e ln 4=+-xf x x 的零点为b ,()3212g x x x x =--的极小值点为c ,则()A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f b f c f a >>D .()()()f c f a f b >>6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为()A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭二、多选题7.(2022·湖北·荆州中学高三开学考试)函数4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭在区间0,2π⎛⎫⎪⎝⎭的最小值为1-,且在区间,2ππ⎛⎫⎪⎝⎭唯一的极大值点0x .则下列说法正确的有()A .1a =B .03,24x ππ⎛⎫∈ ⎪⎝⎭C .03,4x ππ⎛⎫∈ ⎪⎝⎭D .()01f x <8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是()A .函数()xf x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是()A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<<三、填空题10.(2022·全国·高三专题练习)下列命题中,正确的是___________.(写出所有正确命题的编号)①在ABC 中,A B >是sin sin A B >的充要条件;②函数2(1)1y x x x =+<-的最大值是1+③若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;④若函数2()(0)f x ax bx c a =++>,(1)2af =-,则函数()f x 在区间(0,2)内必有零点.11.(2022·全国·高三专题练习)已知函数()()2e xf x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:①存在实数a ,使得导函数()f x '为增函数;②当0a >时,函数()f x 不单调;③当21a -<≤-时,函数()f x 在R 上单调递减;④当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______.12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.13.(2022·全国·高三专题练习)已知a ,b 均为正实数,且满足21log 2aa ⎛⎫⎪=⎝⎭,122log bb =,则下面四个判断:①n 0()l a b ->;②21b a -<;③11a b->-;④22log 0log a b >>.其中一定成立的有__(填序号即可).14.(2020·湖南邵阳·三模(理))在数学中,布劳威尔不动点定理是拓朴学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石,简单来讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使()00f x x =,那么我们称该函数()f x 为“不动点”函数,给出下列函数:①()224f x x x =+-;②()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩③()()21xf x e x =+-;④()ln f x ax x a =--(01a <<);⑤()2f x x x =+;其中为“不动点”函数的是_________.(写出所有满足条件的函数的序号)15.(2020·全国·高三专题练习(理))函数f (x )=1+x -22x +33x ,g (x )=1-x +22x -33x ,若函数F (x )=f (x +3)g (x -4),且函数F (x )的零点均在[a ,b ](a <b ,a ,b ∈Z )内,则b -a 的最小值为________.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点;(2)若()f x 在其定义域上单调递减,求a 的取值范围.17.(2022·贵州遵义·高三开学考试(理))已知函数()22()33e (0)22xa af x x x x ax x =-+-+->.(1)讨论()f x 的导函数()f x ¢零点的个数;(2)若()f x 的最小值为e ,求a 的取值范围.题型二:方程法判断零点个数一、单选题1.(2022·福建福州·三模)已知函数()2cos 1xf x x π=+,以下结论中错误的是()A .()f x 是偶函数B .()f x 有无数个零点C .()f x 的最小值为12-D .()f x 的最大值为12.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为()A .1个B .2个C .3个D .4个3.(2022·安徽·芜湖一中一模(理))声音是由物体振动产生的声波,我们听到的声音中包含着正弦函数.若某声音对应的函数可近似为1()sin sin 22f x x x =+,则下列叙述正确的是()A .2x π=为()f x 的对称轴B .3,02π⎛⎫⎪⎝⎭为()f x 的对称中心C .()f x 在区间[]0,10上有3个零点D .()f x 在区间57,33ππ⎡⎤⎢⎥⎣⎦上单调递增4.(2022·全国·高三专题练习)已知函数,则函数()||y f x x =-零点个数为()A .0B .1C .2D .3二、多选题5.(2022·海南海口·模拟预测)已知函数()1x f x x+=,则()A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在()0,+∞上单调递减D .()f x 有两个零点6.(2022·全国·高三专题练习)已知函数()(sin cos )sin cos f x x x x x =+⋅-,下列说法正确的是().A .()f x 是周期函数B .若12()()2f x f x +=,则122k x x π+=(k Z ∈)C .()f x 在区间[,]22ππ-上是增函数D .函数()()1g x f x =+在区间[0,2]π上有且仅有一个零点7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是()A .22x x +B .1x +C .cos xe D .ln(||1)x +8.(2022·全国·高三专题练习(理))关于函数()sin |||cos |f x x x =+有下述四个结论,则()A .()f x 是偶函数B .()f x 的最小值为1-C .()f x 在[2,2]ππ-上有4个零点D .()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增三、填空题9.(2022·福建·模拟预测)已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.10.(2022·河南·襄城县教育体育局教学研究室二模(文))已知函数()23,0,1,01x x m x f x mx x x ⎧++≤⎪=⎨+->⎪+⎩有3个零点,则实数m 的取值范围为______.四、解答题11.(2022·全国·模拟预测(文))已知函数()()2e xf x ax x a =-+.(1)讨论()f x 的单调性;(2)当102a <<时,证明()f x 在R 上有且仅有两个零点.12.(2022·四川省高县中学校模拟预测(文))已知函数()()3211132f x ax a x =+-.(1)当3a =时,判定()f x 的零点的个数;(2)是否存在实数a ,使得当(),2x ∈-∞时,()0f x ≤恒成立?若存在,求出a 的取值范围;若不存在,请说明理由.题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩,则下列关于函数()f x 的描述中,其中正确的是().①当0a =时,函数()f x 没有零点;②当02a <<时,函数()f x 有两不同零点,它们互为倒数;③当2a =时,函数()f x 有两个不同零点;④当2a >时,函数()f x 有四个不同零点,且这四个零点之积为1.A .①②B .②③C .②④D .③④2.(2022·河南安阳·模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足()A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =3.(2022·安徽·模拟预测(文))已知函数()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩,若()()g x f x a =-有4个零点,则实数a的取值范围是()A .()0,1B .(]0,1C .[]0,1D .[)1,+∞4.(2022·河南河南·三模(理))函数()112e e 1x xf x x --=---的所有零点之和为()A .0B .2C .4D .6二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是()A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k ∈N ;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;6.(2022·江苏·南京市宁海中学模拟预测)已知()f x 是定义在R 上的偶函数,且对任意x ∈R ,有()()11f x f x -=-+,当[]0,1x ∈时,()22f x x x =+-,则()A .()f x 是以2为周期的周期函数B .点()3,0-是函数()f x 的一个对称中心C .()()202120222f f +=-D .函数()()2log 1y f x x =-+有3个零点三、填空题7.(2022·四川·成都七中三模(文))已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.8.(2022·内蒙古呼和浩特·一模(理))下面四个命题:①已知函数()f x 的定义域为R ,若()2f x +为偶函数,()21f x +为奇函数,则()30f =;②存在负数k ,使得()lg 2f x x kx =--恰有3个零点;③已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则15a =;④设一组样本数据12,,,n x x x 的方差为0.01,则数据1210,10,,10n x x x 的方差为0.1其中真命题的序号为___________.9.(2022·四川成都·二模(文))定义在R 上的奇函数f (x )满足()()2f x f x =-,且当[]0,1x ∈时,()2f x x =.则函数()()27x g x f x -=-的所有零点之和为______.10.(2022·全国·高三专题练习)已知()lg 2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点;(2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点.以上正确结论的序号是__.四、解答题11.(2022·北京·高三学业考试)给定集合(,0)(0,)D =-∞+∞ ,()f x 为定义在D 上的函数,当0x <时,24()4xf x x =+,且对任意x D ∈,都有___________.从条件①、条件②、条件③这三个条件中选择一个作为已知,补充在横线处,使()f x 存在且唯一确定.条件①:()()1f x f x -+=;条件②:()()1f x f x -⋅=;条件③:()()1f x f x --=.解答下列问题:(1)写出(1)f -和(1)f 的值;(2)写出()f x 在(0,)+∞上的单调区间;(3)设()()()g x f x m m =-∈R ,写出()g x 的零点个数.12.(2021·河北·高三阶段练习)已知函数()()23cos sin 022πf x ωx ωx ωx ω⎛⎫=-++> ⎪⎝⎭的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)若先将函数()f x 图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将其图像向左平移6π个单位长度,得到函数()g x 的图像,求方程()lg 10g x x --=在()0,∞+上根的个数.13.(2021·辽宁·高三阶段练习)已知函数21()cos cos (0)22f x x x x πωωωω⎛⎫=++-> ⎪⎝⎭的最小正周期为π.(I )求函数()f x 的解析式;(II )若先将函数()f x 的图象向左平移12π个单位长度,再将其图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()g x 的图象,求()|lg |y g x x =-在(0,)+∞上的零点个数.题型四:转化法判断函数零点个数一、单选题1.(2022·安徽·巢湖市第一中学高三期中(文))已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为()A .3B .4C .5D .62.(2022·全国·()()1,1ln 1,1x x f x x x -+≤⎧=⎨->⎩,则函数()()2g x f f x ⎡⎤⎣⎦=-的零点个数为()A .3B .4C .2D .13.(2021·天津市实验中学滨海学校高三期中)已知函数1,0,()ln(),0,x x f x x x x ⎧+>⎪=⎨⎪-<⎩则函数2()()y f x mf x m =-+的零点个数不可能是()A .1B .2C .3D .44.(2021·辽宁沈阳·高三阶段练习)对于任意正实数,,m n p ,关于x 的方程2112x xpmx mx n e e ---+=+的解集不可能是()A .{}1B .{}0,2C .{}0,1,2D .∅二、多选题5.(2022·江苏无锡·高三期末)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是()A .函数()f x 是R 上的单调递增函数B .函数2()()3g x f x x =-有2个零点C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+6.(2022·全国·高三专题练习)定义域和值域均为[],a a -(常数0a >)的函数()y f x =和()yg x =图象如图所示,给出下列四个命题,那么,其中正确命题是()A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有九个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解三、填空题7.(2022·全国·高三专题练习)已知()f x 是定义在R 上的奇函数,当0x ≥时,()f x =24x x -,则方程()2f x x =-解的个数为___________.8.(2021·全国·模拟预测)已知函数()21,0,ln ,0,x x f x x x ⎧-≤=⎨>⎩若直线y kx =与函数()f x 的图象交于A ,B 两点,且满足OA OB =,其中O 为坐标原点,则k 值的个数为___________.四、解答题9.(2021·全国·高三专题练习)证明:函数()()3log 1f x x =+的图象与()2log g x x =的图象有且仅有一个公共点.10.(2020·安徽·淮南市第五中学高三阶段练习(理))已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-(1)求(1)f ,(2)f -的值;(2)求()f x 的解析式并画出函数的简图;(3)讨论方程()f x k =的根的情况.题型五:零点存在定理与函数性质结合判断零点个数一、单选题1.(2022·广东韶关·二模)已知直线0l y kx k =>:()既是函数()21f x x =+的图象的切线,同时也是函数()()ln 1pxg x x p R x =+∈+的图象的切线,则函数()g x 零点个数为()A .0B .1C .0或1D .1或22.(2022·天津·高三专题练习)设函数()lg ,0sin ,04x x x f x x x πωπ+>⎧⎪=⎨⎛⎫+-≤≤ ⎪⎪⎝⎭⎩有5个不同的零点,则正实数ω的取值范围为()A .1317,44⎡⎫⎪⎢⎣⎭B .13,4⎛⎫+∞ ⎪⎝⎭C .17,4⎛⎤-∞ ⎥⎝⎦D .1319,44⎡⎤⎢⎥⎣⎦3.(2022·全国·高三专题练习(理))已知函数()()2e 2e x xf x a a x =+--有两个零点,则a 的取值范围为()A .()1,0-B .()0,1C.(D .()1,e 二、多选题4.(2021·江苏·泰州中学高三阶段练习)已知函数f (x )=sin(|cos x |)+cos(|sin x |),则以下结论正确的是()A .f (x )的图象关于直线2x π=对称B .f (x )是最小正周期为2π的偶函数C .f (x )在区间(0,2π上单调递减D .方程1()2f x x =恰有三个不相等的实数根5.(2021·湖北恩施·高三开学考试)已知函数()12cos f x x x x =+-,则以下说法正确的是()A .()f x 是偶函数B .()f x 在(0,)+∞上单调递增C .当0x ≤时,()1f x ≤-D .方程()0f x =有且只有两个实根6.(2022·全国·高三专题练习)函数()()()2210log 0xx f x x x ⎧-≤⎪=⎨>⎪⎩,则下列说法正确的有()A .函数()f x 是R 上的单调递增函数B .对于任意实数a ,不等式()()21f a f a +≥-恒成立C .若12x x ≠,且()()12f x f x =,则120x x +<D .方程()()0f x f x --=有3个不相等实数解三、解答题7.(2022·江西南昌·二模(文))已知函数()()2110,2xf x e ax x x a --->=∈R .(1)当0a =时,求函数()f x 的单调区间;(2)若1a >,证明:方程()0f x =有且仅有一个正根.8.(2022·河北·模拟预测)已知函数()12f x x=.(1)请研究函数()()sin g x f x x =-在[)(]2π,00,2πx ∈-⋃上的零点个数并证明;(2)当0x >时,证明:()()112e xf x f x ++>⎡⎤⎡⎤⎣⎦⎣⎦.9.(2022·全国·高三专题练习)设a 为实数,函数2()()||(1)f x x a x a a a =-+---.(1)若(0)1f,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a >时,讨论()||f x x +在R 上的零点个数.10.(2022·全国·高三专题练习)已知函数()sin e xf x x ax =++.(1)若0a =,求函数()f x 在,22ππ⎛⎫- ⎪⎝⎭上的零点个数;(2)当[)0,x ∈+∞时都有()1f x ≥,求实数a 的取值范围.题型六:利用函数零点(方程有根)求参数值或参数范围一、单选题1.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .22.(2022·湖南岳阳·三模)已知函数2()lg ()6a f x x x x =+-,若不等式()0f x >有且仅有2个整数解,则实数a 的取值范围是()A .(lg3,lg 2)--B .(lg3,lg 2]--C .(lg 2,lg3)D .[lg 2,lg3)3.(2022·山西·模拟预测(文))已知函数()24,1,ln 1,1,x x a x f x x x ⎧++<=⎨+≥⎩若函数()2y f x =-有三个零点,则实数a 的取值范围是()A .(,2)-∞B .()3,4-C .(3,6)-D .(3,)-+∞二、多选题4.(2021·辽宁·东北育才学校二模)一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1(,0]4m ∈-D .二次函数()212f x x x =-+存在“3倍跟随区间”三、填空题5.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.6.(2022·四川·石室中学三模(文))若函数()()()221f x x xax b =-++的图象关于直线2x =对称,且直线y k=与函数()f x 的图象有三个不同的公共点,则实数k 的值为______.四、解答题7.(2021·辽宁·东北育才学校二模)已知二次函数()y f x =满足以下条件:①经过原点(0,0);②R x ∀∈,()(2)f x f x =-;③函数()1y f x =+只有一个零点(1)求二次函数()y f x =的解析式;(2)若函数()||||e 12()e 1x x f g x -+=-与()||()2e 142x h x t t =⋅-+-的图象有两个公共点,求实数t 的取值范围.题型七:利用函数的交点(交点个数)求参数一、单选题1.(2022·河南安阳·模拟预测(理))已知函数()1,0,ln ,0,x a x f x x x ⎧+≤⎪=⎨>⎪⎩(0a >且1a ≠),若函数()()y f f x a=-的零点有5个,则实数a 的取值范围为()A .2a =B .ln 21a ≤<或12a <<C .0ln 2a <≤或12a <<或2a =D .ln 21a ≤<或2a =2.(2022·山东济宁·二模)已知函数(),0ln ,0x x f x a x x ≤⎧=⎨>⎩,若函数()()()g x f x f x =--有5个零点,则实数a 的取值范围是()A .()e,0-B .1,0e ⎛⎫- ⎪⎝⎭C .(),e -∞-D .1,e⎛⎫-∞- ⎪⎝⎭3.(2022·全国·模拟预测(理))已知函数()1f x +的图象关于直线1x =-对称,对x ∀∈R ,都有()()31f x f x -=+恒成立,当[]0,2x ∈时,()212f x x =,当0k >时,若函数()f x 的图象和直线()4y k x =+有5个交点,则k 的取值范围为()A .12,33⎛⎫ ⎪⎝⎭B .11,52⎛⎫ ⎪⎝⎭C .11,53⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭二、多选题4.(2022·福建莆田·三模)已知函数231,1()41613,1x x f x x x x ⎧-<⎪=⎨-+-≥⎪⎩,函数()()g x f x a =-,则下列结论正确的是()A .若()g x 有3个不同的零点,则a 的取值范围是[1,2)B .若()g x 有4个不同的零点,则a 的取值范围是()0,1C .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则344x x +=D .若()g x 有4个不同的零点()12341234,,,x x x x x x x x <<<,则34x x 的取值范围是137,42⎛⎫⎪⎝⎭5.(2022·辽宁鞍山·二模)已知函数()()22log ,(02)813,2x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩,若()f x a =有四个不同的实数解1x ,2x ,3x ,4x ,且满足1234x x x x <<<,则下列命题正确的是()A .01a <<B .12922,2x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣三、填空题6.(2022·贵州毕节·三模(文))已知函数()()1sin 02f x x x ωωω=>在[]0,2π有且仅有3个零点,则ω的取值范围为__________.7.(2022·福建宁德·模拟预测)已知()f x 是定义在R 上的偶函数,当0x ≥时,()()22e 24x f x x a a =-+-.若()f x 的图象与x 轴恰有三个交点,则实数a 的值为___________.8.(2022·全国·三模(理))已知()f x 是定义在R 上的奇函数,且()1f x +是偶函数,当01x ≤≤时,()()2log 1f x x =-+.设()()()g x f x f x =+,若关于x 的方程()20g x mx --=有5个不同的实根,则实数m 的取值范围是__________.9.(2022·新疆昌吉·二模(文))已知函数()()216249,111,19x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩,若关于x 的方程()()f x m m R =∈有三个不同的实根,则m 的取值范围为______.四、解答题10.(2022·北京密云·高三期中)已知函数2()ln(21)f x x x ax =+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当0a <时,求证:函数()f x 存在极小值;(3)请直接写出函数()f x 的零点个数.。
【全国百强校版】海南省(海南中学、文昌中学、海口市第一中学、农垦中学)等八校2019-2020学年高一下物理期末模拟试卷一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得3分,有选错的或不答的得0分)1、如图所示,手沿水平方向将书压在竖直墙壁上,使其保持静止.现增大手对书的压力,则书( )A.受到的静摩擦力不变B.受到的静摩擦力增大C.对墙壁的压力不变D.受到的合外力增大2、地球的两颗人造卫星A和B,它们的轨道近似为圆。
已知A的周期约为12小时,B的周期约为16小时,则两颗卫星相比()A.A距地球表面较远B.A的角速度较小C.A的线速度较小D.A的向心加速度较大3、下列关于同步卫星的说法正确的是()A.它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小B.它的周期、高度、速度的大小都是一定的C.我国发射的同步通讯卫星定点在北京上空D.不同的同步卫星所受的向心力相同4、关于经典力学,下列说法错误的是A.由于相对论、量子力学的提出,经典力学已经被完全否定B.经典力学可看作相对论、量子力学在一定条件下的特殊情形C.经典力学在宏观物体、低速运动、引力不太大时适用D.经典力学对高速运动的微观粒子不适用5、已知河水的流速保持不变,小船在静水中的速度恒定且大于河水的流速。
如图所示,为使小船由河岸O点沿虚线垂直河岸航行,船头的指向可能为图中的A.①方向B.②方向C.③方向D.④方向6、关于匀速圆周运动的说法正确的是()A.匀速圆周运动一定是匀速运动B.匀速圆周运动是变加速运动C.匀速圆周运动是匀加速运动D.做匀速圆周运动的物体所受的合外力可能为恒力7、起重机是指在一定范围内垂直提升和水平搬运重物的多动作起重机械。
一起重机的钢绳由静止开始匀加速提起质量为m的重物,当重物的速度为v1时,起重机的功率达到额定功率P,以后起重机保持该功率不变,继续提升重物,直到以最大速度v2匀速上升为止。
海口市第一中学2024届高三第二次模拟考试语文试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
1、在下面一段话的空缺处依次填入词语,最恰当的一组是 ( )苏轼,被余秋雨称为的天才,集文学才能与政治才能于一身的天才。
自古以来,文学才能与政治才能似乎是的一对死敌,然而这两者在苏轼身上却得到了最完美的统一,今日西湖的苏堤仍旧着一千多年前这个天才的赫赫政绩。
然而卓越的政治才能并不代表会玩弄肮脏的政治手腕,苏轼的一生命途多舛,与他正直的个性是分不开的。
改革也好,保守也罢,无论当时哪派势力得宠,苏轼都只有一个宗旨:站在良心那边说话!A.千年一遇誓不两立显示B.千载难逢势不两立显示C.千年一遇势不两立昭示D.千载难逢誓不两立昭示2、下列各句没有语病的一句是()A.光纤宽带的普及,不仅方便了普通大众生活,还为小微企业降低网络成本和稳固的高速网络基础,激发了社会创业创新热情,为经济发展提供了新动能。
B.经过两天的紧张工作,长征七号运载火箭所有部件16日下午安全运抵海南文昌航天发射场。
我国新建成的航天发射场发射任务首次进入全面实施阶段。
C.敦煌研究院通过官方微信首次披露了一批涉及古代敦煌端午节民俗壁画及古文献,端午民俗不仅活动丰富,且有文人雅趣伴随其中,十分优雅浪漫。
D.香港科学园区是香港高新科技以及应用科技的一个研发基地,从2001年开始启用,目前分为三期一共有600多家企业进驻,主要以创新科技企业为主。
3、阅读下面的材料,完成下列小题。
材料一据报道,2019年北京市共计有239家书店获得实体书店项目扶持,其中包括特色书店85家、最美书店10家、最具影响力书店2家,扶持资金共计近1亿元。
海南省海口市海南中学2023届高三二模数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.给出下列说法,其中正确的是( )A .若数据12,,n x x x L 的方差2s 为0,则此组数据的众数唯一B .已知一组数据3,4,7,9,10,11,11,13,则该组数据的第40百分位数为8三、填空题13.某校高三年级有女生520名,男生480名,若用分层随机抽样的方法从高三年级学生中抽取一个容量为200的样本,则男生应抽取___________名.14.甲、乙、丙、丁、戊5名学生进行某种劳动技能比赛,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”,从这个回答分析,5人的名次排列共可能有________种不同的情况.(用数字作答)15.已知函数()3ln f x x x =+的图像在点()()11,A f 处的切线为l ,若l 与函数()g x 的图像也相切,切点为()2,B m ,则()()22g g ¢+=___________.四、双空题16.已知数列{}na 满足()12335213n n a a a n a ++++-=L ,则3a =__________,若对任意的N n *Î,()1n na l ³-恒成立,则l 的取值范围为_____________.才计划”的具体情况如下表(不存在通过3项程序考核放弃签约的情况):【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算D ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.。
2016届高三年级第七次语文质量检测第Ⅰ卷阅读题甲必考题一、现代文阅读阅读下面这段文字,回答下列小题。
中国文艺评论史上有一种非常独特的评论样式——‚评点‛。
‚评点‛始于唐,兴于宋,成于明。
金圣叹评点《水浒传》、李卓吾评点《西游记》、张竹坡评点《金瓶梅》、脂砚斋评点《红楼梦》等等,都是‚评点体‛文艺评论的代表作品。
综合、直观、凝练,是‚评点体‛的主要特征。
无论是金圣叹评水浒,还是脂砚斋评红楼,时而把目光聚焦于作品本身,剖析其艺术特色,时而论及作者及其所处的时代,揭示作品背后的社会文化环境,所使用的语言自成特色,三言两语、简短犀利、睿智幽默,常令人掩卷深思或会心一笑。
而且,‚评点体‛紧贴文本展开,既是对原作的再创造又和原作融为一体,为作品经典化做出了重要贡献。
这些‚评点‛既提升阅读快感,又促进对作品的理解,具有独特的价值。
不过,传统意义上的‚评点‛其外在形态是用笔写下的语句,必须依存于以文字为载体的原作。
随着历史进入近现代,视听艺术蓬勃发展,‚评点‛也似乎已失去了用武之地。
现在,‚弹幕‛又来了,评论者对作品的评点可以借助网络工具,以字幕的形式如子弹般密集、快速地呈现在屏幕上,这也是‚弹幕‛得名的由来。
于是,评论的互动性和即时性进一步增强,评论和作品文本的融合度也进一步提高,对此,舆论反应喜忧参半。
喜的是‚弹幕‛的出现,提高了欣赏者和消费者在艺术中的主体性;忧的是不受控制以及低水平的‚吐槽‛,破坏了作品本身的美惑以及艺术欣赏的完整性。
‚弹幕‛是从互联网的母体中诞生的,弹幕时代的‚金圣叹‛同样也将在互联网中孕育。
作为互联网时代的‚金圣叹‛,有的时候,他们一条微博,寥寥一百四十字,就能对文艺创作者和欣赏者产生巨大的影响。
此外,不少弹幕时代的‚金圣叹‛还承担着‚文化搬运工‛的使命,把学院派、理论化的文艺评论转化为大众愿意听、听得懂的格言警句,让评论者与创作者的对话更加直接,评论者对欣赏者的引导更加有效,进而使评论以前所未有的深度介入到文艺创作生产、欣赏消费、传播反馈的全链条之中。
海口市一中2020届高三年级9月月考数学(B )卷试题一、选择题(本大题共12小题,共60分)1. 设集合{}lg(3)A x y x ==-,{}2,xB y y x R ==∈ ,则A ∪B 等于( ) A. {}0x x >B. RC. {}1x x >D.{}3x x >【答案】A 【解析】 【分析】由题可知集合A 是对数函数的定义域,集合B 是指数函数值域,分别求出两集合再求并集即可.【详解】解:因为{}{}lg(3)=3A x y x x x ==->,{}{}2,=0xB y y x R y y ==∈>, 所以 {}0A B x x ⋃=>, 故选:A【点睛】此题考查了对数函数、指数函数、集合的并集运算,属于基础题. 2. 在复平面内,复数11i-的共轭复数对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D 【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:11111(1)(1)22i i i i i +==+--+的共轭复数为1122i - 对应点为11(,)22-,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分. 3. 函数6()22x xxf x -=+的图像大致是( )A. B.C. D.【答案】C 【解析】 【分析】根据函数特点,判断奇偶性,再通过函数在0x >时的函数值,进行判断,得到答案. 【详解】()622x xxf x -=+定义域为R ,()()622x x x f x f x ---==-+,且()00f = 所以()f x 为R 上的奇函数,A 、B 排除.当0x >时,()f x 分子、分母都为正数,故()0f x >,排除D 项. 故选C 项.【点睛】本题考查函数的图像与性质,通过排除法进行解题,属于简单题. 4. 已知132a -=,21log 3b =,121log 3c =,则( ). A. a b c >>B. a c b >>C. c a b >>D.c b a >>【答案】C 【解析】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C . 考点:比较大小5. 下表中提供了某厂节能降耗技术改造后生产A 产品过程记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ0.70.35yx =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.5【答案】A 【解析】 【分析】由表中数据求出,x y ,代入线性回归方程即得. 【详解】因为线性回归直线过样本中心点(),x y , 由表中数据求得3456 2.54 4.5114.5,444t tx y +++++++====, 代入线性回归方程得110.7 4.50.35,34tt +=⨯+∴=. 故选:A .【点睛】本题考查线性回归方程,属于基础题.6. ()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A. 15 B. 20 C. 30 D. 35【答案】C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数.【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.7. 若直线22(0,0)mx ny m n -=->>被圆222410x y x y ++-+=截得弦长为4,则41m n+的最小值是( ) A. 9 B. 4 C.12D.14【答案】A 【解析】 【分析】圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得,m n 满足的关系,用“1”的代换结合基本不等式求得41m n+的最小值. 【详解】圆标准方程为22(1)(2)4x y ++-=,圆心为(1,2)C -,半径为2r ,直线被圆截得弦长为4,则圆心在直线上,∴222m n --=-,1m n +=, 又0,0m n >>,∴41414()()5n m m n m n m n m n +=++=++59≥+=,当且仅当4n m m n =,即21,33m n ==时等号成立.∴41m n+的最小值是9. 故选A .【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得,m n 的关系1m n +=,然后用“1”的代换法把41m n+凑配出可用基本不等式的形式,从而可求得最值. 8. ()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则3()2f -的值为( )A. 32- B. 3 C.32D. 0【答案】D 【解析】 【分析】根据()f x 是定义在R 上的奇函数,可得(0)0f =,在3()()2f x f x +=-中令32x =-即可得到3()2f -得值.【详解】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-对任意x ∈R 都成立, 当0x =时,有(0)0f =,又因为对任意x ∈R 总有3()()2f x f x +=-,所以333()()222f f -+=--, 所以3()(0)02f f -=-=. 故选:D.【点睛】本题考查了奇函数的性质,属于基础题.9. 如图,已知OAB ∆,若点C 满足()2,,AC CB OC OA OB R λμλμ==+∈,则11λμ+=( )A.13B.23C.29D.92【答案】D 【解析】 【分析】把2AC CB =转为1233OC OA OB =+,故可得,λμ的值后可计算11λμ+的值.【详解】因为2AC CB =,所以()2OC OA OB OC -=-,整理得到1233OC OA OB =+,所以12,33λμ==,1192λμ+=,选D.【点睛】一般地,O 为直线l 外一点,若,,A B C 为直线l 上的三个不同的点,那么存在实数λ满足()1OC OA OB λλ=+-;反之,若平面上四个不同的点满足()1OC OA OB λλ=+-,则,,A B C 三点共线.10. 半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( ) A. 5:6π B. 6:2πC. :2πD. 5:12π【答案】B 【解析】 【分析】作出过正方体的对角面的截面,设球的半径为R ,正方体的棱长为a ,在直角C CO '∆中,由勾股定理,得222CC OC OC ''+=,求得球的半径6R a =,利用体积公式,即可求解. 【详解】作出过正方体的对角面的截面,如图所示, 设球的半径为R ,正方体的棱长为a ,那么2,2a CC a OC '==, 在直角C CO '∆中,由勾股定理,得222CC OC OC ''+=, 即2222()2a a R +=,解得62R a =, 所以半球的体积为333114266()23322V R a a πππ=⨯=⨯=, 正方体的体积为32V a =,所以半球与正方体的体积比为336:6:22a a ππ=,故选B.【点睛】本题主要考查了球的内接组合体的性质,以及球的体积与正方体的体积的计算,其中解答中正确认识组合体的结构特征,作出过正方体的对角面的截面,利用勾股定理求得球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.11. 已知双曲线22221(0,0)x y a b a b-=>>的焦距为的实轴长为( ) A. 2 B. 4C. 6D. 8【答案】B 【解析】【详解】因为双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,因为两条渐近线互相垂直,所以21b a ⎛⎫-=- ⎪⎝⎭,得a b =因为双曲线焦距为c =由222c a b =+可知228a =,所以2a =,所以实轴长为24a =. 故选B 项.【点睛】本题考查双曲线的渐近线,实轴长等几何特性,属于简单题.12. 已知函数()f x 的定义域为()0,∞+,且满足()()0f x xf x '+>(()f x '是()f x 的导函数),则不等式()()()2111x f x f x --<+的解集为( )A. (),2-∞B. ()1,+∞C. ()1,2-D. ()1,2【答案】D 【解析】 【分析】构造函数()()g x xf x =,利用导数分析函数()y g x =在()0,∞+上的单调性,在不等式()()()2111x f x f x --<+两边同时乘以1x +化为()()()()221111x f x x f x --<++,即()()211g x g x -<+,然后利用函数()y g x =在()0,∞+上的单调性进行求解即可.【详解】构造函数()()g x xf x =,其中0x >,则()()()0g x f x xf x ''=+>, 所以,函数()y g x =在定义域()0,∞+上为增函数,在不等式()()()2111x f x f x --<+两边同时乘以1x +得()()()()221111xf x x f x --<++,即()()211g x g x -<+,所以22111010x x x x ⎧-<+⎪->⎨⎪+>⎩,解得12x <<,因此,不等式()()()2111x f x f x --<+的解集为()1,2,故选D.【点睛】本题考查利用构造新函数求解函数不等式问题,其解法步骤如下: (1)根据导数不等式的结构构造新函数()y g x =;(2)利用导数分析函数()y g x =的单调性,必要时分析该函数的奇偶性; (3)将不等式变形为()()12g x g x <,利用函数()y g x =的单调性与奇偶性求解. 二、填空题(本大题共4小题,共20分)13. 在4个不同的红球和3个不同的白球中,随机取3个球,则既有红球又有白球的概率为__________. 【答案】67【解析】 【分析】从7个球里取3个球,共有 3735C =种可能的情况,要求既有红球又有白球,可以从反面考虑,即全是红球和全是白球的情况,然后用总数减去这两种情况就是符合要求的,然后再由古典概型公式,得到概率.【详解】从7个球里取3个球,共有 3735C =种可能的情况,全是红球的情况有344C =,全是白球的情况有331C =,将这两种情况去掉,就是符合要求的情况,即既有红球又有白球的情况,所以概率为33374337306357C C C C --== 【点睛】本题考查古典概型中从反面考虑的情况,属于简单题. 14. 设函数()sin(2)f x x ϕ=+()2πϕ<向左平移3π个单位长度后得到的函数是一个奇函数,则ϕ=__________. 【答案】3π 【解析】把函数()()22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移3π个单位长度后,可得223y sin x πϕ⎛⎫=++ ⎪⎝⎭的图象,结合得到的函数为一个奇函数,则2,3k k Z ϕππ+=∈,因为2πϕ<,令0k = 可得3πϕ=,故答案为3π. 【方法点睛】本题主要考查三角函数的奇偶性和图象的变换,属于中档题.已知()()sin f x A x ωφ=+的奇偶性求φ时,往往结合正弦函数及余弦函数的奇偶性和诱导公式来解答:(1),k k z φπ=∈时,()f x sin A x ω=±是奇函数;(2),2k k z πφπ=+∈ 时,()f x cos A x ω=±是偶函数.15. 已知函数26()log f x x x=-的零点的区间是()()1,k k k Z -∈,则k 的值为__________. 【答案】4 【解析】 【分析】由导数得出函数()f x 的单调性,结合零点存在性定理,即可得出k 的值. 【详解】函数26()log f x x x=-的定义域为(0,)+∞ 261()0ln 2f x x x '=--< 则函数()f x 在(0,)+∞上单调递减22224346(3)log log log log 3033f =-=-=>,261(4)log 4042f =-=-< (3)(4)0f f ∴<由零点存在性定理可知,函数26()log f x x x=-在区间(3,4)必有1个零点,则4k = 故答案为:4【点睛】本题主要考查了由零点所在区间求参数的值,属于中档题.16. 已知{}n a 是公差不为零的等差数列,同时9a ,1a ,5a 成等比数列,且159320a a a ++=,则13a =______ . 【答案】28 【解析】 【分析】设等差数列{}n a 的公差为d ,根据等比数列的性质以及等差数列的通项公式求出首项和公差,再根据通项公式可求得结果.【详解】设等差数列{}n a 的公差为d ,则0d ≠,因为9a ,1a ,5a 成等比数列,所以2195a a a =⋅,所以2111(8)(4)a a d a d =++,根据0d ≠,化简得1380a d +=,又由159320a a a ++=,得111312820a a d a d ++++=,即144a d +=, 联立1380a d +=与144a d +=,解得18a =-,3d =, 所以1311283628a a d =+=-+=. 故答案为:28.【点睛】本题考查了等比数列的性质,考查了等差数列通项公式的基本量的计算,属于基础题.三、解答题(本大题共6小题,共70分)17. 设数列{}n a 的前n 项和为n S ,11a =,满足()12,n n n a S S S +=-,()2,b n =,//a b . (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等比数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)证明见解析;(2)()121nn T n =-+. 【解析】 【分析】(1)先由//a b ,结合题意得到()122n n n n S S S +∴-=,化简整理,结合等比数列的定义,即可证明结论成立;(2)先由(1)求出12-=⨯n n S n ,再由错位相减法,即可求出结果.【详解】()1证明()()12,,2,,//,+=-=n n n a S S S b n a b()122n n n n S S S +∴-=,121n n S Sn n+∴=⨯+, 11a ∴=,111S=,∴数列Sn n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公比的等比数列;()2解:由()1可知,12n n S n -∴=⨯,0121122232...2n n T n -∴=⨯+⨯+⨯++⨯,()12121222...122n n n T n n -∴=⨯+⨯++-⨯+⨯,由错位相减得()()121112122 (222)21212112n n n nn n n n T n n n n ---=++++-⨯=-⨯=--⨯=---,()121n n T n ∴=-+.【点睛】本题主要考查等比数列的证明以及数列的求和问题,熟记等比数列的概念,以及错位相减法求和即可,属于常考题型.18. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3bsinA -acosB . (1)求B ;(2)若b =2,△ABC 的面积为3,求a ,c . 【答案】(1);(2).【解析】 试题分析:(1)由及正弦定理得,因为,可以得出的关系式,进而求出角;(2)根据三角形面积公式得,又根据余弦定理得出,从而得出.试题解析:(1)由及正弦定理得,因为,得,因为为三角形内角,故. (2)三角形的面积,故.而,故.解得.考点:1、正、余弦定理;2、三角形面积公式.19. 如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.【答案】(1)见解析;(2)3【解析】【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A ⎛⎫ ⎪ ⎪⎝⎭,20,0,2P ⎛⎫ ⎪ ⎪⎝⎭,22B ⎛⎫ ⎪ ⎪⎝⎭,2,1,02C ⎛⎫- ⎪ ⎪⎝⎭. 所以22PC ⎛=- ⎝⎭,()2,0,0CB =,22PA ⎛= ⎝⎭,()0,1,0AB =.设(),,n x y z =是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩即220,20,x y z x ⎧+-=⎪⎨⎪=⎩可取(0,1,2n =--.设(),,m x y z =是平面PAB 的法向量,则0,0,m PA m AB ⎧⋅=⎨⋅=⎩即220,220.x z y -=⎨⎪=⎩可取()1,0,1m =. 则3cos ,n m n m n m ⋅==-, 所以二面角A PB C --的余弦值为3-【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.20. 某高中社团进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:完成以下问题:(Ⅰ)补全频率分布直方图并求n ,a ,p 的值;(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X ,求X 的分布列和期望E (X )..【答案】(1)直方图见解析,1000,0.65,60n p a ===(2)分布列见解析,()2E x = 【解析】 【分析】试题分析:(Ⅰ)根据所求矩形的面积和为1求出第二组的频率,然后求出高,画出频率直方图,求出第一组的人数和频率从而求出n ,由题可知,第二组的频率以及人数,从而求出p 的值,然后求出第四组的频率和人数从而求出a的值;(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值为2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,机变量X服从超几何分布,X的取值可能为0,1,2,3,分别求出相应的概率,列出分布列,根据数学期望公式求出期望即可.试题解析:解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为.频率直方图如下:第一组的人数为,频率为0.04×5=0.2,所以.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.,,,.所以随机变量X分布列为X 0 1 2 3P∴数学期望(或者 ).点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值 【详解】21. 已知函数()ln f x x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求()f x 的单调区间;(3)若对于任意1,x e e ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-,求实数a 的取值范围. 【答案】(1)1y x =-(2)()f x 的单调递增区间是1,e ⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫ ⎪⎝⎭(3)1a e ≥-. 【解析】 【分析】(1)先求得导函数,由导数的几何意义求得切线的斜率,再求得切点坐标,即可由点斜式得切线方程;(2)求得导函数,并令()0f x '=求得极值点,结合导函数的符号即可判断函数单调区间;(3)将不等式变形,并分离参数后构造函数()1ln g x x x=+,求得()g x '并令()0g x '=求得极值点,结合极值点左右两侧的单调性和端点求得最值,即可确定a 的取值范围.【详解】(1)因为函数()ln f x x x =, 所以()1ln ln 1f x x x x x'=+⋅=+,()1ln111f '=+=.又因为()10f =,则切点坐标为()1,0,所以曲线()y f x =在点()1,0处的切线方程为1y x =-. (2)函数()ln f x x x =定义域为()0,∞+, 由(1)可知,()ln 1f x x '=+. 令()0f x '=解得1=x e.()f x 与()f x '在区间()0,∞+上的情况如下:所以,()f x 的单调递增区间是1,e ⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫⎪⎝⎭.(3)当1x e e≤≤时,“()1f x ax ≤-”等价于“1ln a x x ≥+”.令()1ln g x x x =+,1,x e e ⎡⎤∈⎢⎥⎣⎦,()22111x g x x x x -'=-=,1,x e e ⎡⎤∈⎢⎥⎣⎦. 令()0g x '=解得1x =,当1,1x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在区间1,1e ⎛⎫ ⎪⎝⎭单调递减. 当()1,x e ∈时,()0g x '>,所以()g x 在区间()1,e 单调递增. 而1ln 1 1.5g e e e e ⎛⎫=+=-> ⎪⎝⎭,()11ln 1 1.5g e e e e=+=+<.所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为11g e e ⎛⎫=- ⎪⎝⎭.所以当1a e ≥-时,对于任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-.【点睛】本题考查了导数的几何意义,切线方程的求法,由导函数求函数的单调区间,分离参数法并构造函数研究参数的取值范围,由导数求函数在闭区间上的最值,属于中档题.22. 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率是3,一个顶点是(0,1)B .(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,Q 是椭圆C 上异于点B 的任意两点,且BP BQ ⊥.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.【答案】(Ⅰ)2214x y +=(Ⅱ)直线PQ 恒过定点3(0,)5-【解析】试题分析:(Ⅰ)设椭圆C 的半焦距为c .求出b 利用离心率求出a ,即可求解椭圆C 的方程;(Ⅱ)证法一:直线PQ 的斜率存在,设其方程为y=kx+m .将直线PQ 的方程代入2214x y +=消去y ,设 P ()11,x y ,Q ()22,x y ,利用韦达定理,通过BP⊥BQ,化简求出25230m m --=,求出m ,即可得到直线PQ 恒过的定点.证法二:直线BP ,BQ 的斜率均存在,设直线BP 的方程为y=kx+1,将直线BP 的方程代入2214x y +=,消去y ,解得x ,设 P ()11,x y ,转化求出P的坐标,求出Q 坐标,求出直线PQ 的方程利用直线系方程求出定点坐标 试题解析:(Ⅰ)解:设椭圆C半焦距为c .依题意,得1b =,且 22222134c a e a a -===,解得 24a =.所以,椭圆C 的方程是2214x y +=.(Ⅱ)证法一:易知,直线PQ 的斜率存在,设其方程为y kx m =+. 将直线PQ 的方程代入2244x y +=,消去y ,整理得 222(14)8440k x kmx m +++-=.设 11(,)P x y ,22(,)Q x y ,则 122814km x x k +=-+,21224414m x x k -⋅=+.(1)因为 BP BQ ⊥,且直线,BP BQ 的斜率均存在,所以 1212111y y x x --⋅=-, 整理得 121212()10x x y y y y +-++=.(2) 因为 11y kx m =+,22y kx m =+,所以 1212()2y y k x x m +=++,22121212()y y k x x mk x x m =+++.(3)将(3)代入(2),整理得221212(1)(1)()(1)0k x x k m x x m ++-++-=.(4)将(1)代入(4),整理得 25230m m --=.解得 35m =-,或1m =(舍去). 所以,直线PQ 恒过定点3(0,)5-.证法二:直线,BP BQ 的斜率均存在,设直线BP 的方程为1y kx =+. 将直线BP 的方程代入2244x y +=,消去y ,得 22(14)80k x kx ++=解得 0x =,或2814kx k -=+.设 11(,)P x y ,所以12814k x k -=+,211214114k y kx k -=+=+,所以 222814(,)1414k k P k k --++.以1k -替换点P 坐标中的k ,可得 22284(,)44k k Q k k -++. 从而,直线PQ 的方程是 222222222148141488144144144k ky x k k k k k k kk k k --+++=-----++++.依题意,若直线PQ 过定点,则定点必定在y 轴上. 在上述方程中,令0x =,解得35y =-. 所以,直线PQ 恒过定点3(0,)5-. 考点:圆锥曲线的定值问题;椭圆的标准方程- 1 -。
2025届海南省海口市海南中学高三3月份模拟考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()()2sin 0f x x b ωϕω=++>,88f x f x ππ+=-()(),且58f π=(),则b =( ) A .3B .3或7C .5D .5或82.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( )A .12πB .32π C .2π D .3π3.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过134.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( )A .()1,11,12e e -⎛⎫-⎪⎝⎭ B .(]1,11,12e e -⎛⎫-⎪⎝⎭C .()1,11,13e e -⎛⎫- ⎪⎝⎭D .(]1,11,13e e -⎛⎫-⎪⎝⎭5.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .5006.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .7.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤8.设 2.71828...e ≈为自然对数的底数,函数()1xxf x e e -=--,若()1f a =,则()f a -=( )A .1-B .1C .3D .3-9.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F 且EF =22,则下列结论中错误的是( )A .AC ⊥BEB .EF //平面ABCDC .三棱锥A -BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值10.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( ) A .84B .54C .42D .1811.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .12.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .2二、填空题:本题共4小题,每小题5分,共20分。
专题7.2 等差数列及其前n 项和(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D2.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64 B .96C .128D .160【答案】C 【解析】 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C.3.(2020·全国·高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C 【解析】 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C4.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021.故选:C.5.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.6.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9B .10C .11D .12【答案】C 【解析】【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .7.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( ) A .9 B .8C .7D .6【答案】C 【解析】 【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得. 【详解】因为()9353m S a a a =++,又959S a =, 所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=,设等差数列{}n a 的公差为d ,则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠,所以18m +=, 所以7m =. 故选:C.8.(2023·全国·高三专题练习)等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有( )A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项 【答案】B 【解析】 【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ; 90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D. 【详解】对于选项A ,∵n S 有最大值,∴ 等差数列{}n a 一定有负数项, ∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确; 对于选项B ,∵6139100a a a a +=+=,且10a >, ∴90a >,100a <, ∴179=170S a >,910181802a a S +=⨯=, 则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <, 故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<, ∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确. 故选:B. 二、多选题9.(2023·全国·高三专题练习)已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC 【解析】 【分析】由91011S S S =<,得100,0d a >= ,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC10.(2022·江苏·南京市宁海中学模拟预测)定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有( )A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S = D .2S ,4S ,6S 成等差数列 【答案】ABC 【解析】【分析】由新定义可得112222n n n a a a n -++⋯+=⋅,利用该递推关系求出数列{}n a 的通项公式,然后逐一核对四个选项得答案. 【详解】 由已知可得112222n n nn a a a H n-+++==,所以112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确, 所以()32n n n S +=,所以32n S n n +=故2022202520222S =,故C 正确. 25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .11.(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d 【答案】ABD 【解析】 【分析】对于A ,利用对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD12.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 三、填空题13.(2019·全国·高考真题(理))记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 14.(2019·江苏·高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 15.(2021·福建省华安县第一中学高三期中)已知数列{}n a 的前n 项和为n S ,11a =,121n n a a n +=++(*n ∈N ),则99a 的值为________,99S 的值为________. 【答案】 99 4950 【解析】 【分析】利用数列的递推关系可知数列{}n a 的奇数项是首项为1,公差为2的等差数列,偶数项是首项为2,公差为2的等差数列,利用等差数列的通项公式和前n 项和公式即可求解. 【详解】将1n =代入121n n a a n +=++得2312a =-=, 由121n n a a n +=++①得123n n a a n +++=+2②, ②-①得22n n a a +-=,所以数列{}n a 的奇数项、偶数项都是以2为公差的等差数列,()991501299a =+-⨯=, ()()991359924698S a a a a a a a a =+++++++++ 5049494815022492495022⨯⨯=⨯+⨯+⨯+⨯=, 故答案为:99 ; 4950.16.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________. 【答案】232n n - 【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -. 四、解答题17.(2023·全国·高三专题练习)已知数列{}n a 中,11a =,当2n ≥时,11n n n n a a a a ---=⋅.求证:数列1{}na 是等差数列.【答案】证明见解析 【解析】 【分析】利用定义法证明出数列1{}na 是等差数列.【详解】当2n ≥时,11n n n n a a a a ---=⋅,因11a =,显然0n a ≠,否则10n a -=,由此可得10a =,矛盾, 两边同时除以1n n a a -⋅,得1111n n a a --=,而11a =1, 所以数列1{}na 是以1为首项,1为公差的等差数列.18.(2019·北京·高考真题(文))设{n a }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{na }的通项公式;(Ⅱ)记{na }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得{}n a 的通项公式;(Ⅱ)首先求得n S 的表达式,然后结合二次函数的性质可得其最小值. 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-.19.(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.20.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.【答案】(1)()12n n n a +=(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 21.(2022·安徽·合肥一中模拟预测(文))已知()f x =数列{}na 的前n 项和为n S ,点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈)且11a =,0n a >.(1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n T ,且满足212211683++=+--n nn n T Tn n a a ,确定1b 的值使得数列{}n b 是等差数列.【答案】(1)*N =∈n a n (2)1 【解析】 【分析】(1)根据点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),得到11+n a 212141+-=n n a a ,利用等差数列的定义求解; (2)由(1)化简得到114143+-=+-n n T Tn n ,利用等差数列的定义得到()()1431=-+-n T n T n ,再利用数列通项与前n 项和的关系求解. (1)解:因为()f x =11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),所以11+=n a 212141+-=n n a a ,所以21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,所以()2114143=+-=-n n n a,即*N =∈n a n ; (2)由(1)知:212211683++=+--n nn n T Tn n a a ,即为()()()()143414341+-=++-+n n n T n T n n ,整理得:114143+-=+-n n T Tn n , 所以数列43⎧⎫⎨⎬-⎩⎭n T n 是以1T 为首项,以1为公差的等差数列, 则1143=+--nT T n n ,即()()1431=-+-n T n T n , 当2n ≥时,114811-=-=+-n n n b T T b n , 若{}n b 是等差数列,则1b 适合上式, 令1n =,得1143=-b b ,解得11b =.22.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=.【整体点评】 (1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路. (2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.。
绝密★启用前海南省海口市第一中学2020届高三年级上学期10月月考检测数学试题(解析版)第Ⅰ卷 选择题一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合{}|0A x x =<,{}2,1,0,1,2B =--,那么()U A B ⋂ð等于( )A. {}0,1,2B. {}1,2C. {}2,1--D. {}2,1,0-- 【答案】A【解析】【分析】先求出U A ð,再求交集得解.【详解】由题得[)=0,U A +∞ð,所以()U A B ⋂ð={}0,1,2.故选:A【点睛】本题主要考查补集和交集的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.关于命题“当[]1,2m ∈时,方程220x x m -+=没有实数解”,下列说法正确的是 ( )A. 是全称量词命题,假命题B. 是全称量词命题,真命题C. 是存在量词命题,假命题D. 是存在量词命题,真命题 【答案】A【解析】【分析】对[]1,2m ∈的理解是m 取遍区间[]1,2的所有实数,当1m =时方程有解,从而判断原命题为假命题.【详解】原命题的含义是“对于任意[]1,2m ∈,方程2x 2x m 0-+=都没有实数解”,但当1m =时,方程有实数解1x =,故命题是含有全称量词的假命题,所以正确选项为A.【点睛】判断命题是特称命题还是全称命题,要注意补上省略词,同时注意判断命题为假命题时,只要能举出反例即可.3.设,a b r r 为非零向量,则“//a b r r ”是“,a b r r 方向相同”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【解析】【分析】根据向量的共线的充要条件,即可作出判定,得到答案.【详解】因为,a b r r 为非零向量,所以//a b r r 时,,a b r r方向相同或相反, 因此“//a b r r ”是“,a b r r 方向相同”的必要而不充分条件.故选B .【点睛】本题主要考查了充要条件和必要条件的判断,以及向量共线的充要条件,属基础题.其中解答中熟记利用向量共线的充要条件是解答的关键,着重考查了推理与判断能力.4.为了得到函数3sin 21y x =+的图象,只需将3sin y x =的图象上的所有点( )A. 横坐标伸长2倍,再向上平移1个单位长度B. 横坐标缩短12倍,再向上平移1个单位长度 C. 横坐标伸长2倍,再向下平移1个单位长度D. 横坐标缩短12倍,再向下平移1个单位长度 【答案】B。