DC-DC变换器设计毕业设计
- 格式:doc
- 大小:534.50 KB
- 文档页数:40
DCDC升压稳压变换器设计DC-DC升压稳压变换器是一种常见的电源变换器,用于将低压直流电源(如电池)的电压升高为所需的高压输出。
本文将介绍DC-DC升压稳压变换器的设计原理、组成部分及其工作原理,并进行详细的分析和说明。
DC-DC升压稳压变换器设计的主要目标是将输入直流电压升压到所需的输出电压,同时保持输出电压稳定且具有良好的电流调整性能。
为了实现这一目标,设计者需要考虑以下几个方面:1.输入输出电压和电流:首先确定所需输出电压和电流的数值。
根据要求选择相应的元件和电路拓扑结构。
2. 拓扑结构选择:常见的DC-DC升压稳压变换器拓扑结构有Boost、Flyback和SEPIC等。
选择适合的拓扑结构需要考虑功率转换效率、元件数量和输入输出电流等因素。
3.元件参数选择:选择合适的功率开关管、电感、电容和二极管等元件参数。
元件的选择需考虑其工作频率、电流承受能力和输出纹波等因素。
4.控制电路设计:设计合适的开关控制电路,能够实现稳定的输出电压。
常用的控制电路有单片机控制、模拟控制和PWM控制等。
采用合适的控制方法可以保持输出电压的稳定性和动态响应性。
5.保护电路设计:为了保护DC-DC升压稳压变换器和被供电设备的安全,需要考虑过压、过流和短路保护等电路设计。
这些保护电路可以提高系统的可靠性和安全性。
在进行具体的设计时,首先需要确定输出电压和电流的数值要求,并进一步计算电路参数。
然后选择合适的拓扑结构和元件,并设计出合适的控制电路和保护电路。
接下来进行电路仿真和实验验证,对设计结果进行验证和调整,确保电路性能和稳定性。
最后对整个设计过程进行总结和文档记录。
综上所述,DC-DC升压稳压变换器设计是一个复杂而关键的过程,需要考虑多个因素并进行系统性的设计和调试。
通过合理设计和优化,可以得到稳定性好、效率高且尺寸小巧的DC-DC升压稳压变换器。
这些变换器可以广泛应用于各种电子设备和系统中,如移动电源、电动车充电器和太阳能系统等。
毕业设计(论文)课题:小功率DC/DC变换器初步设计及调试学生: 系部: 电子信息系班级: 学号:指导教师:装订交卷日期:毕业设计(论文)成绩评定记录表指导教师评语(包含学生在毕业实习期间的表现):成绩(平时成绩): 指导教师签名:年月日评阅教师评语:成绩(评阅成绩): 评阅教师签名:年月日答辩情况记录:答辩成绩:答辩委员会主任(或答辩教师小组组长)签名:年月日指导教师评语(包含学生在毕业实习期间的表现):总评成绩:注:1.此表适用于参加毕业答辩学生的毕业设计(论文)成绩评定;2.平时成绩占20%、卷面评阅成绩占50%、答辩成绩占30%,在上面的评分表中,可分别按20分、50分、30分来量化评分,三项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。
教务处制毕业设计(论文)成绩评定记录表成绩(平时成绩): 指导教师签名:年月日评阅教师评语:成绩(评阅成绩): 评阅教师签名:年月日总评成绩:注:1.此表适用于不参加毕业答辩学生的毕业设计(论文)成绩评定;2.平时成绩占40%、卷面评阅成绩占60%,在上面的评分表中,可分别按40分、60分来量化评分,二项相加所得总分即为总评成绩,总评成绩请转换为优秀、良好、中等、及格、不及格五等级计分。
教务处重庆电子工程职业学院电子信息系毕业设计(论文)、毕业实习报告任务书学生姓名吴娱班级应电082 学号2008220352 联系电话13650524660电子邮箱wuy.u@课题题目小功率DC/DC变换器初步设计及调试型式毕业设计●毕业论文○总结报告○任务来源●○○完成时间任务下达2010年2 月20 日开题报告2011年 2 月26 日定稿交卷2011年 3 月 20 日毕业答辩月日指导教师姓名童贞理电子邮箱53242097@ 联系电话 (办)要求完成的主要任务内容:本次设计了一种实用的DC/DC 30W开关稳压电源电路,该电源采用单端反激型电路结构,输出纹波较小,效率高,而且磁绕组匝数少,减小了变压器体积。
目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (3)1.3 Buck斩波电路的研究意义 (5)1.4 论文的主要研究容 (6)2 Buck斩波电路的原理 (7)2.1 Buck变换器的连续导电模式 (8)2.2 Buck变换器电感电流不连续的导电模式 (10)2.3 电感电流连续的临界条件 (11)2.4 纹波电压ΔU O及电容计算 (12)2.5参数的计算 (12)3 Buck斩波电路的建模 (14)3.1开关电路的建模 (14)3.1.1理想开关模型 (14)3.1.2状态空间平均模型 (15)3.1.3小信号模型 (17)3.2系统的传递函数 (18)3.2.1降压斩波电路的传递函数 (18)3.2.2 PWM比较器的比较函数 (20)3.2.3调节器的传递函数 (21)4 控制电路的设计 (22)4.1电压模式控制电路的设计 (22)4.1.1电压调节器的结构形式 (22)4.1.2电压调节器的参数 (23)4. 2 控制电路结构 (24)5 Buck斩波电路的控制仿真研究 (25)5.1 Matlab简介 (25)5.2 Buck斩波电路主电路的仿真 (25)5.3 Buck斩波电路的PID控制算法的仿真 (27)6全文总结及展望 (30)参考文献 (31)附录1:主电路仿真模型 (32)附录2:主电路仿真波形图 (33)附录3:PID仿真图 (34)致 (35)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC 开关电源的设计。
首先对主电路的工作原理和系统构成进行了研究和分析,包括工作过程中各个元器件的工作状态和工作特点。
DC—DC升压开关变换器设计本设计设计了相应的硬件电路,研制了一款小功率开关电源。
整个系统包括主电路、控制电路、驱动电路、保护电路和反馈电路几部分内容。
系统主电路由Boost升压斩波电路和相应的滤波保护电路组成。
控制电路包括主电路开关管控制脉冲的产生和保护电路。
论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计过程,包括元器件的选取以及参数计算。
本设计中采用的芯片主要是PWM控制芯片SG3525、光电耦合芯片PC817和半桥驱动芯片IR2110。
设计过程中充分利用了SG3525的控制性能,具有较宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。
标签:SG3525,开关稳压电源,PWM,升压斩波1绪论近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。
同时,人们对电源的要求也越来越高。
在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。
电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。
电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。
相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求。
但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。
因此对于现代的开关电源功率交换技术的发展趋势,可以概括为:高频化、高效率、无污染和模块化。
2开关电源概况2.1开关电源基本拓扑结构开关变换器是电能变换的核心装置。
按转换电能的种类,可把变换器分为四类:①直流变换器(DC-DC),将一种直流电能转换为另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器(DC-AC),将直流电能变为交流电能的电能变换器,是交流开关电源和不间断电源UPS的主要部件;③整流器(AC-DC),将交流电转为直流电的电能变换器;④交交变频器(AC-AC),将一种频率的交流电转换成另一种频率可变的交流电,或者将一种频率可变的交流电转变为恒定频率的交流电的电能变换器。
【毕业设计】基于Buck结构的DCDC转换器建模与仿真目录摘要 (1)Abstract (2)1 绪论 (3)1.1电力电子技术的概述 (3)1.2开关电源的研究现状和发展趋势 (4)1.3 Buck斩波电路的研究意义 (6)1.4 论文的主要研究内容 (6)2 Buck斩波电路的原理 (8)2.1 Buck变换器的连续导电模式 (9)2.2 Buck变换器电感电流不连续的导电模式 (12)2.3 电感电流连续的临界条件 (13)2.4 纹波电压ΔU O及电容计算142.5参数的计算 (14)3 Buck斩波电路的建模 (17)3.1开关电路的建模 (17)3.1.1理想开关模型 (17)3.1.2状态空间平均模型 (19)3.1.3小信号模型 (20)3.2系统的传递函数 (22)3.2.1降压斩波电路的传递函数 (22)3.2.2 PWM比较器的比较函数 (24)3.2.3调节器的传递函数 (25)4 控制电路的设计 (27)4.1电压模式控制电路的设计 (27)4.1.1电压调节器的结构形式 (27)4.1.2电压调节器的参数 (28)4. 2 控制电路结构 (29)5 Buck斩波电路的控制仿真研究 (30)5.1 Matlab简介 (30)5.2 Buck斩波电路主电路的仿真 (30)5.3 Buck斩波电路的PID控制算法的仿真 (32)6全文总结及展望 (35)参考文献 (36)附录1:主电路仿真模型 (37)附录2:主电路仿真波形图 (39)附录3:PID仿真图 (40)致谢 (41)摘要随着电子产品与人们工作和生活的关系日益密切,便携式和待机时间长的电子产品越来越受到人们的青睐,它们对电源的要求也越来越高。
DC-DC开关电源芯片是一种正在快速发展的功率集成电路,具有集度高,综合性能好等特点,具有很好的市场前景和研究价值。
论文在研究开关电源技术发展现状和前景的基础上,设计一种Buck型DC-DC开关电源的设计。
编号南京航空航天大学毕业设计全桥 LLC 串联谐振 DC/DC 题目变换器学生姓名学号学院自动化学院专业电气工程与自动化班级指导教师二〇XX年X月毕业设计(论文)报告纸全桥 LLC 串联谐振 DC/DC 变换器摘要近现代随着能源价格的增高和需求的增大,工作效率的高低成为了 DC/DC 变换器比较重要的指标之一。
为了追求 DC/DC 变换器的大功率和高效率,需要不断地改进变换器的结构和器件。
传统移相全桥软开关变换器可以有较大的功率,并且可以较好的实现 ZVS,提高效率。
但是相对的却限制了负载的范围,反向二极管的恢复也成了问题并且在输入大电压时效率很低。
为了解决这些问题,本文试着研究全桥 LLC 串联谐振变换器。
本文首先简单介绍了传统移相全桥 PWM ZVS 变换器、全桥 LC 串联谐振变换器、全桥LC 并联谐振变换器和全桥 LCC 串并联谐振变换器,并指出了其中的优缺点。
在此基础上对比介绍了全桥 LLC 串联谐振变换器。
对 LLC 串联谐振全桥 DC/DC 变换器的工作原理进行了详细研究,利用基频分量近似法建立了变换器的数学模型,确定了主开关管实现 ZVS 的条件,推导了边界负载条件和边界频率,确定了变换器的稳态工作区域,推导了输入、输出电压和开关频率以及负载的关系。
之后又设计了一个变换器电路,计算了相关参数,并且对元器件进行了选择。
本文使用UC3861 进行开关控制,设计了它的闭环电路。
最后用 saber 软件分别进行了满载、半载、轻载和空载的仿真分析。
仿真结果证实了理论分析的正确性。
关键词:DC/DC 变换器,全桥,UC3861,LLCiFull bridge LLC series resonant DC/DC converterAbstractIn modern times with increasing energy prices and increased demand, the level of efficiency has become the important index of DC/DC converter. In order to pursue DC/DC converter with high power and high efficiency, the structure and device of converter is needed to be improved. The traditional phase shifted full bridge PWM ZVS converter has some bad place.It limits the load range. Reverse diode recovery has become a problem when the input voltage and high efficiency is very low. To solve these problems, we try to study the full bridge LLC series resonant converter.This paper introduces the circuit and the characteristics of the traditional phase shifted full bridge PWM ZVS converter, full bridge LC series resonant converter and the full bridge LC parallel resonant converter and the full bridge LCC series resonant converter. Then their shortcomings are pointed out. In this paper, LLC series resonant Full Bridge DC/DC converter is analyzed in detail. Based on the fundamental element simplification method, the mathematics model of the converter is obtained, and the conditions to achieve ZVS are given. Steady working region of LLC series resonant Full Bridge DC/DC is confirmed, the relations between input and output voltage depending on switching frequency and load conditions are given.Then, a converter circuit is designed, its parameters are calculated and the selected its components. This paper uses UC3861 for switching control and designed the closed-loop circuit. Finally uses the saber software to analyze some different situation of load.Finally, the simulation results are given, confirm the theoretical results are accurate.Key Words:DC/DC converter; Full bridge; UC3861; LLC目录摘要 (i)ii 第一章引言.............................................................................................................................- 1 -1.1 课题背景......................................................................................................................... - 1 -1.2 谐振变换器研究现状..................................................................................................... - 1 -1.2.1 移相全桥 PWM ZVS DC/DC 变换器.................................................................. - 1 -1.2.2 LC 串联谐振变换器............................................................................................. - 2 -1.2.3 LC 并联谐振变换器............................................................................................. - 3 -1.2.4 LCC 串并联谐振变换器....................................................................................... - 3 -1.3 本文的主要内容............................................................................................................. - 4 - 第二章全桥 LLC 串联谐振 DC/DC 变换器................................................................................ - 6 -2.1 引言................................................................................................................................. - 6 -2.1.1 拓扑图................................................................................................................... - 6 -2.1.2 全桥 LLC 谐振变换器的优缺点.......................................................................... - 6 -2.2 全桥 LLC 串联谐振变换器的原理................................................................................ - 6 -2.2.1 全桥 LLC 串联谐振变换器的等效电路.............................................................. - 6 -2.2.2 全桥 LLC 串联谐振变换器的工作区域............................................................ - 10 -2.3 全桥 LLC 串联谐振变换器的工作过程...................................................................... - 12 -2.3.1 开关管工作在区域 1(f m<f<f r)....................................................................... - 12 -2.3.2 开关管工作在区域 2(f>f r)............................................................................. - 14 -2.4 频率特性....................................................................................................................... - 16 -2.5 空载特性....................................................................................................................... - 17 -2.5 短路特性....................................................................................................................... - 18 -2.6 本章总结....................................................................................................................... - 19 - 第三章闭环控制电路的设计..................................................................................................... - 20 -3.1 UC3861 的简单介绍..................................................................................................... - 20 -3.2 UC3861 的工作原理..................................................................................................... - 21 -3.3 闭环电路的设计........................................................................................................... - 22 -3.4 本章总结....................................................................................................................... - 22 - 第四章参数设计及仿真结果..................................................................................................... - 24 -4.1 参数设计....................................................................................................................... - 24 -4.1.1 性能指标要求..................................................................................................... - 24 -4.1.2 主电路参数设计................................................................................................. - 24 -4.1.3 输出整流滤波电路............................................................................................. - 28 -4.1.4 fmax、fmin、死区时间设计.............................................................................. - 28 -4.2 saber 仿真结果.............................................................................................................. - 29 -4.2.1 满载..................................................................................................................... - 29 -4.2.2 半载..................................................................................................................... - 34 -4.2.3 轻载..................................................................................................................... - 38 -4.2.4 空载..................................................................................................................... - 40 -4.3 本章小结....................................................................................................................... - 42 - 第五章全文总结及展望........................................................................................................... - 43 - 参考文献................................................................................................................................. - 44 - 致谢..................................................................................................................................... - 45 -第一章引言1.1课题背景随着电力电子技术的发展与计算机技术的快速提升,有关 DC/DC 变换器的应用变得很普遍,对于这方面的研究也就多了起来。
广西工学院毕业设计(论文)开题报告届)题目名称:A bi-directi on DC-DCC onv erter desi gn based onthe FPGA基于FPGA勺双向DC-D(变换器的设计系别电子信息与控制工程系专业自动化班级学号姓名指导教师_______________________________年月日2)研究重点(1)升压电路、降压电路中开关功率管软开关的实现;(2)基于FPGA的控制电路的设计;(3)控制电路各个模块的编译、仿真。
3)研究难点(1)降压控制模块中移相控制模块的设计,如何通过设计一个变量改变超前桥臂和滞后桥臂之间的移相角;(2)数字PWM控制模块的设计、编译、仿真;(3)如何利用FPGA实现数字PID调节。
4)创新点由于FPGA具有开发周期短、灵活性高、成本低、模块可重复利用率高等特点,本论文采用FPGA进行控制电路的设计,通过设计某种控制策略使得移相PWM-ZVZCS的桥式功率变换电路和新型软开关推挽式Boost功率变换电路组成一个双向DC-DC变换器,满足车载电源系统的设计要求。
5)拟撰写论文的结构摘要第一章绪论第二章主电路拓扑结构及控制方式选择第三章主电路工作原理学位论文,2006,11.[7] 方如举.一种新型双向DC-DC变换器的研究[D].合肥工业大学硕士学位论文,2006,4.[8] 张占松,蔡宣三.开关电源的原理与设计[M] •北京:电子工业出版社,1999.[9] 曲学基,王增幅,曲敬铠.新编高频开关稳压电源[M] •北京:电子工业出版社,2005.[10] 常栋梁.基于FPGA的数字PWM控制器的研制[D].西安科技大学硕士学位论文,2008,4.[11] 潘松,黄继业.EDA技术使用教程[M].北京:科学出版社,2008.[12] 清源计算机工作室.Protel 99 SE原理图与PCB及仿真[M].北京:机械工业出版社,2008.[13] Ehsan Adib *,Hosein Farzanehfard.Softswitching bi-directional DC-DC converter for ultracapacitor-batteries interface[J]. Energy Conversion and Managemen,2009 (50),2879-2884.六、指导教师意见指导教师签名:年月日七、系审核意见负责人签名(系公章):年月日。
BI YE SHE JI(20 届)电动汽车DC/DC变换器的设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月摘要电动汽车DC/ DC变换器是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。
本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了半桥开关电源。
整个系统包括主电路、控制电路和反馈电路三部分内容。
系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。
控制电路包括主电路开关管控制脉冲的产生和保护电路。
论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算。
本设计中采用的芯片主要是PWM控制芯片SG3525A。
设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。
关键词:直流变换器;SG3525;高频变压器;MOSFETIAbstractElectric vehicle DC/ DC converter is a modern power electronic equipment indispensable component, its quality has a direct influence on equipment performance, its size will directly affect the whole volume of electronic equipment. According to the design of design tasks for the design, designs the corresponding hardware circuit, a half-bridge switching power supply development. The whole system consists of main circuit, control circuit and feedback circuit three parts. System main circuit comprises a single-phase input rectifier, half-bridge inverter, high frequency AC output, output rectifier, output filter sections. The control circuit comprises a main circuit switch tube to control the pulse generation and protection circuit. This paper introduces the main circuit, control circuit, driving circuit and other parts of the design and the experimental process, including the selection of components and parameters calculation. The design of the chip is mainly PWM control chip SG3525A. The design process of medium-range makes full use of SG3525A control performance, wide adjustable frequency, adjustable dead time, with input under-voltage locking function and dual output current.Key words: DC / DC converter; SG3525; high-frequency transformer; MOSFETII目录摘要 (I)ABSTRACT (II)目录 (III)第一章绪论 (1)1.1课题选择的背景及意义 (1)1.2电动汽车DC/DC变换器的发展概况 (2)1.3本文所研究的课题内容 (3)第二章电动汽车DC/DC变换器的原理 (4)2.1电动汽车DC/DC变换器控制系统概述 (4)2.2电动汽车DC/DC变换器的基本结构 (4)2.3 MOSFET基本原理 (5)2.4 PWM调制技术 (6)2.5高频变压器的原理介绍 (7)第三章电动汽车DC/DC变换器主电路的设计 (9)3.1 半桥电路的结构与工作过程 (9)3.2 主要功率器件的选型 (12)3.2.1 MOSFET参数的确定 (12)3.2.2 自举电容的选取 (13)3.3高频变压器设计 (14)3.4 输出整流回路的设计 (16)3.4.1 输出整流回路的结构 (16)3.4.2 快恢复二极管的选择 (16)3.4.3 滤波电感的选择 (18)3.4.4 滤波电容的选择 (18)第四章.DC-DC变换器控制电路的设计 (20)III4.1 PWM控制芯片SG3525功能简介 (20)4.1.1 SG3525引脚功能及特点简介 (20)4.1.2 SG3525的工作原理 (23)4.2电动汽车DC/DC变换器反馈电路的设计 (27)4.2.1 输出电压反馈电路 (27)4.2.2 过压保护电路的设计 (28)4.2.3 输出限流电路 (29)总结 (31)参考文献 (33)致谢 (34)IV第一章绪论1.1课题选择的背景及意义DC/DC变换器是燃料电池电动汽车的重要组成部分,它的研制直接关系到燃料电池电动汽车的稳定与性能。
基于单端反激式DC/DC变换器的技术研究摘要本文研究了小功率稳压电源,论文主要工作包括几种主要电源拓扑的形式和工作原理的阐述;根据技术指标要求,选用单端反激式DC/DC变换器作为变换器,然后进行了主电路元器件参数的设计,其中包括拓扑电路的电感、电容以及变压器参数的设计。
论文以下的部分是来确定单端反激式DC/DC变换器主电路的设计方案,囊括控制电路以及保护等电路的设计,结尾在MATALB/SIMULINK中对单端反激式DC/DC变换器的进行了建模与仿真,仿真得出的结论表明,理论分析和参数计算完全符合理论的分析。
关键词:开关电源;单端反激式;DC/DC;变压器;AbstractThis paper studies the low-power power supply,The main work includes elaborate form of several major power topology and working principle;By the technical requirements,Optional single-ended flyback DC / DC converter as the converter,Then the programming parameters of the main circuit components,Including inductive circuit topology,Capacitors and transformer design parameters.Next, the paper identified a single-ended design flyback DC / DC converter main circuit,Includes the design of a control circuit and a protection circuit ,Finally MATALB / SIMULINK in single-ended flyback DC / DC converter has been modeling and simulation,The simulation concluded that the theoretical analysis and parameter calculation in full compliance with theoretical analysis.Keywords: switching power supply; single-ended flyback; DC / DC; transformer.目录第一章绪论 (1)1.1 开关电源的基本概念 (1)1.2 开关电源的发展 (1)第二章开关电源的原理介绍与选择 (3)2.1 开关电源的基本工作原理 (3)2.1.1 开关稳压电源的电路原理框图 (3)2.1.3 单片开关电源的两种工作模式 (4)2.2开关电源的种类选择 (5)第三章单端反激式DC/DC变换器的原理和参数设计 (11)3.1 单端反激式DC/DC变换器的基本工作原理 (11)3.2 反激式DC/DC变换器的工作模式 (12)3.2.1 电流连续工作模式 (12)3.2.2 电流断续工作模式 (13)第四章反激变换器的仿真及结果分析 (15)4.1 仿真系统模型及参数 (15)4.1.1 仿真原理图中的参数设置 (15)4.1.2 仿真原理图 (16)4.2 仿真的波形及结论分析 (17)4.3 结论分析 (23)第五章总结与心得 (24)5.1 设计心得 (24)5.2 总结与展望 (24)参考文献 (26)致谢 (27)第一章绪论电力电子电源在电子设备中起着举足轻重的地位,有人形象的把电源比作式电子设备的动力心脏,可见电源对于整个系统安全性以及可靠性的影响甚大。
绪论一.开关电源概述开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。
半个世纪以来,开关电源大致经历了四个阶段。
早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。
在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。
随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。
稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。
等对供电电压都有一定的要求。
至于精密的电子仪器,对供电电压的要求更为严格。
所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。
目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。
单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。
尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。
单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。
二. 开关电源的技术追求1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。
在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。
因此高频化是开关电源的主要发展方向。
2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。
从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电源的寿命。
所以要从设计方面着眼,尽可能使用较少的器件,提高集成度。
这样不但解决了电路复杂、可靠性差的问题,也增加了保护等功能,简化了电路,提高了平均无故障时间。
1.低噪声——开关电源的缺点之一是噪声大。
单纯地追求高频化,噪声也会增大。
采用部分谐振转换技术,在原理上既可以提高频率又可以降低噪声。
所以,尽可能地降低噪声影响是开关电源的有一发展方向。
2. 采用计算机辅助设计与控制——采用CAA和CDD技术设计最新变换拓扑和最佳参数,使开关电源具有最简结构和最佳工况。
在电路中引人微机检测和控制,可构成多功能监控系统,可以实施检测、记录并自动报警等。
三.DC/DC变换器的应用范围及发展趋势(1) DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约20%~30%的电能。
直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
(2) DC/DC变换器是一种能高效地实现直流到直流功率变换的混合集成功率器件,主要采用了高频功率变换技术,即将直流电压通过功率开关器件变换成高频开关电压,且输入与输出之间完全隔离。
该产品主要应用于航空、航天、通信、雷达、以及其他所有采用分布式供电体系的领域。
其主要发展方向是:采用多芯片组件技术和新型高导热基板(如AIN金刚石和金属等),进一步提高功率密度(3W/cm3以上)和输出功率(达200W以上),工作频率达1MHZ,效率为90%以上,实现多路智能化混合集成DC/DC变换器组件。
(3)直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。
按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。
进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。
由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。
四.本设计要解决的主要问题、采用的手段和方法(1)本设计要解决的主要问题是加入输入电压为3V的电源电压,使用 DC/DC 变换器实现输出为±12V和3.6V的电压。
(2)本设计采用的手段和方法是采用核心集成电路MC34063作为控制部分,外围加少量元器件组成DC/DC升压、反转电路。
五.本设计课题的意义、目的以及应达到的要求(1)本设计课题的意义:使我们了解了DC/DC变换的发展趋势和用途,并掌握了如何利用集成器件实现高效率、小型化、薄型化、轻量化、高频化的开关稳压电源。
(2)本设计的目的:最直接目的是实现直流到直流的开关稳压变换,设计一个简单而又低成本的电源;另外,在于帮助读者了解MC34063新型集成器件,增加电子技术知识,锻炼动手能力,培养和提高创新能力;为电子爱好者增添一技之长提供技术资料;使有一定电子理论基础知识的读者阅读本设计后,理论水平有进一步的提高,激发动手制作的欲望,实现理论与实践的结合。
(3)本设计的应达到的要求:输入加3V直流电压实现输出为±12V、(电流是100mA)和3.6V(电流是500mA)的电压。
第一章 DC/DC变换器的基础知识1.1 DC/DC变换器的含义、分类、应用范围及优点1.1.1 DC/DC变换的含义DC/DC变换即直流斩波,就是将直流电压变换成固定的或可调的直流电压。
1.1.2 DC/DC变换器的分类变换器有两种类型:线性变换器开关变换器。
开关变换器有三种拓扑结构:降压变换器(开关稳压器将一输入电压变换成一较低的稳定的输出电压);升压变换器(开关稳压器将一输入电压变换成一较高的稳定的输出电压);反激变换器(开关稳压器将一输入电压变换成一较低的稳定反相输出电压)。
1.1.3 DC/DC变换技术的应用范围主要应用于已具有直流电源需要调节直流电压的场合,广泛应用于无轨电车、有轨电车、地铁列车、蓄电池供电的机车车辆的无级变速以及20世纪 80年代兴起的电动汽车的调速及控制等。
1.1.4 DC变换技术的优点此技术不仅可以实现调压的功能,而且还可以达到改善网侧谐和提高功率因数的目的。
1.2 DC/DC变换器的基本工作原理及控制方式1.2.1 DC/DC变换器的工作原理如图是最基本的直流斩波电路,负载为纯电阻R。
当开关S闭合时,负载电压U。
=Ud,并持续时间ton;这T=ton+toff为斩波电路的工作周期,斩波器的输出电压波形如图(b)设斩波其的占空比K=ton/T,则由波形图上可得输出电压的平均值为U。
=ton/T*Ud=Kud,只要调节K,即可调节负载的平价电压。
1.2.2DC/DC变换器的控制方式其控制方式为PWM、 PFM控制和调频调宽混合控制。
PWM控制即定频调宽控制,这种控制方法是保持斩波周期T不变,只改变斩波器的导通时间ton。
其特点为:斩波器的基本频率固定,所以滤除高次谐波的滤波器设计比较容易。
PFM控制即定宽调频控制,这种控制方式是保持导通时间ton不变,而改变斩波周期T。
其特点为:斩波回路和控制电路变得简单,只有频率是变化的。
1.2.3PWM控制、PFM控制和PWM/PFM切换控制模式比较这三种控制方式各有各的优点与缺点:DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到对于设定电压相同的输出电压。
PFM控制时,当输出电压下降达到在设定电压以上时即停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。
但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压,PWM控制也是与频率同步进行开关,但它会在达到设定值时,尽量减少流人线圈的电流,调整升压使其与设定电压保持一致。
与PWM相比,PFM的输出电流小,但因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗上午电流就会变得很小。
因此消耗电流的减少可改进低负荷时的效率。
PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。
第二章 DC/DC变换器主回路使用的元件选择及其特性与质量指标的含义2.1 三种元件2.1.1开关无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。
电子开关只有快速地开通、快速地关断这两种状态。
只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT 管,还有各种特性较好的新式的大功率开关元件。
2.1.2 电感电感是开关电源中常用的元件,由于它的电流,电压相位不同,因此理论损耗为零。
电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。
其特点是流过它上的电流有“很大的惯性”。
换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。
电感为磁性元件,自然有磁饱和的问题,多数情况下,电感工作在线性区,此时电感值为一常数,不随端电压与流过的电流而变化。
但是,在开关电源中有一个不可忽视的问题,就是电感的绕线所引起的两个分布参数(或称寄生参数)的现象。
其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕线工艺、材料而定。
杂散电容在低频时影响不大,随频率提高而渐显出来,到一频率以上时,电感也许变成电容的特性了。
如果将杂散电容集成为一个,则从电感的等效电路可看出在一角频率后的电容性。
2.1.3 电容电容是开关电源中常用的元件,它与电感一样也是储存电能和传递电能的元件。
但对频率的特性却刚好相反。
应用上,主要是“吸收”纹波,具平滑电压波形的作用。
实际上的电容并不是理想的元件。
电容器由于有介质、接点与引线,形成一个等效串联内电阻ESR。
这种等效串联内电阻在开关电源中小信号控制上,以及输出纹波抑制的设计上,起着不可忽视的作用。
另外电容等效电路上有一个串联的电感,它在分析电路器滤波效果时非常重要。
有时加大电容值并不能使电压波形平直,就是因为这个串联寄生电感起着副作用。
电容的串联电阻与接点和引出线有关,也与电解液有关。