离散时间信号和系统的频域分析
- 格式:pdf
- 大小:4.14 MB
- 文档页数:93
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
数字信号处理A实验报告实验项目名称:离散信号与系统的离散频域分析(DFT)学院:______计算机与通信工程____专业:______ _通信工程 _________学号:______201454080136_______班级:______ 通信1401 ________报告人:________胡国庆 __________指导老师:___ 胡双红 _ _______实验时间:_______2016-11-28________实验三离散信号与系统的离散频域分析(DFT)一、实验目的:1、掌握离散时间系统的DFT的MATLAB实现;2、熟悉DTFT和DFT之间的关系。
3、了解信号不同变形的DFT与原信号DFT之间的关系二、实验内容:选择实验二相同的8点信号x=[1 2 3 4 4 3 2 1]1、对该信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT 与DTFT之间的关系。
2、在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。
3、将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较。
三、实验平台: MATLAB集成系统四、设计流程:五、程序清单function [Xk]=dft(xn,N)n=0:1:N-1;k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;x=[3,2,1,2,4,3,4,1];X=dft(x,8);w=0:pi/100:2*pi;n=0:7;Xw=x*exp(-j*n'*w);figure(1);k=0:7;subplot(211);stem(k,abs(X)) hold onplot(w/pi*4,abs(Xw))subplot(212);stem(k,angle(X))hold onplot(w/pi*4,angle(Xw))X16=dft([x,zeros(1,8)],16);figure(2);k=0:15;subplot(211);stem(k,abs(X16)) Xw1=[x,zeros(1,8)]*exp(-j*k'*w);hold onplot(w/pi*8,abs(Xw1))subplot(212);stem(k,angle(X16))hold onplot(w/pi*8,angle(Xw1))X32=dft([x,zeros(1,24)],32);figure(3);k=0:31;subplot(211);stem(k,abs(X32)) Xw2=[x,zeros(1,24)]*exp(-j*k'*w);hold onplot(w/pi*16,abs(Xw2))subplot(212);stem(k,angle(X32))hold onplot(w/pi*16,angle(Xw2))x1=zeros(1,16);x1(1:2:end)=x;X4=dft(x1,16); figure(4);subplot(221);stem(0:15,abs(X4));subplot(222);stem(0:15,angle(X4));subplot(223);stem(0:7,abs(X));subplot(224);stem(0:7,angle(X));X5=dft([x x],16);figure(5);subplot(221);stem(0:15,abs(X5)); subplot(222);stem(0:15,angle(X5)); subplot(223);stem(0:7,abs(X)); subplot(224);stem(0:7,angle(X));六、调试和测试结果:8点DFT与 DTFT的代码和图:实验心得在这次实验中,自己做的时候问题比较多,请教了很多同学才做到现在的样子,对函数并不理解。
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
实验名称:离散时间信号的频域分析一、实验目的1.对离散信号和系统在频域中进行分析,可以进一步研究它们的性质。
学会通过matlab,对离散时间序列的三种表示方法:离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和Z变换。
二、实验内容1、修改程序P3.1,计算如下有限长序列的离散时间傅里叶变换:g[n]=[1357911131517]并重做习题Q3.2。
讨论你的结果。
你能解释相位谱中的跳变吗?2、选取两个改变了长度的序列以及两个不同的时移值,重做习题Q3.73、编写一个MATLAB程序,用一个N点复数离散傅里叶变换计算两个长度为N的实数序列的N点离散傅里叶变换,并将结果同直接使用两个N点离散傅里叶变换得到的结果进行比较。
4、选取两个不同的时移量,重做习题Q3.335、选取两个不同长度的序列,重做习题Q.336、选取另外两组等长序列重做习题Q3.36三、主要算法与程序1、w=-4*pi:8*pi/511:4*pi;num=[1357911131517];den=[1];h=freqz(num,den,w);%Plot the DTFTsubplot(2,2,1)plot(w/pi,real(h));gridtitle('H(e^{j\omega})的实部')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,2)plot(w/pi,imag(h));gridtitle('H(e^{j\omega})的虚部')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,3)plot(w/pi,abs(h));gridtitle('|H(e^{j\omega})|幅度谱')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,4)plot(w/pi,angle(h));gridtitle('[H(e^{j\omega})]相位谱')xlabel('\omega/\pi');ylabel('以弧度为单位的相位');2、(1)序列为[9123456789],时移为30; %离散时间傅立叶变换的时移性质clf;w=-pi:2*pi/255:pi;wo=0.4*pi;D=30;num=[9123456789];h1=freqz(num,1,w);h2=freqz([zeros(1,D)num],1,w);subplot(2,2,1)plot(w/pi,abs(h1));gridtitle('原序列的幅度谱')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,2)plot(w/pi,abs(h2));gridtitle('时移D=30后序列的幅度谱')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,3)plot(w/pi,angle(h1));gridtitle('原序列的相位谱')xlabel('\omega/\pi');ylabel('振幅');subplot(2,2,4)plot(w/pi,angle(h2));gridtitle('时移D=30后序列的相位谱')xlabel('\omega/\pi');ylabel('振幅');(2)序列为[12345678910],时移为50;D=50;num=[12345678910];3、clf;g=[1124];h=[2321];x=g+i*h;N=length(x)-1;n=0:N;gk=fft(g);hk=fft(h);xk=fft(x);xk1=fft(conj(x));gk1=(xk+xk1)/2;hk1=(xk-xk1)/2i;subplot(4,2,1)stem(n,abs(gk));gridtitle('实部序列gk的离散傅里叶变换的幅度')xlabel('时间序号n');ylabel('振幅');subplot(4,2,2)stem(n,abs(hk));gridtitle('虚部序列gk的离散傅里叶变换的幅度')xlabel('时间序号n');ylabel('振幅');subplot(4,2,3)stem(n,abs(gk1));gridtitle('通过xk得到的gk1的离散傅里叶变换的幅度') xlabel('时间序号n');ylabel('振幅');subplot(4,2,4)stem(n,abs(hk1));gridtitle('通过xk得到的hk1的离散傅里叶变换的幅度') xlabel('时间序号n');ylabel('振幅');subplot(4,2,5)stem(n,angle(gk));gridtitle('实部序列gk的离散傅里叶变换的相位')xlabel('时间序号n');ylabel('以弧度为单位的相位'); subplot(4,2,6)stem(n,angle(hk));gridtitle('虚部序列hk的离散傅里叶变换的相位')xlabel('时间序号n');ylabel('以弧度为单位的相位'); subplot(4,2,7)stem(n,angle(gk1));gridtitle('通过xk得到的gk1的离散傅里叶变换的相位') xlabel('时间序号n');ylabel('以弧度为单位的相位'); subplot(4,2,8)stem(n,angle(hk1));gridtitle('通过xk得到的hk1的离散傅里叶变换的相位') xlabel('时间序号n');ylabel('以弧度为单位的相位');4、function y=circshift(x,M)if abs(M)>length(x)M=rem(M,length(x));endif M<0M=M+length(x);endy=[x(M+1:length(x))x(1:M)];%离散傅里叶变换的圆周时移性质,时移为10x=[0246810121416];N=length(x)-1;n=0:N;y=circshift(x,10);XF=fft(x);YF=fft(y);subplot(2,2,1);stem(n,abs(XF));gridtitle('原序列的离散傅里叶变换的幅度');xlabel('时间序号n');ylabel('振幅');subplot(2,2,2);stem(n,abs(YF));gridtitle('圆周移位10后的序列的离散傅里叶变换的幅度'); xlabel('时间序号n');ylabel('振幅');subplot(2,2,3);stem(n,angle(XF));gridtitle('原序列的离散傅里叶变换的相位');xlabel('时间序号n');ylabel('相位');subplot(2,2,4);stem(n,angle(YF));gridtitle('圆周移位10后的序列的离散傅里叶变换的相位'); xlabel('时间序号n');ylabel('相位');%离散傅里叶变换的圆周时移性质,时移为20y=circshift(x,20);5、序列为x=[0246810121416],时移为10;序列为x=[02468101214161820],时移为10;6、function y=circonv(x1,x2)L1=length(x1);L2=length(x2);if L1~=L2,error('长度不相等的序列'),endy=zeros(1,L1);x2tr=[x2(1)x2(L2:-1:2)];for k=1:L1sh=circshift(x2tr,1-k);h=x1.*sh;y(k)=sum(h);end%离散傅里叶变换的圆周卷积g1=[1234567];g2=[21-12-113];ycir=circonv(g1,g2);disp('圆周卷积的结果');disp(ycir)G1=fft(g1);G2=fft(g2);yc=real(ifft(G1.*G2));disp('离散傅里叶变换乘积的离散傅里叶逆变换的结果=');disp(yc)四、实验结果与分析图1图2.1图2.2图3图4.1图4.2图5.1序列长度9图5.2序列长度11Q6、圆周卷积的结果18183225393925离散傅里叶变换乘积的离散傅里叶逆变换的结果=18.000018.000032.000025.000039.000039.000025.0000、五、实验小结通过这次实验,我对离散信号和系统在频域中进行分析,进一步研究了它们的性质。