当前位置:文档之家› 直流电动机分类

直流电动机分类

直流电动机分类
直流电动机分类

直流电动机分类

直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。

(1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。

(2)有刷直流电动机可划分:(2.1)永磁直流电动机和(2.2)电磁直流电动机。

(2.1)永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。

(2.1.1)稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等。

(2.1.2)铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域。

(2.1.3)铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。

(2.2)电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。

(2.2.1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。

(2.2.2)并励直流电动机:并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。

(2.2.3)他励直流电动机:励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。

(2.2.4)复励直流电动机:复励直流电机有并励和串励两个励磁绕组,若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。

直流电动机控制课程设计总结报告

微机原理及应用B 课程设计任务书 2010-2011学年第 2学期第 19 周- 19 周 题目直流电机控制 内容及要求 内容:设计一直流电机控制系统,实现对电机的正转,反转和速度控制 要求:1、用proteus画出原理图; 2、用c语言或汇编编写程序; 3、实现对电机的正转,反转和速度控制 进度安排 1、方案论证 0.5天 2、分析、设计、调试、运行 4天 3、检查、整理、写设计报告、小结 0.5天 学生姓名:5组(组长:25盛夏;组员:23彭亚彬,24阮水盛,26陶志鹏)指导时间2011年6月27日至2011年7月1日指导地点:F 楼 613室任务下达2011年6月 27日任务完成2011 年7 月 1日 考核方式 1.评阅 2.答辩 3. 实际操作□ 4.其它□ 指导教师郭亮系(部)主任 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 摘要 (3) Abstract (4) 一、概述 (5) 二、直流电机硬件电路设计及描述 (6) 2.1直流电机的结构 (6) 2.2直流电机的工作原理 (6) 2.3电磁关系 (7) 2.4直流电机主要技术参数 (7) 2.5直流电机的类型 (8) 2.6直流电机的特点 (8) 三、直流电机硬件电路设计及描述 (8) 3.1 总体方案设计 (8) 3.1.1 设计思路 (8) 3.1.2设计原理图 (10) 3.2设计原理及其实现方法 (10) 3.2.1速度调节的实现 (10) 3.2.2 转向的控制 (11) 四、流程图 (12) 五、.程序代码(C语言) (13) 六、程序代码(汇编语言) (18) 七、收获、体会和建议 (24) 附录 (25) 1. 本设计所需要芯片以及作用 (25) 2.主要参考文献 (26)

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

直流电动机调速设计

目录 1.直流电动机简介 (1) 2.直流电动机的相关内容 (1) 3.直流电动机调速简介 (4) 4.他厉直流电动机的调速方法 (6) 5.设计内容 (10) 6.结论 (12) 7.参考文献 (13) 8.致谢 (14) 9.设计感想 (15)

直流电动机调速设计 一. 直流电动机 直流电动机是人类最早发明和应用的电机。与交流电机相比,直流电机因结构复杂,维护困难,价格较贵等缺点制约了它的发展,但是由于直流电动机具有优良的起动,调速和制动性能,因此在工业领域中占有一席之地。它是实现了电能转换成机械能的电机。 二.有关内容: 〈一〉直流电动机的分类 1、他励直流电动机 2、并励直流电动机 3、串励直流电动机 4、复励直流电动机 〈二〉直流电动机用途 直流电动机具有优良的调速性能,调速范围宽,精度高,平滑性好,且调节方便,还具有较高的过载能力和优良的起动、制动性能,因此直流电动机特别适合于要求宽度调速范围的电气传动和有特殊性能要求的自动控制系统,例如:轧钢机、电力机、城市电车等。 直流电机与交流电机相比,其主要的缺点是换向问题。它限制了直流电机的最大容量,增加了运行维护工作量,也导致其制造成本较高。但目前仍有不少场合使用直流电动机。

〈三〉直流电动机的结构 图1 直流电机装配结构图 1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极 6—端盖 7—风扇 8—电枢绕组 9—电枢铁心 直流电动机主要由磁极,电枢,换向器三部分组成。 (1)磁极是电动机中产生磁场的装置,它分为极心和极掌两部分。极心上放置励磁绕组,极掌的作用是使电动机空隙中磁感应强度得分布最为合适,并用来挡住励磁绕组;磁极是用钢片叠成的,固定在机座上;机座也是磁路的一部分。机座常用铸钢制成。 (2)电枢。电枢是电动机中产生感应电动势的部分。直流电动机的电枢是旋转的,电枢铁心成圆柱状,由硅钢片叠成,表面冲有槽,槽中放有电枢绕组。(3)换向器。换向器是直流电动机的一种特殊装置,主要有许多换向片组成,每两个相邻的换向片中间是绝缘片。在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组可以同外电路连接。换向器是直流电动机的结构特征,易于识别。

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

课程设计报告直流电机调速系统(单片机)

专业课程设计 题目三 直流电动机测速系统设计 院系: 专业班级: 小组成员: 指导教师: 日期:

前言 1.题目要求 设计题目:直流电动机测速系统设计 描述:利用单片机设计直流电机测速系统 具体要求:8051单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。 元件:STC89C52、晶振(12MHz )、小按键、ST151、数码管以及电阻电容等 2.组内分工 (1)负责软件及仿真调试:主要由完成 (2)负责电路焊接: 主要由完成 (3)撰写报告:主要由完成 3.总体设计方案 总体设计方案的硬件部分详细框图如图一所示: 单片机 PWM 电机驱动 数码管显示 按键控制

一、转速测量方法 转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。在频率的工程测量中,电子式定时计数测量频率的方法一般有三种: ①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为 f x =Nt(1) ②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。 ③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。 电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差; 另一项是量化±1 误差。当时基误差小于量化±1 误差一个或两个数量级时,这时测量准确度主要由量化±1 误差来确定。对于测频率法,测量相对误差为: Er1 =测量误差值实际测量值×100 % =1N×100 % (2) 由此可见,被测信号频率越高, N 越大, Er1 就越小,所以测频率法适用于高频信号( 高转速信号) 的测量。对于测周期法,测量相对误差为: Er2 =测量误差值实际测量值×100 % =1m0×100 % (3) 对于给定的时钟脉冲fc , 当被测信号频率越低时,m0 越大, Er2 就越小,所以测周期法适用于低频信号( 低转速信号) 的测量。对于多周期测频法,测量相对误差为: Er3 =测量误差值实际测量值100%=1m2×100 % (4) 从上式可知,被测脉冲信号周期数m1 越大, m2 就越大,则测量精度就越高。

直流电动机速度控制设计概述

第一章:概述 直流电动机是人类发明最早和应用的一种电机。与交流电机相比,直流电机因结构复、维护苦难,价格昂贵等缺点制约了它的发展,应用不及交流电机广泛。但由于直流电动机具有优良的启动、调速和制动性能,因此在工业领域中仍占有一席之地。 转速调节的主要技术指标是:调速范围D和负载变化时对转速的影响即静差率,以及调速时的允许负载性质等(静差率就是表示在负载变化时拖动装置转速降落的程度。静差率越小,表示转速稳定性越好,对生产机械,如机床加工的零件,其加工的精度及表面光洁度就越高)。而直流电动机的突出优点是恰好是能在很大的范围内具有平滑,平稳的调速性能,过载能力较强,热动和制动转矩较大。 因此,从可靠性来看,直流电动机仍有一定的优势。 调节直流电动机转速的方法有三种: (1)电枢回路串电阻; (2)改变励磁电流; (3)改变电枢回路的电源电压; 而本文从另一个角度来阐述直流电机的速度控制,即利用自动控制中的反馈来调节电机的平稳运行以达到各项性能指标。

第二章:系统数学模型 本系统的简化方框图为: 其对应的原理图为: 控制系统的被控对象为电动机(带负载),系统的输出量是转速w ,参数亮是Ui 。控制系统由给定电位器、运算放大器1(含比较作用)、运算放大器2(含RC 校正网络)、功率放大器、测速发电机、减速器等部分组成。 工作原理为:当负载角速度ω和电动机角速度m ω一致的时候,反馈电压为0,电机处于平衡状态即电动机运行稳定。当负载的角速度收到干扰的作用时,ω和m ω失谐,控制系 统通过反馈电压的作用来改变m ω直到达到新的一致使系统恢复稳定,电机稳定运行。

2.1直流电动机的数学模型: 直流电动机的数学模型。直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。图2.2是一个电枢控制式直流电动机的原理图。在这种控制方式中,激磁电流恒定,控制电压加在电枢上,这是一种普遍采用的控制方式。 设为输入的控制电压 电枢电流 为电机产生的主动力矩 为电机轴的角速度 为电机的电感 为电枢导数的电阻 为电枢转动中产生的反电势 为电机和负载的转动惯量 根据电路的克希霍夫定理 (2-1) 电机的主动转矩 (2-2) 其中为电机的力矩常数。 反电势 (2-3) 式中为电机反电势比例系数 力矩平衡方程

单片机控制直流电动机课程设计

目录 一、设计目的 二、设计任务和要求 三、设计原理分析 四、硬件资源及原理 五、硬件图 六、程序框图 七、程序 八、调试运行 九、仿真截图 十、设计心得体会

一、设计目的 1、通过单片机课程设计,熟练掌握C语言的编程方法,将理论联系到实践中,提高我们的动脑和动手的能力。 2、通过对单片机控制直流电动机控制系统的设计,掌握A/D转换、D/A转换的有关原理,加深对PWM波的理解和使用,同时对单片机的使用更加熟练,通过对简单程序的编写提高我们的逻辑抽象能力。 二、设计任务和要求 任务:采用单片机设计一个控制直流电动机并测量转速的装置。 要求: 1、通过改变A/D输入端的可变电阻来改变A/D输入电压,D/A输入检测量大小,进而改变直流电机的转速。 2、手动控制。在键盘上设置两个按键——直流电动机加速键和直流电机减速键。在手动状态下,每按一次键,电机的转速按照约定的速率改变。 3、键盘列扫描(4*6)。 三、设计原理分析 1. 设计思路 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR 为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。设计以AT89C51单片机为核心,以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。本文介绍了直流电机的工作原理和数学模型、脉宽调制控制原理和H桥电路基本原理设计了驱动电路的总体结构,根据模型,利用PROTEUS软件对各个子电路及整体电路进行了仿真,确保设计的电路能够满足性能指标要求,并给出了仿真结果。 2、基本原理 主体电路:即直流电机PWM控制模块。PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。这部分电路主要由80C51单片机的I/O端口、定时计数器、外部中断扩展等控制直流电机的加速、减速,并且可以调整电机的转速,还可以方便的读

直流电动机调速设计

直流电动机调速设计

直流电动机调速设计 一、要点: 加深对《电机与拖动》这门学科的理解,拓展知识面,并了解直流电动机调速在实际生产中的应用。 要在设计的过程中充分利用已经掌握的《电机与拖动》的知识来解决问题,要做到理论联系实践。 通过计算和绘图,学会运用标准、规范、手册、图册和查阅有关技术指标资料等,培养电机设计的基本技能。 掌握对直流电动机的三中调速方法; 掌握各种方法对直流电机调速的原理和步骤; 理解各种方法电机调速的优缺点; 培养独立思考问题和独立解决问题的能力。 二、原理: (一)、直流电动机的物理模型: 直流电动机的物理模型图 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 (二)、直流电动机的工作原理

(三)、直流电动机的励磁方式: (1)定义:直流电机产生磁场的励磁绕组的接线方式称为励磁方式,实质上就是励磁绕组和电枢绕组如何连接,就决定了它是什么励磁方式。 (2)分类:他励式和自励式 他励式:若励磁绕组不和电枢绕组连接,励磁绕组单独有其他电源供电的直流电机称为他励式直流电机。 自励式:分为串联式、并励式、复励式三种。 (四)、直流电动机的分类: 1、他励直流电动机; 2、并励直流电动机; 3、串励直流电动机; 4、复励直流电动机。 (五)、调速的含义: 在实际的生产过程中,很多方面都要求能改变电机的工作速度。例如金属切削机床,由于加工工件的精度要求不同,对电机工作时的速度的要求也就不同。所谓调速就是根据电力拖动系统的负载特系的特点,通过改变电动机的电源电压、电枢回路电阻或减弱磁通而改变来改变电动机的特性来人为的达到给系统调速的目的,以满足实际的工作需要的一种方法。 (六)、调速的方法有三种: 1、改变电枢电阻调速;

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电动机控制电路的设计

课程设计(论文) 题目名称直流电动机控制电路的设计 课程名称电力拖动基础课程设计 学生姓名周孝雄 学号0941202031 系、专业电气工程系、09自动化 指导教师邱雄迩 2011年12 月18 日

邵阳学院课程设计(论文)任务书 注: 1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):

邵阳学院课程设计(论文)评阅表 学生姓名周孝雄学号0941202031 系电气工程系专业班级09自动化班 题目名称直流电动机控制电路的设计课程名称电力拖动基础一、学生自我总结 二、指导教师评定 注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面;

当今,自动化控制系统在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。直流电动机应用如此之广,主要在于其采用了PWM脉宽调制电路来控制直流电动机的调速。在这里介绍了PWM脉宽产生的电路。该电路运用模拟电子电路基础知识完成,利用产生的方波信号带动负载转动。本设计原理简单,易于理解,电路实现简单。我们先概括介绍了电路中锁需要的电路模块,然后给出了整体的电路图,并做了测试及得出测试结果。 关键词:直流电动机,PWM,三极管

1绪论 (7) 1.1概述 (7) 1.2 直流电动机的基本理论 (7) 1.3直流脉宽调速系统 (10) 2 元器件介绍 (13) 2.1 SG2731 (13) 2.2 三极管C4466 和 A1693 (16) 3 系统设计方案 (17) 3.1直流电动机控制电路 (17) 4直流电动机控制电路的测试 (19) 4.1 测试步骤 (19) 4.2 测试结果 (19) 5实验总结 (21) 参考文献 (22)

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电动机起动实验

F 实验一直流电动机起动实验 一、实验目的 理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、 转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R =181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理 直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电 磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可 达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这 样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖 动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢 电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不 允许采用直接起动的。 四、实验步骤 1)建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2π =9.55。 2)计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“0” 电枢电阻 电枢电感估算R a =0.0870

直流电动机教学设计

直流电动机教学设计 教案是每个老师上课必备的讲课材料,但一份好的教案,也能决定一堂课的质量。如何备好教案呢?以下文章“直流电动机教学设计”由出国留学网为您提供,希望对您有所帮助!直流电动机教学设计(一)教学目的 1.知道直流电动机的原理和主要构造。2.知道换向器在直流电动机中的作用。3.了解直流电动机的优点及其应用。 4.培养学生把物理理论应用于实际的能力。(二)教具如课本图12—10的挂图和模型,两个箭头标志(可用饮料盒铝片制作),自制直流电动机模型(参见图12—2),直流电动机原理挂图一幅,小型直流电动机一台,学生电源一台。(三)教学过程1.复习提问:上节课我们做实验给磁场中的导体通电,发现了什么?(学生回答:通电导体在磁场中受力)。提问:这个力的方向与哪两个因素有关?(学生回答之后,教师强调:改变电流方向,或改变磁感线方向,导体受力方向就随着改变) 提问:出示如课本12—10甲的挂图和模型,根据上面的结论,通电线圈在磁场中是怎样受力的?(学生回答:ab边受力向上,cd边受力向下) 提问:在这两个力的作用下,线圈怎样运动?(学生回答:线圈会转动) 提问:这个现象中能量是怎样转化的?(学生回答:电能转化为机械能) 2.引入新课教师陈述:电动机就是利用通电线圈在磁场中受力而转动的现象制成的,它将电能转化成机械能。下面我们来研究电动机是如何利用上述现象制成的,当然,我们先讨论最简单的一种电动机—直流电动机。给出直流电动机定义,并板书:〈第五节直流电动机〉3.进行新课(1)使磁场中的通电线圈能连续转动的办法很多同学可能马上想到通电线圈在磁场中不能连续转动(转到平衡位置要停下来),而实际的电动机要连续转动。怎样解决这个问题呢?(此处可告诉学生把理论用于实际需要再付出很多劳动,还可简介各国对理论应用于实际的重视,以培养学生对应用科学的兴趣)要解决这个问题,我们还得进行深入研究。提问:在上节课的演示实验中,线圈转到平衡位置时是立即停止吗?为什么它不立即停止?(学生答:由于惯性线圈会稍转过平衡位置) 提问:转过平衡位置后,为什么它又转回来呢?(利用模型分析:转过平衡位置后,ab边受力仍朝上,cd边受力仍朝下,正是这一对力使线圈转回来的) 提问:要使线圈不转回来,应该在线圈刚转过平衡位置时就改变线圈的受力方向,即使线圈刚转过平衡位置就使ab边受力变为向下,cd边受力变为向上。怎样才能使线圈受力方向发生这样的改变呢? 引导学生回忆影响受力方向的两个因素,从而得出:应该在此时改变电流方向,或者改变磁感线方向。进一步引导学生分析:改变磁感线方向就是要及时交换磁极,显然这不容易做到;实际的直流电动机是靠及时改变电流方向来改变受力方向的。板书:〈1.使磁场中的通电线圈连续转动,就要每当线圈刚转过平衡位置,就改变一次电流方向。〉(2)换向器提问:怎样才能使线圈刚转过平衡位置时就及时改变电流方向呢? 让学生想办法并开展讨论,教师下去了解学生的情况并鼓励和指导。教师出示:两个半圆铝环和电刷,指出:靠这两样东西就可以解决问题。待学生思考片刻,教师出示已准备的与课本图12—12相似的模型,说明铝环与线圈的连接情况和铝环与电刷的配合过程。引出换向器的概念并板书:〈2.换向器的作用:当线圈刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动。〉让学生仔细观察课本图12—12,进一步弄清楚线圈转动过程,重点是甲图和丙图,回答教师填空式的提问:甲图:电流方向是a→b→c→d,受力方向是ab边受力向上,cd边受力向下,转动方向是顺时针。丙图:电流方向是d→c→b→a,受力方向是ab边受力向下,cd边受力向上,转动方向是顺时针。(3)直流电动机的构造出示:直流电动机,介绍主要构造:磁极、线圈、换向器、电刷。板书:〈3.直流电动机的构造〉演示:给直流电动机通电转动,提高学生兴趣(若时间不允许,可省些演示)。告诉学生:下节课同学们将自己装一台小直流电动机,进一步弄清楚它的有关知识。让学生阅读课文最后两个自然段,了解直流电动机的优点和应用。4.小结(略) 5.作业:(不要求笔做) (1)预习下节内容。(2)比较直流电动机和交流发电机,从原理、构造和能量转化等方面说出它们的区别。(四)说明 1.本节采用程序性的提问和讨论,启发学生弄清

电力电子课程设计报告 直流电机驱动

南京工程学院 自动化学院 电力电子技术课程设计报告题目:直流电机的脉宽调速驱动电源的设计专业:自动化(自动化)___________ 班级:保密 学号: 保密 学生姓名:保密 指导教师:保密 起迄日期:2014.12.23~2014.12.25 设计地点: 工程实践中心4-207

目录 直流电机的脉宽调速驱动电源的设计 (3) 一、引言 (3) 1.1、课题研究现状 (3) 1.2、课题背景及研究意义 (3) 二、设计任务 (4) 三、设计方案选择及论证 (5) 3.1、控制电路的方案选择 (5) 3.2、辅助电源的方案选择 (5) 3.3、过电流检测电路的方案选择 (5) 3.4、主电路的方案选择 (6) 3.5、驱动电路的方案选择 (6) 四、总体电路设计 (7) 五、功能电路设计 (8) 5.1、辅助电源的设计 (8) 5.2、驱动电路的设计 (8) 5.3、控制电路的设计 (9) 5.4、检测电路的设计 (11) 5.5、主电路的设计 (12) 六、电路制作与焊接 (14) 七、调试与总结 (15) 7.1、实际调试 (15) 7.1.1、调试过程 (15) 7.1.2、输出波形及说明 (16) 7.1.3、实物图 (18) 7.2 、总结与收获 (18) 八、参考文献 (20) 九、附录 (21) 9.1总体电路原理图 (21) 9.2、BOM表 (21)

直流电机的脉宽调速驱动电源的设计 一、引言 1.1、课题研究现状 直流电动机是最早出现的电动机,也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。 近年来,直流电动机的结构和控制方式都发生了很大变化。随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制(PulseWidthModulation,简称PWM)控制方式已成为绝对主流。这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。 1.2、课题背景及研究意义 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。长期以来,直流电动机因其转速调节比较灵活,方法简单,易于大范围平滑调速,控制性能好等特点,一直在传动领域占有统治地位。它广泛应用于数控机床、工业机器人等工厂自动化设备中。

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 :又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控 制,是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

他励直流电动机启动

运动控制系统课程设计 课题:他励直流电动机启动 系别:电气与信息工程学院 专业: 学号: 姓名: 指导教师:

城建学院 2015年1月4日 成绩评定· 一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。

二、评分 课程设计成绩评定

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计容 (1) 3.1、直流电动机 (1) 3.1.1直流电动机 (1) 3.1.2直流电动机的分类 (2) 3.1.3他励直流电机工作原理 (2) 3.2 他励直流电动机的启动 (3) 3.2.1 他励直流电动机串电阻启动 (3) 3.2.2 直流电动机电枢串电阻起动设计方案 (6) 3.2.3 多级启动的规律 (7) 3.3 结论 (7) 3.4他励直流电动机串电阻起动特性分析 (8) 四、设计体会 (10) 五、参考文献 (10)

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算;课程设计报告的整理工作。 三、设计容 有一台他励直流电动机,已知参数如下Pan=200kw ;Uan=440v ;Ian=497A ;Nn=1500r/min;Ra=0.076Ω;采用分级启动,启动电流最大不超过2IA,,求出各段电阻值,并作出机械特性曲线,对启动特性进行分析。 他励直流电动机的启动时间虽然很短,但是如果不能采用正确的启动方法,电动机就不能正常地投入运行。为此,应对电动机的启动过程和方法进行必要的分析。 直接启动时,他励直流电动机电枢加额定电压Un,电枢回路不串任何电阻,此时由于n=0,Ea=0,所以启动电流Ist=Un/Ra,由于电枢回路总电阻Ra较小,所以Ist可以达到额定电流In的十几甚至几十倍。这样大的电流可能造成电机换向严重不良,产生火花,甚至正、负电刷间出现电弧,烧毁电刷及换向器。另外,过大的启动电流使启动转矩Tst过大,会使机械撞击,也会引起供电电网电波动,从而引起其他接于同一电网上的电气设备的正常运行,因此是不允许的。一般只有微型直流电动机,由于自身电枢电阻大,转动惯量小,启动时间短,可以直接启动,其他直流电机都不允许直接启动。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法。他励直流电动机在电枢回路中串电阻,具有良好的启动特性、较大的启动转矩和较小的启

相关主题
文本预览
相关文档 最新文档