行列式的展开法则
- 格式:doc
- 大小:240.00 KB
- 文档页数:4
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得 定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数显然(,)xy f x y =δ. 2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号例3.5 1)若正整数i j ≠,则2)仿克罗内克符号有缺项定位功能. 在序列 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列 中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++O OO .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ONN O.。
行列式展开与应用例题和知识点总结一、行列式的定义行列式是一个数值,它是由一个 n 阶方阵的元素按照一定的规则计算得到的。
对于一个二阶方阵 A = a b; c d,其行列式的值为 ad bc。
对于一个三阶方阵 A = a11 a12 a13; a21 a22 a23; a31 a32 a33,其行列式的值可以通过以下公式计算:|A| = a11(a22a33 a23a32) a12(a21a33 a23a31) + a13(a21a32a22a31)二、行列式的展开法则1、二阶行列式的展开对于二阶行列式|a b; c d|,其展开式为 ad bc。
2、三阶行列式的展开三阶行列式可以按照某一行(或列)展开。
例如,按第一行展开:|a11 a12 a13; a21 a22 a23; a31 a32 a33| = a11 × M11 a12 × M12 +a13 × M13其中,Mij 是元素 aij 的余子式,即去掉第 i 行和第 j 列后剩下的元素构成的二阶行列式的值,再乘以(-1)^(i + j)。
3、 n 阶行列式的展开n 阶行列式可以按照任意一行(或列)展开,其展开式是一个线性组合。
三、行列式的性质1、行列式与它的转置行列式相等。
2、互换行列式的两行(列),行列式的值变号。
3、行列式中某行(列)的元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
四、行列式的应用例题例 1:计算行列式|2 1; 3 4|解:根据二阶行列式的展开公式,该行列式的值为 2×4 1×3 = 8 3 = 5例 2:计算三阶行列式|1 2 3; 4 5 6; 7 8 9|解:我们可以按第一行展开:|1 2 3; 4 5 6; 7 8 9| = 1×(5×9 6×8) 2×(4×9 6×7) + 3×(4×85×7)= 1×(-3) 2×(-6) + 3×(-1)=-3 + 12 3= 6例 3:已知行列式|a b c; d e f; g h i| = 4,求行列式|2a 2b 2c; 3d 3e 3f; 4g 4h 4i|的值。
行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。
行列式展开定理行列式展开定理是线性代数中的重要定理之一,它是计算行列式的一个有效方法。
行列式是一个与矩阵相关的数值,它对于矩阵的性质和变换具有重要的作用。
行列式展开定理的全称为“按某一行(列)展开”,它是通过一系列代数运算将一个n阶行列式转化为n-1阶行列式来计算行列式的方法。
设A是一个n阶矩阵,其行列式用det(A)表示。
行列式展开定理可以按任意一行或一列展开,我以按行展开为例。
设A的第i行的元素为a[i1]、a[i2]、……、a[in],则根据行列式展开定理,行列式的展开可以表示为如下形式:det(A) = a[i1]∙A[i1] + a[i2]∙A[i2] + … +a[in]∙A[in]其中A[i]表示经过去掉第i行和第j列后的(n-1)阶子矩阵的行列式。
我们可以继续展开每个A[i],直到展开到2阶行列式或者1阶行列式为止。
对于2阶行列式,计算公式为:det(B) = b11∙b22 - b12∙b21其中B是2阶矩阵,b11、b12、b21、b22为矩阵B的元素。
对于1阶行列式,计算公式为:det(C) = c11其中C是一个1阶矩阵,c11为矩阵C的元素。
通过不断展开每个子矩阵,并根据2阶和1阶行列式的计算公式,我们最终可以将n阶行列式的计算转化为一系列的代数计算,从而得到行列式的具体数值。
行列式展开定理的应用非常广泛,例如在解线性方程组、求逆矩阵、计算行列式的值等方面都有重要的作用。
它不仅可以帮助我们更深入地理解矩阵的性质,还能够为我们提供一种高效的计算方法。
总之,行列式展开定理是线性代数中的重要定理之一,它通过一系列代数运算将n阶行列式转化为n-1阶行列式来计算行列式的值,具有广泛的应用价值。
行列式运算法则行列式是线性代数中的重要概念,它在矩阵运算和方程组求解中起着重要作用。
行列式的计算方法多种多样,其中包括了一些重要的运算法则。
本文将介绍行列式运算法则的相关知识,包括展开定理、性质和计算方法等内容。
1. 展开定理展开定理是计算行列式的重要方法之一。
对于一个n阶行列式,可以通过展开定理将其转化为n-1阶行列式的求解。
展开定理的具体表达式如下:对于n阶行列式:\[D=\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]可以通过其中的某一行或某一列展开,得到:\[D=a_{i1}C_{i1}+a_{i2}C_{i2}+\cdots+a_{in}C_{in}\] 或\[D=a_{1j}C_{1j}+a_{2j}C_{2j}+\cdots+a_{nj}C_{nj}\]其中,\(C_{ij}\)是代数余子式,定义为去掉第i行第j列后剩余元素构成的n-1阶行列式乘以\((-1)^{i+j}\)。
通过展开定理,可以将一个n阶行列式转化为n-1阶行列式的求解,从而简化计算。
2. 行列式的性质行列式具有许多重要的性质,这些性质在计算和理论推导中起着重要作用。
下面列举几条常见的性质:(1)行列式与其转置行列式相等:即对于任意n阶方阵A,有\(det(A)=det(A^T)\)。
(2)行列式的某一行(列)乘以常数k,等于行列式乘以k:即对于n阶行列式D,有\(k\cdot det(A)=det(kA)\)。
(3)行列式中有两行(列)相等,则行列式为0:即如果行列式中有两行(列)元素完全相同,则行列式的值为0。
行列式的展开定理
行列式的展开定理是指给定一个n阶行列式A,n≥1,对A进行展开,则A等于其各行中任取一项,乘上对于这一项的代数余子式,按行号排列
的和。
展开定理的主要思想是求解行列式,可以将原本n阶行列式简化为二
阶行列式,逐渐简化,最后变为一阶行列式,其值即为最终求出的行列式值。
展开定理的乘积分配律为:对于一个n阶行列式A,其中的任一一行
乘以一个常数c,那么这个行列式的值就相应乘以一个常数c。
展开定理的符号表示方法为:记A为行/列式,aij表示A的第(i,
j)项。
通常情况下,行列式展开定理表示为:
A=a11|A11|+a12|A12|+…+ain|Ain|,其中|Aij|表示行列式A的第i
行第j列的余子式。
经常使用的展开定理有两种:一类是Sarrus定理,一类是Laplace
定理。
Sarrus定理:3阶行列式可以按照a11,a12,a21,a22,a31,a32的顺序
展开,即A=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-
a11a23a32。
Laplace定理:n阶行列式可以按照每行或每列任取一项,乘以这一
项的代数余子式,按行号或列号排列求和。
【DOC】行列式的展开法则行列式是线性代数中的重要概念之一,它可以用于求解线性方程组、矩阵的逆、矩阵的秩等问题。
展开法则是求解行列式的一种方法,其基本思想是利用行列式的性质,在行(或列)上进行化简,直到得到一个简单的行列式,然后根据行列式的性质进行计算。
本文将介绍行列式的展开法则及其相关性质。
一、定义行列式是一个由数构成的方阵,其计算方式如下:$$ \begin{vmatrix}a_{11}& a_{12}& \cdots&a_{1n}\\ a_{21}& a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}& \cdots&a_{nn}\end{vmatrix}=\sum_{\sigma}\operatorname{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma( 2)}\cdots a_{n\sigma(n)} $$其中,$\sigma$ 是从 $n$ 个数 $1,2,\cdots,n$ 中选取 $n$ 个数的一个排列,$\operatorname{sgn}(\sigma)$ 是排列 $\sigma$ 的逆序数,$a_{i\sigma(i)}$ 是第$i$ 行 $\sigma(i)$ 列的元素。
例如,当 $n=2$ 时,行列式为:$$ \begin{vmatrix}a_{11}& a_{12}\\ a_{21}& a_{22}\\\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} $$二、展开法则1. 拉普拉斯展开法则拉普拉斯展开法则是行列式展开法则中最基本的一种。
它的基本思想是:对于一个$n$ 阶行列式 $D$,选取其中任意一行(或一列)进行展开,得到 $n-1$ 阶行列式,然后递归地对 $n-1$ 阶行列式进行展开,直到得到 $2$ 阶行列式为止,在计算过程中交替改变符号。
行列式计算法则行列式是线性代数中一个重要的概念,它在矩阵和向量运算中起着重要的作用。
在本文中,我们将讨论行列式的计算法则,包括展开定理、性质和应用。
1. 展开定理行列式的展开定理是计算行列式的重要方法之一。
对于一个n 阶行列式A,可以通过展开定理将其转化为n-1阶行列式的和的形式。
展开定理的具体形式如下:\[|A| = \sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij}\]其中,\(a_{ij}\)表示矩阵A的第i行第j列的元素,\(M_{ij}\)表示剩余元素构成的n-1阶行列式,\(i\)和\(j\)分别表示所选取的行和列。
通过展开定理,可以将一个n阶行列式转化为n-1阶行列式的和的形式,从而简化行列式的计算过程。
2. 性质行列式具有许多重要的性质,这些性质对于行列式的计算和应用都具有重要的意义。
其中一些重要的性质包括:- 交换性质:行列式中交换两行(列)的位置,行列式的值相反。
- 线性性质:如果行列式的某一行(列)可以表示为两个向量的线性组合,那么该行列式可以表示为两个行列式的和。
- 数乘性质:如果行列式的某一行(列)所有元素都乘以一个数k,那么行列式的值也乘以k。
这些性质为行列式的计算提供了重要的理论基础,同时也为行列式的应用提供了便利。
3. 应用行列式在线性代数和相关领域中有着广泛的应用。
其中一些重要的应用包括:- 线性方程组的求解:通过行列式的方法可以求解线性方程组的解,特别是对于n阶线性方程组,行列式的方法是一种重要的求解手段。
- 矩阵的求逆:矩阵的逆可以通过行列式的方法求解,行列式为0的矩阵没有逆矩阵,而非零行列式的矩阵存在逆矩阵。
- 线性变换的性质:行列式可以用来判断线性变换是否保持了面积或体积的性质,从而对线性变换的性质进行分析。
通过行列式的计算和应用,我们可以更好地理解线性代数中的重要概念,同时也可以解决实际问题中的相关计算和分析。
总结行列式是线性代数中的重要概念,它通过展开定理、性质和应用为线性代数和相关领域的计算和分析提供了重要的方法和工具。
03. 行列式的展开法则 一、按一行(列)展开法则
定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式
1)
x
y x y
y
x
; 2)
11
1111
1
21n n
----
; 3)121111n n n
a a x
D a x
a x
---=
-
.
解 1)按1c 展开得
原式1
111111(1)(1)n n n n n n n xA yA xx
y y x y -+-+=+=+-=+-. 2)原式
121
(1)
(12)2
n n nn n c c c c n n n A c -++++++++=
按展开
. 3)法1 按1r 展开得
()
112112121223121211(,,,)(,,)
(,,).
()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=
法2 在n D 中,元素(21)i a i n ≤≤-的余子式为
1111
1
(1)11
i n i i x x M x x x x
-----=
=---
.
将n D 按1c 展开得
11211211
(1)n
i n n n i i n n i D a M a x a x a x a +---==-=++++∑ .
法3 1
12
1
21211212110
1,1,,2
10
i i n
n n n n n n n
a a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++
12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=
法4 按n r 展开得
11121
2
121.
n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++
定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;
11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,
其中
1,;
0,ij i j i j
=⎧=⎨
≠⎩当当δ
为克罗内克(Kronecker )符号.
例3.3 1)二元(实)函数
1,;(,)0,.x y f x y x y =⎧=⎨
≠⎩
当当 显然
(,)xy f x y =δ.
2)diag(1,1,,1)[]ij n n ⨯= δ.
例3.4 设四阶行列式121221
12202112
34
D =
. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.
行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号
1,;
0,.
ij i j i j <⎧=⎨
>⎩当当ρ 例3.5 1)若正整数i j ≠,则
1.ij ji +=ρρ
2)仿克罗内克符号有缺项定位功能. 在序列
124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列
12467,,,,a a a a a
中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.
3)仿克罗内克符号有描述逆序功能.
s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,
121()t s
n j j s t n
j j j ≤<≤=
∑
τρ.
例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式
122131121(,,,)()()()(,,)
().
n n n j i i j n
V a a a a a a a a a V a a a a ≤<≤=---=
-∏
例3.7 填空
11112345
_____49162582764125----=----.
例3.8 设0abcd ≠,求证
222211(,,,)11a a bcd b b acd
V a b c d c c abd d d abc
=-.
例3.9 计算n 阶三对角行列式
111n a b ab a b ab D a b ab
a b
++=++ .
二、按多行(列)展开法则
定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212
A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,
k 阶子方阵、k 阶子式;
n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式
1212()()(1)k k i i i j j j A M +++++++=- ,
k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.
例3.10 设55[]A ij a ⨯=.
1)25135A ⎛⎫
⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫
⎪⎝⎭
为其余子阵;
2)1325A ⎛⎫
⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫
⎪⎝⎭
为对应余子式,而对应代数余子式为
(13)(25)245245(1)134134A A +++⎛⎫⎛⎫
-=- ⎪ ⎪⎝⎭⎝⎭
;
3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫
⎪
⎝⎭
是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫
⎪⎝⎭
,是A 的一个2阶主子式;
4)A 共有五个顺序主子阵(式).
定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理
1122C C ||A k k n
n
N A N A N A =+++ .
例3.11 计算四阶行列式
12345001
123651
12
D -=
--.
例3.12 计算六阶行列式
111000234000
31016
111110
1112
4
1124316
1139
D =
---.
例3.13 计算六阶行列式
120000350000635475
12458324006427003
4
D -=
-.
例3.14 计算叉形行列式
1)1
1
211
n n n n
n
a b a b D c d c d =
;
2)1
1
211
1
n
n n n
n
a b a b D e c d c d +=
.。