π的倍值表
- 格式:doc
- 大小:38.00 KB
- 文档页数:1
圆周率π圆周率(π,读作pài)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。
它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。
而用十位小数3.141592654便足以应付一般计算。
即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
记号π是第十六个希腊字母的小写。
π这个符号,亦是希腊语περιφρεια(表示周边,地域,圆周等意思)的首字母。
1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率。
1736年,瑞士大数学家欧拉也开始用π表示圆周率。
从此,π便成了圆周率的代名词。
历史发展实验时期一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率= 25/8 = 3.125。
同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
埃及人似乎在更早的时候就知道圆周率了。
英国作家John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。
公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
几何法时期古希腊作为古代几何王国对圆周率的贡献尤为突出。
古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。
阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
SCIENTIFIC ACHIEVEMENTS科海泛舟263.14……还记得圆周率吗?3月14日是国际圆周率日。
如果现在突然要你背π的值,你能背到几位?话说回来,只要能记得3.1415926,回到古代就够你用的了。
27长的方法。
刘徽先从圆内接正六边形,逐次分割一直算到圆内接正192边形,得出圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积。
刘徽最后计算出,圆周率约等于3.1416。
到南北朝时期,祖冲之(429 ~500)在刘徽基础上继续割圆,他割到了24576边型,最终得出圆周率在3.1415926和3.1415927之间的结论。
祖冲之成为世界上第一位将圆周率值计算到小数第7位的科学家。
到了15世纪,阿拉伯数学家卡西初求得圆周率17位精确小数值,这才打破祖冲之保持了近千年的纪录。
数学家鲁道夫·范·科伊伦(Ludolph van Ceulen,1540年1月28日~1610年12月31日)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
电脑时代的十万亿位随着电脑的诞生,让圆周率的计算得以进一步加强。
1946年2月14日,世界上第一台通用计算机ENIAC 诞生,这也是继ABC(阿塔纳索夫-贝瑞计算机)之后的第二台电子计算机。
1949年,冯·诺依曼等科学家利用这部电脑计算出π的2037个小数位。
1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。
2010年1月7日,法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。
2011年10月16日,日本人近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,在最后,给出一下π费曼点的767位。
圆周率“π”的由来来源很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把π值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了1706年,英国数学麦欣首先发现其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到的过似值.假定在平面上画一组距离为的平行线,向此平面任意投一长度为的针,若投针次数为,针马平行线中任意一条相交的次数为,则有,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取,则该式化简为1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……。