F界值表
- 格式:doc
- 大小:69.50 KB
- 文档页数:4
第五章 方差分析一、教学大纲要求(一)掌握内容 1.方差分析基本思想(1) 多组计量资料总变异的分解,组间变异和组内变异的概念。
(2) 多组均数比较的检验假设与F 值的意义。
(3) 方差分析的应用条件。
2.常见实验设计资料的方差分析(1)完全随机设计的单因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(2)随机区组设计资料的两因素方差分析:适用的资料类型、总变异分解(包括自由度的分解)、方差分析的计算、方差分析表。
(3)多个样本均数间的多重比较方法: LSD-t 检验法;Dunnett-t 检验法;SNK-q 检验法。
(二)熟悉内容多组资料的方差齐性检验、变量变换方法。
(三)了解内容两因素析因设计方差分析、重复测量设计资料的方差分析。
二、教学内容精要(一) 方差分析的基本思想 1. 基本思想方差分析(analysis of variance ,ANOV A )的基本思想就是根据资料的设计类型,即变异的不同来源将全部观察值总的离均差平方和(sum of squares of deviations from mean ,SS )和自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如各组均数的变异SS 组间可由处理因素的作用加以解释。
通过各变异来源的均方与误差均方比值的大小,借助F 分布作出统计推断,判断各因素对各组均数有无影响。
2.分析三种变异(1)组间变异:各处理组均数之间不尽相同,这种变异叫做组间变异(variation among groups ),组间变异反映了处理因素的作用(处理确有作用时 ),也包括了随机误差( 包括个体差异及测定误差 ), 其大小可用组间均方(MS 组间)表示,即 MS 组间= 组间组间ν/SS , 其中,SS 组间=21)(x xn ki ii -∑= ,组间ν=k -1为组间自由度。
第九章方差分析【思考与练习】一、思考题1. 方差分析的基本思想及其应用条件是什么?2. 在完全随机设计方差分析中SS SS SS、、各表示什么含义?总组间组内3. 什么是交互效应?请举例说明。
4. 重复测量资料具有何种特点?5. 为什么总的方差分析的结果为拒绝原假设时,若想进一步了解两两之间的差别需要进行多重比较?二、最佳选择题1. 方差分析的基本思想为A. 组间均方大于组内均方B. 误差均方必然小于组间均方C. 总变异及其自由度按设计可以分解成几种不同来源D. 组内方差显著大于组间方差时,该因素对所考察指标的影响显著E. 组间方差显著大于组内方差时,该因素对所考察指标的影响显著3. 完全随机设计的方差分析中,下列式子正确的是4. 总的方差分析结果有P<0.05,则结论应为 A. 各样本均数全相等 B. 各总体均数全相等 C. 各样本均数不全相等 D. 各总体均数全不相等 E. 至少有两个总体均数不等5. 对有k 个处理组,b 个随机区组的资料进行双因素方差分析,其误差的自由度为 A. kb k b -- B. 1kb k b --- C. 2kb k b --- D. 1kb k b --+ E. 2kb k b --+6. 2×2析因设计资料的方差分析中,总变异可分解为 A. MS MS MS =+B A 总 B. MS MS MS =+B 总误差 C. SS SS SS =+B 总误差D. SS SS SS SS =++B A 总误差E. SS SS SS SS SS =+++B A AB 总误差7. 观察6只狗服药后不同时间点(2小时、4小时、8小时和24小时)血药浓度的变化,本试验应选用的统计分析方法是 A. 析因设计的方差分析B. 随机区组设计的方差分析C. 完全随机设计的方差分析D. 重复测量设计的方差分析E. 两阶段交叉设计的方差分析8. 某研究者在4种不同温度下分别独立地重复10次试验,共测得某定量指标的数据40个,若采用完全随机设计方差分析进行统计处理,其组间自由度是A.39B.36C.26D.9E. 39. 采用单因素方差分析比较五个总体均数得0.05P ,若需进一步了解其中一个对照组和其它四个试验组总体均数有无差异,可选用的检验方法是A. Z检验B. t检验C. Dunnett–t检验D. SNK–q检验E. Levene检验三、综合分析题1. 某医生研究不同方案治疗缺铁性贫血的效果,将36名缺铁性贫血患者随机等分为3组,分别给予一般疗法、一般疗法+药物A低剂量,一般疗法+药物A高剂量三种处理,测量一个月后患者红细胞的升高数(102/L),结果如表9-1所示。
第十四章 直线回归分析【思考与习题】一、思考题1.试述建立直线回归方程的步骤以及散点图的作用。
2.如何将方差分析运用于回归系数的假设检验简述其思想。
3.简述直线相关和直线回归的区别与联系。
4.对回归系数进行假设检验可以采用哪些方法二、案例辨析题某研究采用火箭电泳法对已知浓度的标准血清进行测量,其免疫球蛋白IgA 浓度(μg/ml)和火箭电泳高度(mm)如表14-1所示。
研究者据此数据建立直线回归方程,用于测定未知样品血清中的IgA 浓度,以上分析正确吗~表14-1 标准品的IgA 浓度(μg/ml)和火箭电泳高度(mm)】采用最小二乘法建立直线回归方程,得到ˆ 5.335 1.599yx =+,经假设检验得001.0<P ,故此回归方程可用于测定未知样品血清中的IgA 含量。
标准品的IgA 浓度 x火箭电泳高度 y…。
三、最佳选择题 |1. 对于一组服从双变量正态分布的资料,经直线相关分析得相关系数0r >,若对该资料拟合回归直线,其回归系数 A .0b > B .0b < C .0b = D .11b -<< E .1>b2. 一组服从双变量正态分布的资料,经直线相关分析得相关系数1r =-,则有 A .SS =残总SS B .SS SS =残回 C .SS SS =总回 【D .回残MS MS =E .回总MS MS =3.直线回归中x 与y 的标准差相等时,则有 A .b a = B .b r =C .1b =D .1r =E .1a =4.若直线回归系数0b =,则一定有 A .截距等于0 @B .截距等于yC .SS 残等于0D .SS 总等于0E .SS 残等于SS 回5.两组服从双变量正态分布的资料,若两样本12b b =,12n n >,则有A .12r r >B .12b b t t =C .12r r >D .11b r t t =E .12r r t t =]6.最小二乘法的原理是各观测点A .距回归直线的纵向距离相等B .距回归直线的纵向距离平方和最小C .距回归直线的垂直距离相等D .距回归直线的垂直距离平方和最小E .距回归直线的纵向距离最小7.直线回归分析中,按直线方程ˆ0.0040.0588yx =+,代入两点绘制回归直线,以下选项中正确的是A .所有实测点都应在回归直线上B .所绘回归直线必过点(,)x yC .回归直线必过原点-D .x 的取值范围为[1,1]-E .实测值与估计值之差的平方和必小于零8.同一资料进行直线回归与直线相关分析时,下列说法正确的是 A .0ρ=时,则0r = B .||0r >时,则0b >C .0r <时,则0b >D .0r <时,则0b <E .||1b ≤四、综合分析题 ~1. 为了研究女大学生胸围(cm)与肺活量(L)的关系,随机抽取某高校一年级女生15名,测量其胸围与肺活量数据如表14-2所示。
1.首先,我们应该拿出F检验表来了解自由度。
例如,当a = 0.01时,找到a = 0.01的表;
2.下图中的红线显示了F分布,其中分位数为0.90,自由度为(6,8)。
首先,选择分位数为0.90的分位数表,然后在对应于低于6的列的上一行中找到6。
3.然后在左列中找到8,对应于8。
4.最后,它们相交的数字是F分布的值,分位数为0.90,自由度为(6,8)。
应当注意,f是具有两个自由度的不对称分布,并且该位置不可互换。
F分布表的横坐标为x,纵坐标为y。
对于每个分位数,f0.05(7,9)的表的横坐标为0.05,分位数为7,纵坐标为9。
扩展数据:
一类随机事件具有两个特征:第一,可能结果的数量有限;其次,每个结果的概率是相同的。
这两种经典现象称为“随机现象”。
在客观世界中,存在许多随机现象,并且随机现象的结果构成了随机事件。
如果使用变
量来描述随机现象的结果,则称为随机变量。
随机变量可以根据其值分为离散随机变量和非离散随机变量。
所有可能的值都可以按一定顺序一一列出,这种随机变量称为离散随机变量;如果可能的值充满一个间隔并且无法按顺序列出,则此随机变量称为非离散随机变量。
在离散随机变量的概率分布中,二项式分布简单且被广泛使用。
如果随机变量是连续的,则具有分布曲线
有一个特殊且常用的分布,其分布曲线是规则的,即正态分布。
正态分布曲线取决于随机变量的某些特征,其中最重要的是平均值和差异程度。
平均值也称为数学期望值,差异度为标准偏差。