人教版数学九年级下册 29.2三视图(第三课时) 导学案
- 格式:docx
- 大小:26.02 KB
- 文档页数:2
第二十九章投影与视图29.2 三视图课时3 三视图与展开图【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】1.经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象能力.2.通过观察探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.【情感态度与价值观】1.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.2.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.3.通过学生对“三视图”的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.根据物体的三视图描述出几何体的基本形状或实物原型.根据物体的三视图想象几何体的形状.多媒体课件.导入一:【复习提问】1.画一个立体图形的三视图时要注意什么?2.说一说直三棱柱、圆柱、圆锥、球的三视图.【师生活动】教师提出问题,学生回顾上节课内容并作出回答,教师点评.导入二:【课件展示】动手操作:下图是一根钢管,画出它的三视图.【师生活动】学生独立完成后小组交流答案,小组代表板演,教师点评,最后强调易错点:画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.解:如图是钢管的三视图,其中的虚线表示钢管的内壁.[设计意图]通过有针对性的复习引入新课,让学生初步了解研究三视图是生活的需要,激发学生的学习兴趣,同时为本节课的学习做好铺垫.[过渡语]上节课我们讨论了由立体图形(实物)画出三视图,那么由三视图能否想象出立体图形(实物)呢?这就是我们这节课要探究的内容.一、观察体验欣赏机械制图中三视图与对应的立体图形的图片,说说三视图与对应的立体图形有怎样的关系.【师生活动】教师出示图片,学生观察,探讨二者之间的关系,初步感知由图想物的过程.[设计意图]学生通过观察探讨三视图与立体图形之间的对应关系,培养学生的空间观念,为新课的探索做好铺垫,同时通过认识三视图与其对应的立体图形在工件生产中的作用,使学生感受知识的应用价值,激发学生学习数学的兴趣.二、探究新知如图,分别根据三视图说出立体图形的名称.思路一学生通过自主学习解答.【师生活动】学生独立思考后小组合作交流,尝试画出立体图形,板书答案,教师巡视过程中帮助有困难的学生,点评结果,强调注意事项.解:(1)从三个方向看立体图形,视图都是矩形,可以想象出这个立体图形是长方体,如图(1).(2)从正面、侧面看立体图形,视图都是等腰三角形,从上面看,视图是带圆心的圆,可以想象这个立体图形是圆锥,如图(2).【归纳】由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.思路二教师引导分析解答.【思考】(1)长方体与圆锥的三视图分别是什么形状?(2)如果一个物体的三个视图均是长方形,那么这个物体是什么形状?(3)如果一个物体的主视图和左视图是等腰三角形,俯视图是带圆心的圆,那么这个物体的形状是什么?(4)由三视图想象几何体,分别通过观察哪个视图确定几何体的前面、左面和上面?【师生活动】学生在教师提出的问题下思考回答,然后尝试画出立体图形,教师及时点评,最后归纳总结.解:(同思路一)【归纳】(同思路一)根据物体的三视图(如图),描述物体的形状.教师引导分析:由主视图可知,物体正面是;由俯视图可知,由上向下看物体有两个面的视图是,且有一条棱(中间的实线表示)可见到,两条棱(虚线表示)被遮挡;由左视图知,物体的左侧有两个面的视图是,且有一条棱(中间的实线表示)可见到.综合各视图可知,物体的形状是. 【师生活动】教师引导学生总结由图想物的基本方法,学生结合例题小组讨论交流,师生共同归纳总结.解:物体是正五棱柱形状的,如下图.【追问】仔细观察以上两题的解题思路,由视图还原立体图形时应注意什么? 【师生活动】学生独立思考后小组合作交流,师生共同归纳结论.【结论】主视图反映物体的长和高,主要提供正面的形状;左视图反映物体的高和宽,主要提供左侧面的形状;俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)教师引导分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际生产中,三视图和展开图往往结合在一起使用.解决本题的思路是先由三视图想象出密封罐的形状,再进一步画出展开图,从而计算面积.【思考】(1)根据三视图,该物体的形状是什么?(2)该立体图形的展开图是什么?(3)如何求立体图形展开图的面积?(1)【师生活动】教师引导学生分析解题思路,学生思考问题后独立完成,小组内交流答案,教师巡视过程中帮助有困难的学生,对学生的答案进行点评,规范解题格式.解:由三视图可知,密封罐的形状是正六棱柱(如图(1)).密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,如图(2)是它的展开图.(2)由展开图可知,制作一个密封罐所需钢板的面积为:6×50×50+2×6××50×50sin60°=6×502×≈27990(mm2).[设计意图]学生在教师的引导下分析、观察、思考、想象、讨论,由三视图得出对应的实物,进一步掌握由图想物的技能,培养学生的空间想象能力,发展学生的空间观念,同时小组合作交流,提高学生与他人合作的能力.例3是例1、例2的拓展,由图到物,再由物到图,提高学生分析问题、解决问题的能力.[知识拓展](1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状或实物原型时,必须将各视图对照起来看.(2)一个摆好的几何体的三视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性.例如,正放的正方体的主视图是正方形,但主视图是正方形的几何体还可能是长方体、圆柱等.1.由三视图到立体图形.(1)由一个视图不能确定物体的空间形状,根据三视图描述几何体形状时,必须将各视图对照起来看.(2)一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体或实物时,它有多种可能.(3)对于较复杂的物体,由三视图想象物体的原型时,应搞清三个视图之间的前后、左右、上下的对应关系.2.由三视图还原立体图形时应注意:(1)主视图反映物体的长和高,主要提供正面的形状;(2)左视图反映物体的高和宽,主要提供左侧面的形状;(3)俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.第2课时1.观察体验2.探究新知例1例2例3一、教材作业二、课后作业【基础巩固】1.如图是某几何体的三视图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥2.如图是某几何体的三视图,则该几何体的形状是()A.长方体B.圆锥C.圆柱D.三棱柱3.一个几何体的三视图如图,则该几何体可能是()4.已知一个正棱柱的俯视图和左视图如下图,则其主视图是()5.某几何体的三视图如图,则组成该几何体的小正方体的个数是()A.3B.4C.5D.66.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8桶B.9桶C.10桶D.11桶7.某几何体的三视图如图,则组成该几何体共用了个小方块.8.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是.9.下图是由一些小正方体搭成的几何体的俯视图,小正方形上的数字表示在该位置的小正方体的个数,试画出它的主视图和左视图.【能力提升】10.如图是由一些大小相同的小正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数可能是.11.如图是一个几何体的三视图,其中主视图、左视图都是腰长为13cm,底边长为10cm的等腰三角形,则这个几何体的侧面积是cm2.12.如图是一个几何体的三视图,则这个几何体的表面积是.13.已知某几何体的三视图如图,求该几何体的表面积.【拓展探究】14.如图是一个几何体的三视图.(单位:厘米)(1)写出这个几何体的名称;(2)根据图中数据计算这个几何体的表面积.【答案与解析】1.C解析:∵三视图中有两个视图为矩形,另外一个视图的形状为圆,∴这个几何体为圆柱.故选C.2.D解析:根据主视图和左视图为矩形,俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.3.C解析:主视图和左视图上边是等腰三角形,下边是矩形,俯视图为带圆心的圆,所以该几何体上边是圆锥,下边是圆柱.故选C.4.D解析:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有两条实线,一条虚线.故选D.5.B解析:首先可以判断该几何体的底层共有3个小正方体,而根据主视图与左视图可知第二层有1个小正方体,故共有4个小正方体.故选B.6.B解析:根据三视图易得第一层有4桶,第二层最少有3桶,第三层有2桶,所以至少共有9桶.故选B.7.7解析:观察该几何体的三视图发现该几何体共有三层,第一层有三个,第二层有两个,第三层也有两个,故该几何体共有3+2+2=7(个)小方块.8.20000πmm2解析:由三视图可知茶叶罐的形状为圆柱,并且茶叶罐的底面直径2R为100mm,高H为150mm,每个密封罐所需钢板的最少面积即为该圆柱体的表面积,S =2πR2+表2πRH=2π×502+2π×50×150=20000π(mm2),故制作每个密封罐所需钢板的面积至少为20000πmm2.9.解:如图.10.3或4或5解析:根据主视图与左视图知,第一行的正方体有1(只有右边有)或2(左右都有)个,第二行的正方体可能有2(左边有)或3(左右都有)个,1+2=3,1+3=4,2+2=4,2+3=5,故可能有3,4,5个.11.65π解析:依题意知母线长l=13,底面半径r=5,则由圆锥的侧面积公式得S=πrl=π·5·13=65π.12.π+3π解析:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是2,高是2,∴圆锥的母线长为=,∴圆锥的侧面积是π×1×=π;下面是一个圆柱,圆柱的底面直径是2,高是1,∴圆柱表现出来的表面积是π×12+2π×1×1=3π,∴空间组合体的表面积是π+3π. 13.解:由三视图可知该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S表面积=4×2×4+4×4+4××4×2=48+16.14.解:(1)根据三视图的知识,主视图以及左视图都是等腰三角形,俯视图为带圆心的圆,故可判断该几何体是圆锥.(2)表面积S=S扇形+S圆=πrl+πr2=12π+4π=16π(平方厘米),即该几何体的表面积为16π平方厘米.本节课课前的复习提问,为本节课的学习做好铺垫,以生活实例导入新课,让学生初步了解三视图是生活的需要,激发学生学习兴趣.探究已知三视图和实物之间的关系,学生经过观察、讨论,初步了解三视图与物体之间的对应关系,然后探究新知环节,以课本三个层层递进的例题展开,以学生活动为主,通过观察、思考、讨论、操作、归纳等数学活动,探究出由三视图得到立体图形的一般思路和方法,体现了学生在课堂上的主体作用.学生在课堂上思维活跃,积极发言,经历知识的形成过程,体验成功的快乐,达到提高能力的目的.本节课的重点是由三视图还原立体图形,认识三视图与立体图形之间的关系,教学过程中注重了教师的引导和学生的主体作用在课堂上的展示,重点设计在自主探究、合作交流等活动上,过于追求课堂形式,学生数学能力尤其是空间想象能力,没有得到很好的发挥,课堂形式是为了让学生更好地掌握知识、提高能力,所以在以后的教学中要尽量让两者有机结合,重在通过课堂学习提高学生能力.本节课是上节课由立体图形画三视图的一个延续,主要探究由三视图画对应的立体图形,重点培养学生的空间想象能力,所以在教学设计中,复习上节课知识,为本节课的学习做好铺垫,然后从生活实例的三视图与实物对应到由三视图画出立体图形,再到由三视图求立体图形的表面积,由浅入深,由易到难引导学生观察、分析、讨论、归纳,得出由图到物的一般思路和方法,课堂上注重学生的参与性,多设计数学教学活动,让学生经历知识的形成过程,从而促进数学能力的提升.。
年级教课媒体教知识技能学过程九年级课题29.2三视图(3)课型新授多媒体1、学会依据物体的三视图描绘出几何体的基本形状或实物原型;2、经历研究简单的几何体的三视图的复原,进一步发展空间想象能力;3、认识将三视图变换建立体图开在生产中的作用,使学生领会到所学的知识有重要的适用价值. 经过研究由三视图复原几何体或实物的活动,培育着手实践能力,发展学生逆向思想能力.目方法情感经过对三视图的学习,提升学习热忱,加强研究意识,应企图识. 标态度教课要点依据三视图描绘基本几何体和实物原型及三视图在生产中的作用. 教课难点依据三视图想象基本几何体和实物原型的形状.教学过程设计教课程序及教课内容一、复习引入达成以下练习(1)、以下图是一个立体图形的三视图,请依据视图说出立体图形的名称 _______.(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图以以下图所示,则这张桌子上共有 ________个碟子 .( 3)、某几何体的三种视图分别以以下图所示,那么这个几何体可能是(). ( A)长方体(B)圆柱(C)圆锥(D)球师生行为设计企图回想已学习有关内容,温故知新 .教师出示练习题,学生先独立做(提示学生注意认清图片中各视图,依据三视图的地点与大小关系,由视图,逐渐复原逐渐复原立体图形立体图形或实物,进或实物),最后,一一步理解三视图的生说出答案,师点地点与大小的对应拨、明确 . 关系,发展学生空间想象能力、逆向思想能力 ..2、展现机械制图中三视图与对应立体图形的图片,导入本课.二、自主研究1.达成课本 114 页例 6:剖析 : ○1 . 关于某些立体图形,若沿此中一些线( 比如棱柱的棱 ) 剪开,能够把立体图形的表面睁开成一个平面图形——睁开图. 在实质的生产中. 三视图和睁开图常常联合在一同使用. 解决此题的思路是,由视图想象出密封罐的立体形状,再进一步画出睁开图. 进而计算面积 .○2 .由三视图可知,密封罐的形状是正六棱柱( 以以下图 ).密封罐的高为让学生赏识预先准备好的机械制图中三视图与对应立体图形的图片,并借此叙述一下此刻一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识.借助图片信息让学生领会到本章知识的价值 . 激发学生的学习兴趣,5550mm,底面正六边形的直径为100mm.边长为 50mm,图 ( 右) 是它的睁开图 .生察看、比较图示,结合主视图、俯视图、左视图的地点与大小的对应关系完由视图,逐渐复原成由平面视图到几立体图形或实物,发何体再到睁开图的展学生空间想象能变化,师合时点拨 . 力、逆向思想能力2.增补例题:依据下边三视图请说出建筑物是什么样子的 ?共有几层 ?一共需要多少个小正方体 ?剖析 : 由俯视图确立该建筑物在平面上的形状,由主视图、左视图确立空间的形状以下图 . 有 3 层,共 9 个小正方体 . 学生联合三视图之联合视图,对照辨间的地点关系、对应析,找出异同,加深关系、大小关系,独三视图的理解和印立思虑、而后议论尝象,弄清三视图与长试逐渐复原立体图宽高的大小对应关形,教师合时点拨,系.最后师出示立体图片.思虑:一个物体的主视图如上右图所示 , 请画出它的俯视图,耐心想想有几种不一样的情况 ?三、讲堂训练1.达成课本 115 页练习四、讲堂小结依据物体的三视图想像物体的形状一般是由俯视图确立物体在平面上的形状 . 而后再依据左视图、主视图嫁接出它在空间里的形状,进而确立物体的形状 .五、作业设计教材习题29.2必做题: 8、9选做题: 10板书设计29.2三视图(3)复习题图示例 6增补例题教学反思由主视图联合所见过的图形,想象俯视图.学生独立剖析解决让学生充分裸露自练习,教师巡视指己的对新知识理解导 , 以后学生议论 , 存在的问题 , 兵教师视状况点拨 .兵、广参加,查漏补缺 , 稳固提升 .学生回首总结,概括帮助学生概括总本节课所学知识,这结,稳固所学知识. 节课感悟,教师系统概括 .56。
人教版九年级下册第29章《投影与视图》导学案[29.2.3 由三视图确定几何体的面积或体积]1.能熟练地画出物体的三视图和由三视图想象出物体形状,进一步提高空间想象能力.(重点)2.由三视图想象出立体图形后能进行简单的面积或体积的计算.(难点)复习回顾根据三视图确定几何体的基本思路:由三视图想象立体图形时,先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面的局部形状,然后再综合起来考虑整体图形.【练习】如图所示是一个立体图形的三视图,(1) 请根据视图说出立体图形的名称,并画出它的展开图.(2) 请指出三视图、立体图形、展开图之间的对应边.典例解析【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).【归纳】三视图的有关计算1. 三种图形的转化:2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.(2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分.(3) 最后根据已知数据,求出展开图的面积.【针对练习】如图是一个几何体的三视图.根据图示,可计算出该几何体的侧面积为 .【例2】如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.【针对练习】一个机器零件的三视图如图所示(单位:cm),这个机器零件是一个什么样的立体图形?它的体积是多少?达标检测1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 ( )A. 6B. 8C. 12D. 242. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 .3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_______cm2.4. 如图是一个由若干个棱长为1cm的正方体构成的几何体的三视图.(1) 请写出构成这个几何体的正方体的个数为;(2) 计算这个几何体的表面积为.5. 如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此三视图所描述的几何体的表面积.6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积 (参考公式:V球=43πR3).。
人教初中数学九年级下册《29-2 三视图》(教学设计)一. 教材分析《29-2 三视图》是人教初中数学九年级下册的教学内容。
本节课的主要内容是让学生掌握三视图的概念,了解并能够画出一般物体的三视图,以及掌握由三视图还原物体形状的方法。
这一内容对于学生来说,既是对立体几何知识的巩固,又是为后续学习立体几何打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对一些简单的立体图形有了一定的了解。
但是,对于三视图的概念和画法,以及如何由三视图还原物体形状,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作,逐步理解和掌握这些知识。
三. 教学目标1.知识与技能目标:让学生掌握三视图的概念,了解并能够画出一般物体的三视图,以及掌握由三视图还原物体形状的方法。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新精神和团队合作意识。
四. 教学重难点1.教学重点:三视图的概念,一般物体的三视图的画法,由三视图还原物体形状的方法。
2.教学难点:由三视图还原物体形状的方法。
五. 教学方法1.情境教学法:通过实物展示和模型操作,让学生直观地理解三视图的概念和画法。
2.自主探究法:引导学生通过自主探究,发现并总结由三视图还原物体形状的方法。
3.合作交流法:学生进行小组合作,共同完成实践操作任务,培养学生的团队合作意识。
六. 教学准备1.教具:准备一些实物模型和立体图形,用于展示和操作。
2.学具:为学生准备一些纸张和绘图工具,用于绘制三视图。
七. 教学过程1.导入(5分钟)教师通过展示一些实际生活中的立体物体,如房屋、汽车等,引导学生观察这些物体的不同角度的视图,激发学生的学习兴趣,从而引出本节课的主题——三视图。
2.呈现(10分钟)教师通过讲解和展示,向学生介绍三视图的概念,以及一般物体的三视图的画法。
人教版九年级数学下册第二十九章29.2三视图导学案学习目标1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.预习反馈阅读教材P94~97,完成下列问题.1.当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图,也可以看作物体在某一方向光线下的正投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在正下方,左视图在右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.5.如图是一个由五个小正方体组成的立体图形,请你画出从三个不同的方向看这个立体图形所得到的平面图形. 解:如图所示.6.在下列几何体中,主视图是圆的是(D)A B C D例题讲解例1画出图中基本几何体的三视图.圆柱正三棱柱球(1)(2)(3)【分析】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体方法为:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;(4)为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线(———)表示对称轴. 【解答】如图所示.圆柱正三棱柱球(1)(2)(3)【跟踪训练1】下列四个立体图形中,左视图为矩形的是(B)①长方体②球③圆锥④圆柱A.①③B.①④C.②③D.③④例2画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【分析】支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置关系.【解答】如是支架的三视图.【点拨】对于由几种基本几何体组合而成的组合体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.【跟踪训练2】一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.课后巩固训练1.小明从正面观察如图所示的两个物体,看到的是(C)A B C D2.左下图表示一个用于防震的L形包装泡沫塑料,当俯视这一物体时,看到的图形形状是(B)A B C D3.如图,从不同方向看下面左图中的物体,下图中三个平面图形分别是从哪个方向看到的?正面从上面看从前面看从左面看4.如图是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.解:如图所示.课堂小结1.画物体的三视图时,先确定主视图的位置,在主视图的右边画左视图,在主视图的正下方画俯视图.2.画物体的三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.3.画简单组合体的三视图时,要把组合体分割成规则的几何图形.第2课时由三视图确定几何体学习目标进一步明确三视图的意义,由三视图想象出实物原型.预习反馈阅读教材P98~99,完成下列问题.1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、左侧面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是圆柱.3.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥例题讲解例1如图,分别根据三视图(1)(2)说出立体图形的名称.【分析】由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.【解答】(1)从三个方向看立体图形,视图都是矩形,可以想象这个立体图形是长方体,如图(1)所示.(2)从正面、侧面看立体图形,视图都是等腰三角形;从上面看,视图是圆;可以想象这个立体图形是圆锥,如图(2)所示.【点拨】由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.【跟踪训练1】如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱例2如图是一个几何体的三视图,则该几何体是(C)A B C D【点拨】(1)观察三视图,看其可分解为哪些简单几何体的三视图;(2)想象出各简单几何体;(3)根据三视图反映的位置关系组合简单几何体便得物体原形;(4)可对想象出的物体作三视图检验正误.注意虚线与实线的区别.【跟踪训练2】一个几何体的三视图如图所示,那么这个几何体是(D)A B C D课后巩固训练1.一个几何体的三视图如图所示,则这个几何体是(B)A.三棱锥B.三棱柱C.圆柱D.长方体2.如图是某个几何体的三视图,则该几何体是(A)A.长方体B.三棱柱C.圆柱D.圆台3.如图是一个几何体的三视图,则此三视图所对应的直观图是(B)A B C D4.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.课堂小结学生试述:这节课你学到了些什么?第3课时 由三视图确定几何体的表面积或体积学习目标能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.预习反馈阅读教材P99~100,完成下列问题.1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)4.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥 5.如下左图是一个长方体包装盒,则它的平面展开图是(A)A B C D例题讲解例 根据如图所示的三视图求几何体的表面积,并画出物体的展开图.【解答】 由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成.则圆锥,圆柱底面半径为r =5. 由勾股定理,得圆锥母线长R =5 2. S 圆锥侧面积=12lR =12×10π×52=252π.∴S 表面积=π×52+10π×20+252π=25π+200π+252π =225π+252π =(225+252)π.该物体的展开图如图所示.【点拨】 由物体三视图求它的表面积:(1)由三视图想象出物体的形状;(2)画出物体的展开图;(3)根据几何体的表面积计算公式求表面积.由展开图确定三视图:(1)由表面展开图确定物体的形状;(2)画出物体的三视图;(3)图或题中所给数据的合理转化.【跟踪训练】一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为(32)2+(42)2=52(cm), 棱柱的侧面积为52×8×4=80(cm 2).课后巩固训练1.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(C)A.2πB.12π C.4π D.8π 2.长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.93.如图是一个几何体的三视图(含有数据),则这个几何体的展开图侧面积等于(A)A.2πB.12π C.4 D.24.如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解:这个立体图形为圆柱,其中高是10,底面圆的半径为5,所以体积为π×52×10=250π.课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.。
29.2 三视图学习目标:1)理解三视图的概念。
2)画三视图的步骤及注意事项。
3)通过三视图还原立体图形。
学习重点:理解三视图中主视图、左视图、俯视图的概念。
学习难点:1)画立体图形的三视图。
2)由三视图想象出立体图形后能进行简单的面积或体积的计算。
学习过程1)诗歌欣赏题西林壁横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
【问题一】你知道这是为什么吗?同一个事物,不同的角度,看到的景象是不同的2)课堂探究一、视图【问题二】下图为某产品的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?【概念理解】当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个视图。
视图也可以看作物体在某一个方向的光线下的正投影,对于同一物体,如果从不同方向观察,所得到的视图可能不同。
从不同方向观察一个物体(例如:正方体)1)在正面内得到的由前向后观察物体的视图,叫主视图。
2)在水平面内得到的由上向下观察物体的视图,叫做俯视图。
3)在水平面内得到的由左向右观察物体的视图,叫做左视图。
【问题三】正方体的边长与主视图、左视图、俯视图边长之间有什么关系呢?1)主视图和俯视图的长要相等;2)主视图和左视图的高要相等;3)左视图和俯视图的宽要相等。
【问题四】画下列基本几何体的三视图:【问题五】尝试根据三视图还原立体图形二、三视图的相关计算某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm)。
已知:密封罐中六边形面积为6495 平方毫米6×50×50+2×6495=27990 mm2【练一练】1.如图所示的几何体,其左视图是()A.B.C.D.【详解】解:从左边看,是一个矩形,矩形中间有一条横向的虚线.故选:B.2.一个立体图形,从上面看到的平面图形,从左面看到的平面图形,搭成这样的几何体所需要的小正方体个数为()A.5B.6C.7D.5或6【详解】解:如图,这个几何体需要的小正方体个数为(个)或(个).故选:D.3.如图所示,是下列哪个几何体从三个方向看到的平面图形()A.B.C.D.【详解】解:分别从正面、左面、上面看四个选项中的几何体,只有选项A中的几何体满足要求,故选:A4.在一张桌子上放着几叠碗,如图.小红分别从上面、前面、左面观察所得到的图形,那么桌子上一共放着()只碗A.5B.6C.7D.8【详解】解:由上面看到的形状可知一共有3叠碗,3+2+2=7(只)所以桌子上一共放着7只碗.故选:C.5.用小正方体搭立体图形,从前面和上面看到的图形如图,那么搭成这样一个立体图形至少要()个小正方体.A.4B.5C.6D.7【详解】解:如图,这个几何体至少需要5个小正方体.故选:B.6.一个长方体,从左面、上面看得到的图形及相关数据如图,则从正面看该几何体所得到的图形的面积为()A.6B.8C.12D.9【详解】根据从左面、从上面看到的形状图的相关数据可得:从正面看到的形状图是长为4宽为2的长方形,则从正面看到的形状图的面积是4×2=8;故选B.7.如图,是一个长方体的三视图,若该长方体的体积是,则它的高是( )A.2m B.m+1C.m﹣1D.m【详解】解:观察三视图发现该长方体的长、宽分别为m+2、m-1,依题意得长方体的高为:=m.故选:D.8.10个棱长为1m的正方体,构成如图所示的形状,然后把露在外面的表面都涂上颜色,那么被涂上颜色的总面积为()A.36m2B.32m2C.30m2D.28m2【详解】解:∵要染色的上底面有6个,侧面有24个,∴被染色的图形的面积是:(24+6)×(1×1)=30(m2),故选:C.9.(1)由大小相同的7个小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.【详解】解:(1)解:该几何体的俯视图和左视图如下所示,(2)由俯视图易得最底层有4个小立方块,第二层最少2个小立方块,所以最少有6个小立方块;第二层最多有6个小立方块,所以最多有10个小立方块.故答案为:6,10.10.如图是一个几何体的三视图,根据图中的数据,求该几何体的体积(结果保留).【详解】解:该几何体是圆柱,∵结合三视图可得该圆柱的底面圆的直径为2,高为3,∴该几何体的体积为:.【学后反思】通过本节课的学习你,你收获了什么?。
29.2三视图(第三课时)
【学习内容】教材98-99页
【学习目标】
1、学会根据物体的三视图描述出几何体的基本形状或实物原型。
2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。
【学习重点】根据三视图描述基本几何体和实物原型。
【学习难点】根据三视图想象基本几何体实物原型。
【学习过程】
【复习引入】
前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?
【合作探究】
1.完成课本例4:根据下面的三视图说出立体图形的名称.
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.
(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是,如图(1)所示;
(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是,如图(2)所示.
2.完成课本根据物体的三视图,如下图(1),描述物体的形状.
分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到。
两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的.且有一条棱〔中间的实线)可见到,综合各视图可知,物体是形状的,如上图(2)所示.
3.画出符合下列三视图的小立方块构成的几何体。
分析:首先应由三种视图从三个方向确定分别有几层,每层有几个,每个小正方体的具体位置在哪儿?画出之后再看一是否和所给三视图保持一致
【自主探究】
完成课本100页练习
【归纳总结】
1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.
2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。
例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.
3、对于较复杂的物体,由三视图想象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系.
【布置作业】
教材习题29.2 必做题: 4,5。