数字图像处理及MATLAB实现第八章彩色图像处理及MATLAB实现 (2)
- 格式:ppt
- 大小:4.56 MB
- 文档页数:25
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
数字图像处理实验实验八:彩色图像处理学院:信息工程学院姓名:学号:专业及班级:指导教师:一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验内容要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
利用MATLAB软件实现彩色图像处理的程序:rgb_image=imread('flower1.tif'); %读取图像flower1.tiffR=rgb_image(:,:,1); %获取图像的红色分量fG=rgb_image(:,:,2); %获取图像的绿色分量fB=rgb_image(:,:,3); %获取图像的蓝色分量figure(1),imshow(fR) %分别显示图像figure(2),imshow(fG)figure(3),imshow(fB)%实现rgb图像转化为NTSC彩色空间的图像yiq_image=rgb2ntsc(rgb_image);fY=yiq_image(:,:,1); %图像flower1.tif的亮度fI=yiq_image(:,:,2); %图像flower1.tif的色调fQ=yiq_image(:,:,3); %图像flower1.tif的饱和度figure(4),imshow(fY)figure(5),imshow(fI)figure(6),imshow(fQ)fR=histeq(fR,256); %对彩色图像的分量进行直方图均衡化fG=histeq(fG,256);fB=histeq(fB,256);RGB_image=cat(3,fR,fG,fB); %将直方图均衡化后的彩色图像合并figure,imshow(RGB_image) %观察处理后的彩色图色度,亮度参照前面f1=imread('v1_red.jpg');f2=imread('v1_green.jpg');f3=imread('v1_blue.jpg');f4=imread('infer_near.jpg');ture_color=cat(3,f1,f2,f3);figure,imshow(ture_color) %显示由红、绿、蓝三幅图合成的彩色图false_color=cat(3,f4,f2,f3); %用近红外图像代替R分量figure,imshow(false_color) %显示由近红外、绿、蓝三幅图合成的假彩色图f=imread('head.jpg');cut_1=imadjust(f,[0.0925 0.5],[0.0925 0.5]);%提取灰度在16-128之间的像素cut_2=imadjust(f,[0.5 1],[0.5 1]); %提取灰度在128-256之间的像素figure,imshow(cut_1),colormap(hot) %显示图像cut_1,并使用hot模型彩色化figure,imshow(cut_2),colormap(cool) %显示图像cut_2,并使用cool模型彩色化三、实验具体实现(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
光电图像处理2021年 4月(一)彩色图像的增强1.研究目的及意义人类传递的信息有70%是视觉信息.图像信息是传递信息的重要媒体和手段。
但是在生活中,常常由于光线不充足,在获得图像后会发现图像亮度不够,导致景物无法看清楚。
为了研究和分析图像,需对图像进行必要的处理。
对于数字图像常用的处理方法就是用图像增强技术来改善图像的像质。
图像增强是指按特定的需要突出一幅图像的某些信息,同时,削弱或去除某些不需要的信息的处理方法。
其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。
处理的结果使图像更适合于人的视觉特性或机器的识别系统。
图像增强技术主要是针对灰度图来作用。
其手段是修改直方图。
在图像处理中色彩的运用是很重要的,原因有两个:第一,在自动图像分析中色彩是一个有力的描述工具,它通常可使从一个场景中识别和抽取日标的处理得到简化;第二,人们对图像进行分析时,人眼区别的灰度层次大约只有二十几种,但却能够识别成千上万的色彩。
彩色图像中含有较大的信息量;而且人眼对色彩的识别和区分能力可以达到灰度辨别能力的百倍以上,所以彩色图像的增强对从图像中获得更多的信息有着非常重要的作用。
2.理论基础图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息达到强调图像的整体或局部特征的目的。
常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。
图像增强技术主要分为两类:频域增强法和空域增强法。
频域增强法主要是利用各种频域滤波器进行图像平滑或锐化处理,然后进行变换域反变換来增强图像;空域增强法是直接针对图像中的像素,对图像的灰度进行处理。
空域法属于直接增强的方法,它包括扩展对比度的灰度变换和直方图变换.清除噪声的平滑法和增强边缘的锐化法。
图像增强原理:设原始图像在(x,y)处的灰度为f(x,y),而增强后的灰度为g(x,y),则图像的增强可表示为将在(x,y)处的灰度f(x,y)映射为g(x,y),可表示为g(x,y)=T[f(x,y)],针对灰度图像。
目录实验一MATLAB数字图像处理初步 (2)实验二图像的代数运算 (6)实验三图像增强—灰度变换 (9)实验四图像增强—直方图变换 (11)实验五图像增强—空域滤波 (13)实验六图像的傅立叶变换 (17)实验七图像增强—频域滤波 (19)实验八彩色图像处理 (21)实验九图像分割 (24)实验十形态学运算 (27)实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg 文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。
7.用imread()读入图像:Lenna.jpg 和camema.jpg;8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;9.用figure,imshow()分别将Lenna.jpg和camema.jpg显示出来,观察两幅图像的质量。
10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
11.将每一步的函数执行语句拷贝下来,写入实验报告,并且将得到第3、9、10步得到的图像效果拷贝下来三、考核要点1、熟悉在MATLAB中如何读入图像、如何获取图像文件的相关信息、如何显示图像及保存图像等,熟悉相关的处理函数。
实验一内容(一)(1)彩色图像变灰度图像A=imread('1.jpg');B=rgb2gray(A);figuresubplot(1,2,1),imshow(A)title('原图')subplot(1,2,2),imshow(B)title('原图灰度图像')(2)彩色图像变索引图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')[X,map]=rgb2ind(A,128);subplot(1,2,2),imshow(X,map)title('原图索引图像')(3)彩色图像变二值图像A=imread('1.jpg');figuresubplot(1,2,1),imshow(A)title('原图')C=im2bw(A,0.2);subplot(1,2,2),imshow(C)title('原图二值图像')(4)灰度图像变索引图像(一)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=grayslice(B,39);subplot(1,2,2),imshow(C)title('灰度变索引图像')(5)灰度图像变索引图像(二)A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')[X,map]=gray2ind(B,63);subplot(1,2,2),imshow(X,map)title('灰度变索引图像')(6)灰度图像变彩色图像A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')C=gray2rgb(B,map);subplot(1,2,2),imshow(C)title('灰度变彩色图像')内容(二)(1)灰度平均值A=imread('1.jpg');figureB=rgb2gray(A);subplot(1,2,1),imshow(B)title('灰度图像')B=double(B);[m,n]=size(B);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+B(i,j);endendavg=sumg/(m*n) % 均值maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度(2)彩色平均值figureimshow(A)title('彩色图像')A=double(A);[m,n]=size(A);sumg=0.0;for i=1:m;for j=1:n;sumg=sumg+A(i,j);endendavg=sumg/(m*n)squre=m*nmaxg=max(max(A))ming=min(min(A))内容(三)采样量化实验二图像变换傅里叶变换、反变换、I=imread('19.jpg');A=rgb2gray(I);x1=fft2(A);x2=fftshift(x1);x3=ifft(x1)/10;figure,subplot(1,4,1);imshow(A)title('原图');subplot(1,4,2);imshow(x1)title('频谱图');subplot(1,4,3);imshow(log(abs(x2)+1),[0 10]);title('直流分量移至频谱图中心');subplot(1,4,4);imshow(x3,[0 10])title('傅里叶反变换');DCT变换、反变换I=rgb2gray(X);subplot(1,3,1);imshow(I);title('原图');subplot(1,3,2);J=dct2(I);imshow(log(abs(J)),[0 20]);title('二维离散余弦变换');subplot(1,3,3);K=idct2(J)/20;imshow(K,[0 20]);title('二维离散反余弦变换');利用DCT变换压缩图像I=imread('19.jpg');A=rgb2gray(I);B=DCT2(A);B(abs(B)<0.1)=0;C=idct2(B)/255;figure,subplot(1,3,1);imshow(A);title('原图');subplot(1,3,2);imshow(B);title('二维离散余弦变换频谱图');subplot(1,3,3);imshow(C);title('压缩后图像');实验三图像增强(一)灰度图像增强(1)线性变换法clc;clear all;I=imread('19.jpg');A=rgb2gray(I);colormap;imshow(A);%设置图像倒数参数j=imadjust(A,[0 1],[1 0],1.5);figure;subimage(j)(2)灰度图像的非线性变换(之对数)I=imread('19.jpg');colormapimshow(I)J=double(I);J=45*log(J+1);I=uint8(J);figure,subimage(J)(二)直方图校正直方图均衡I=imread('19.jpg');B=rgb2gray(I);imshow(B,[40 255]);figure,imhist(B)title('直方图')J=imadjust(B,[0.15 0.9],[0 1]); figure,imhist(B,64)title('均衡直方图')滤波I=imread('19.jpg');figure,B=rgb2gray(I);C=imnoise(B,'salt & pepper',0.02);D=imfilter(B,fspecial('average',3)); E=medfilt2(B);subplot(1,3,2)imshow(D)title('均值滤波')subplot(1,3,3)imshow(D)title('中值滤波')subplot(1,3,1)imshow(C)title('加入椒盐噪声图像')锐化处理I=imread('19.jpg');A=rgb2gray(I);figure,subplot(2,3,1),imshow(A);title('原图');hs=fspecial('sobel');S=imfilter(A,hs);hp=fspecial('prewitt');P=imfilter(A,hs);A=double(A);%双精度型H=[0 1 0,1 -4 1,0 1 0];%拉普拉斯算子J=conv2(A,H,'same');K=A-J;subplot(2,3,2),imshow(K);title('拉普拉斯锐化图像');B=edge(A,'roberts',0.1);subplot(2,3,3),imshow(B);title('罗伯特锐化图像');subplot(2,3,4),imshow(S);title('sobel算子锐化图像');subplot(2,3,5),imshow(P);title('prewitt算子锐化图像');实验四放缩A=imread('19.jpg');imshow(A);title('原图')B=imresize(A,2)figure,imshow(B);title('二倍图')C=imresize(A,0.5)figureimshow(C)title('二分之一图')旋转A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=imrotate(A,30,'nearest');subplot(1,4,2),imshow(uint8(B));title('旋转30度图像')C=imrotate(A,45,'nearest');subplot(1,4,3),imshow(uint8(C));title('旋转45度图像')D=imrotate(A,60,'nearest');subplot(1,4,4),imshow(uint8(D));title('旋转60度图像')镜像A1=imread('19.jpg');A1=double(A1);Figure,subplot(1,4,1),imshow(uint8(A1));H=size(A1);title('原像')A2(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,1:H(2),1:H(3));%垂直镜像subplot(1,4,2),imshow(uint8(A2));title('垂直镜像')A3(1:H(1),1:H(2),1:H(3))=A1(1:H(1),H(2):-1:1,1:H(3));%水平镜像subplot(1,4,3),imshow(uint8(A3));title('水平镜像')A4(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,H(2):-1:1,1:H(3));%对角镜像subplot(1,4,4),imshow(uint8(A4));title('对角镜像')剪切A1=imread('19.jpg');A2=imcrop(A1,[75 68 100 110]);figuresubplot(1,2,1),imshow(A1);title('原像')subplot(1,2,2),imshow(A2);title('剪切后像')实验五阈值分割A=imread('19.jpg');figuresubplot(1,4,1),imshow(A);title('原图像')B=im2bw(A,91/255);subplot(1,4,2),imshow(B);title('阈值91的图像')C=im2bw(A,71/255);subplot(1,4,3),imshow(C);title('阈值71的图像')D=im2bw(A,140/255);subplot(1,4,4),imshow(D);title('阈值140的图像')边缘检测I=imread('19.jpg');A=rgb2gray(I);figuresubplot(1,4,1),imshow(A);title('原图像')B=edge(A,'sobel',0.1);%edge边缘检测函数subplot(1,4,2),imshow(B);title('sobel算子检测')C=edge(A,'roberts',0.1);%0.1为门限subplot(1,4,3),imshow(C);title('roberts算子检测')D=edge(A,'prewitt',0.1);subplot(1,4,4),imshow(D);title('prewitt算子检测')所谓数字图像处理[7]就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。
南京信息工程大学滨江学院基于MATLAB的数字图像处理的彩色图像处理专业:电子信工程学生姓名:***指导教师:***完成时间:2022年4月26日摘要自20世纪70年代以来,由于数字技术和计算机技术的迅猛发展,给数字图像处理(Digital Image Processing)提供了先进的技术手段。
图像科学从信息处理、自动控制系统理论、计算机科学、数据通信等学科中脱颖而出,成为研究图像信息的获取、传输、存储、变换、显示、理解和综合利用的新兴学科。
数字图像处理在实际中得到了广泛应用。
特别是在遥感、航空航天、通信、生物和医学、安全监控、工业生产、视频和多媒体、机器人视觉、物理和化学分析、公安和军事等领域.它在国家安全、经济发展和日常生活中已经起到越来越重要的作用。
由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。
关键字颜色空间彩色图像分割彩色空间转换彩色变换目录引言 (1)1 MATLAB图像处理工具箱及数字图像处理基本过程简介 (2)1.1 常用图像操作 (2)1.2 图像增强功能 (2)1.3边缘检测和图像分割功能 (3)1,4图像变换功能 (4)2 MATLAB中彩色图像表示 (4)2.1RGB图像 (4)2.2索引图像 (6)2.3处理RGB和索引图像 (6)3 彩色图像处理 (6)3.1读入一幅RGB图像,将其分别转换到CMY空间、HSI空间并显示 (6)3.2彩色空间滤波 (8)参考文献 (9)致谢 (9)引言MATLAB 语言是由美国MathWorks 公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。
MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。
Matlab图像处理与应用(第8章)第8章彩色图像处理及MATLAB实现8.1概述彩色对我们并不陌生,比如说日常生活中通过摄影相机用彩色胶卷所拍的照片。
它是指用各种观测系统,以不同形式和手段,观测客观世界而获得的,可以直接和间接作用于人眼,进而产生视觉的实体。
小到分子内部结构图片,大至宇宙星体照片,人类通过视觉识别文字、图片和周围环境,人的视觉系统就是一个观测系统,通过它得到的图像就是客观景物在人的心目中形成的影像。
我们生活在一个信息时代,科学研究和统计表明,人类感知的外界信息,80%以上是通过视觉得到的,也就是从图像中获得。
生活在色彩斑斓的世界中,人的视觉系统产生的图像多为彩色图像。
对人类而言,对彩色图像信息的感知,具有至关重要的意义。
彩色图像信息可以从科学和艺术两方面来理解。
本章仅从科学角度讨论彩色图像信息处理,当然通过科学手段对彩色图像进行处理自然也可能使彩色图像更具有艺术效果。
随着信号处理及计算机技术和彩色图像处理技术的发展,人们试图用摄像机获取环境彩色图像并转换成数字信号,用计算机实现人类对视觉信息处理的全过程,进而形成了一门新学科—计算机视觉,从而大大推动人工智能系统的发展,彩色图像处理技术是开发智能机器人的关键突破口,当前彩色图像技术已涉及人类生活和社会发展的各个方面,展望未来,彩色图像处理技术将能得到进一步发展和应用,从而改变人们的生活方式以及社会结构。
本章第二节讨论人类彩色视觉系统有关知识,第三节讨论彩色图像处理,第四节讨论彩色图像分析。
由于篇幅的关系,有关彩色图像理解的内容请参考有关计算机视觉的论著。
8.2彩色视觉与彩色图像彩色图像处理的许多目标是帮助人更好地观察和理解图像中的信息,处理方案的选择和设计与信源和信宿的特征密切相关。
所谓信源就是处理前或者处理后的图像,而信宿就是处理前后信息的接收者——人的视觉系统。
因此了解图像特点和人的视觉系统对彩色的感知规律是十分必要的,本节将介绍有关这方面的内容,即色度学的知识。
数字图像处理——彩色图像实验报告第一篇:数字图像处理——彩色图像实验报告6.3实验步骤(1)对彩色图像的表达和显示* * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * *rgbcube(0,0,10);%从正面观察彩色立方体rgbcube(10,0,10);%从侧面观察彩色立方rgbcube(10,10,10);%从对角线观察彩色立方体%* * * * * * * * * *索引图像的显示和转换* * * * * * * * * f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%f是RGB真彩图像%rgb图像转换成8色索引图像,不采用抖动方式[X1,map1]=rgb2ind(f,8,'nodither');figure,imshow(X1,map1);%采用抖动方式转换到8色索引图像[X2,map2]=rgb2ind(f,8,'dither');figure,imshow(X2,map2);%显示效果要好一些 g=rgb2gray(f);%f转换为灰度图像g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像figure,imshow(g1);%显示抖动处理后的二值图像程序运行结果:*彩色立方体原图不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像灰度图像抖动处理后的二值图像(2)彩色空间转换f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%转换到NTSC彩色空间%f是RGB真彩图像ntsc_image=rgb2ntsc(f);figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息%转换到HIS彩色空间hsi_image=rgb2hsi(f);figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2));%显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息程序运行结果:原图转换到NTSC彩色空间显示亮度信息显示色差信息显示色差信息转换到HIS彩色空间显示色差信息显示饱和度信显示亮度信息(3)彩色变换f=imread('D:PictureFig0614(a)(Chalk Original).tif');G=ice('image',f);%打开ice窗口对图像进行调整%在窗口中执行以下操作:%a)得到图像的补色%b)拖动映射曲线,对图像显示效果进行修改%c)在颜色通道中选中某一颜色,然后对映射曲线进行修改程序运行结果(1):全彩色图片ICE窗口它的补色ICE窗口拖动映射曲线,图像的显示效果ICE窗口f2=imread('D:Picture JLK Magenta.tif');figure,imshow(f2);%在CMYK彩色空间内打开图像选择RedICE窗口g2=ice('image',f2,'space','CMYK');%f2的图像色彩偏红,拖动映射曲线,%调整映射参数,使图像的色彩看起来比较正常。