知识讲解固体液体和气体提高
- 格式:doc
- 大小:107.56 KB
- 文档页数:11
冀人版科学三年级上册《固体、液体和气体》教案一、教学目标1.科学观念:认识固体、液体和气体的基本特征。
了解物质存在的三种状态及其相互转化。
2.科学思维:通过观察、比较和分类,培养学生的分析思维能力。
引导学生思考物质状态变化的原因和条件。
3.探究实践:观察和描述固体、液体和气体的特征。
进行简单的实验,探究物质状态的变化。
4.态度责任:培养学生对物质世界的好奇心和探究精神。
增强学生的安全意识和实验操作规范。
二、教学重点1.认识固体、液体和气体的特征。
2.了解物质状态变化的现象和条件。
三、教学难点1.帮助学生理解物质状态的本质区别。
2.引导学生正确进行实验操作和观察记录。
四、教学准备1.教师准备:固体(如石块、木块等)、液体(如水、食用油等)、气体(如空气、气球中的气体等)样本、实验器材(如烧杯、漏斗、气球等)、多媒体课件。
2.学生准备:铅笔、橡皮、科学活动手册。
五、教学过程第一课时:认识固体、液体和气体1.导入(5分钟)展示物品:教师展示一些不同状态的物质,如石块、水、气球等。
提问引导:同学们,你们知道这些东西分别是什么状态的吗?它们有什么不同呢?2.新课学习(30分钟)认识固体(10分钟)教师讲解:教师讲解固体的特征,如有固定的形状、体积,不易被压缩等。
学生观察:学生观察固体样本,如石块、木块等,描述固体的特征。
认识液体(10分钟)教师讲解:教师讲解液体的特征,如没有固定的形状、有一定的体积、易流动等。
学生观察:学生观察液体样本,如水、食用油等,描述液体的特征。
认识气体(10分钟)教师讲解:教师讲解气体的特征,如没有固定的形状和体积、易被压缩等。
学生观察:学生观察气体样本,如空气、气球中的气体等,描述气体的特征。
3.课堂小结(5分钟)回顾内容:回顾固体、液体和气体的特征。
布置作业:让学生回家观察身边的物质,判断它们属于哪种状态。
第二课时:物质状态的变化1.复习导入(5分钟)提问复习:回顾上节课的内容,提问学生固体、液体和气体各有什么特征?学生回答:学生回答问题,巩固所学知识。
第二章气体、固体和液体1. 温度和温标 ...................................................................................................................... - 1 -2. 气体的等温变化............................................................................................................. - 11 -3. 气体的等压变化和等容变化......................................................................................... - 20 -4. 固体 ................................................................................................................................ - 37 -5. 液体 ................................................................................................................................ - 45 -章末复习提高...................................................................................................................... - 54 -1. 温度和温标一、状态参量与平衡态1.热力学系统:由大量分子组成的系统。
固液气体知识点总结一、固体的性质1. 固体是物质的一种状态,其分子间的运动能力较弱,呈现出相对稳定的形态。
2. 固体的形状和体积都是固定的,因此具有较强的稳定性。
3. 固体的密度通常较大,分子间距较小,密度会受到温度和压力的影响。
4. 固体在温度较低时,可以表现出极端的硬度和脆性,但也有一些特殊的固体具有较强的柔韧性、延展性和弹性。
5. 固体可以通过溶解、熔化、蒸发、显微结构的改变等方式发生相变。
二、液体的性质1. 液体是介于固体和气体之间的状态,分子间的运动能力较固体要强,但受分子间相互吸引力的限制。
2. 液体的形状是可变的,但是固定的体积也是特点之一。
3. 液体具有较大的流动性和适应性,可以填充容器的底部,但受到重力的影响也会有一定的形状。
4. 液体的密度通常较大,分子间距较小,也会受到温度和压力的影响。
5. 液体的表面张力会影响其形状和流动性,溶解、凝固、挥发、沸腾、蒸发等方式发生相变。
三、气体的性质1. 气体是物质的一种状态,分子间的间距比较大,运动自由度较高。
2. 气体的形状和体积都是可变的,会随着容器的变化而改变形状。
3. 气体的密度较小,分子间距较大,密度受到温度和压力的影响较大。
4. 气体具有很强的压缩性,可以通过外力变形或压缩,但也需要容器的限制。
5. 气体的扩散性很强,可以在密闭空间中填充整个容器,并且可以通过压力传导传播。
6. 气体会通过压缩、膨胀、液化、气化、凝聚等方式发生相变。
四、固液气体的作用1. 固体在化工、建筑、材料、电子等领域有广泛的应用,可以用于制造各种设备和产品。
2. 液体在生活中有很多用途,如饮用水、清洁剂、润滑油、溶剂等,还广泛用于医疗、农业、工业等领域。
3. 气体在日常生活中也有很多的应用,如空气、煤气、氧气、二氧化碳等,用于燃料、照明、保护、存储等方面。
五、固液气体的物性参数1. 固体的物性参数包括密度、硬度、脆性、柔韧性、延展性、弹性等。
2. 液体的物性参数包括密度、流动性、表面张力、粘度、凝固点、沸点等。
在写这篇文章之前,我首先会对三年级科学固体、液体和气体教案进行全面评估。
我会按照从简到繁、由浅入深的方式来探讨这个主题,以便您能更深入地理解。
我将在文章中多次提及“三年级科学固体、液体和气体教案”,并包含总结和回顾性的内容,以便您能全面、深刻和灵活地理解这个主题。
三年级科学固体、液体和气体教案对于学生的科学学习非常重要。
这个教案可以帮助学生初步认识物质的三种不同状态,以及它们之间的转化关系。
固体、液体和气体在我们日常生活中随处可见,通过这个教案,学生可以更加深入地理解这些物质状态的特性和表现形式。
在这篇文章中,我会从简单的实验和观察开始,让学生通过观察不同物质的外观、形状和触感来初步了解固体、液体和气体的区别。
我会逐步引入一些更复杂的实验和现象,让学生了解物质状态之间的转化关系,如固体融化成液体、液体蒸发成气体等。
通过这些实验和现象,学生可以更加深入地理解固体、液体和气体之间的联系和变化规律。
在教案的设计中,我会适当地加入一些生动有趣的例子和故事,让学生在轻松愉快的氛围中学习。
我也会设计一些小组活动和讨论,让学生之间相互交流和合作,共同探讨固体、液体和气体的特性和转化规律。
这样不仅可以增强学生的学习兴趣,还可以培养他们的团队合作能力和口头表达能力。
在文章的结尾部分,我会对整个教案进行总结和回顾,强调固体、液体和气体的重要性和应用价值。
我会共享我个人对这个主题的观点和理解,以及对学生学习的建议和鼓励。
这样可以让学生全面、深刻和灵活地理解固体、液体和气体这个科学知识点,为他们今后的学习打下良好的基础。
三年级科学固体、液体和气体教案是一个非常重要且有趣的教学内容,通过深入地探讨和详细的实验,学生可以更加深入地理解这个主题。
这样的教学方法不仅可以提高学生的学习兴趣,还可以培养他们的实验能力和科学思维能力。
希望这样的教案能够在学生的成长道路上发挥重要的作用,让他们从小就对科学产生浓厚的兴趣和热爱。
在教学内容方面,我会引入一些现代化的科学装备和仪器,如显微镜、天平、温度计等,让学生在实验中更加直观地感受固体、液体和气体的特性和变化过程。
固体液体和气体说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“固体液体和气体”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“固体液体和气体”这一内容是物理学中物质状态的重要部分,它在高中物理教材中起着承上启下的作用。
通过对这部分内容的学习,学生能够更好地理解物质的性质和变化,为后续学习热力学定律等知识奠定基础。
教材首先介绍了固体的分类和特点,包括晶体和非晶体的结构和性质差异。
接着阐述了液体的表面张力现象及其产生的原因,让学生对液体的特性有了更深入的认识。
最后,重点讲解了气体的状态参量、理想气体状态方程以及气体压强的微观解释,使学生从宏观和微观两个角度理解气体的性质。
二、学情分析学生在初中阶段已经对固体、液体和气体有了初步的了解,但对于它们的微观结构和性质的深层次理解还不够。
在这个阶段,学生已经具备了一定的观察能力、逻辑思维能力和数学运算能力,但对于抽象概念的理解和运用还存在一定的困难。
因此,在教学过程中,需要通过实验、多媒体等手段帮助学生直观地感受物理现象,引导他们进行思考和分析。
三、教学目标1、知识与技能目标(1)了解固体的分类,掌握晶体和非晶体的区别。
(2)理解液体的表面张力现象及其产生的原因。
(3)掌握气体的状态参量,理解理想气体状态方程,并能用其解决简单的问题。
(4)了解气体压强的微观解释。
2、过程与方法目标(1)通过观察实验和分析现象,培养学生的观察能力和逻辑思维能力。
(2)通过对理想气体状态方程的推导和应用,培养学生的数学应用能力和推理能力。
3、情感态度与价值观目标(1)通过对物理现象的探究,激发学生学习物理的兴趣。
(2)培养学生严谨的科学态度和实事求是的精神。
四、教学重难点1、教学重点(1)晶体和非晶体的区别。
(2)液体的表面张力。
(3)理想气体状态方程。
2、教学难点(1)气体压强的微观解释。
(2)用理想气体状态方程解决实际问题。
高中物理第二章《固体、液体和气体》知识梳理一、液体的微观结构1.特点液体中的分子跟固体一样是密集在一起的,液体分子的热运动主要表现为在平衡位置附近做微小的振动,但液体分子只在很小的区域内做有规则的排列,这种区域是暂时形成的,边界和大小随时改变,有时瓦解,有时又重新形成,液体由大量这种暂时形成的小区域构成,这种小区域杂乱无章地分布着.联想:非晶体的微观结构跟液体非常相似,可以看作是粘滞性极大的流体,所以严格说来,只有晶体才能叫做真正的固体.2.应用液体的微观结构可解释的现象(1液体表现出各向同性:液体由大量暂时形成的杂乱无章地分布着的小区域构成,所以液体表现出各向同性.(2液体具有一定的体积:液体分子的排列更接近于固体,液体中的分子密集在一起,相互作用力大,主要表现为在平衡位置附近做微小振动,所以液体具有一定的体积.(3液体具有流动性:液体分子能在平衡位置附近做微小的振动,但没有长期固定的平衡位置,液体分子可以在液体中移动,这是液体具有流动性的原因.(4液体的扩散比固体的扩散要快:流体中的扩散现象是由液体分子运动产生的,分子在液体里的移动比在固体中容易得多,所以液体的扩散要比固体的扩散快.二、液体的表面张力1.液体的表面具有收缩趋势缝衣针硬币浮在水面上,用热针刺破铁环上棉线一侧的肥皂膜,另一侧的肥皂膜收缩将棉线拉成弧形.联想:液体表面就像张紧的橡皮膜.2.表面层(1液体跟气体接触的表面存在一个薄层,叫做表面层.(2表面层里的分子要比液体内部稀疏些,分子间距要比液体内部大.在表面层内,分子间的距离大,分子间的相互作用力表现为引力.联想:在液体内部,分子间既存在引力,又存在斥力,引力和斥力的数量级相等,在通常情况下可认为它们是相等的.3.表面张力(1含义:液面各部分间相互吸引的力叫做表面张力.(2产生原因:表面张力是表面层内分子力作用的结果.表面层里分子间的平均距离比液体内部分子间的距离大,于是分子间的引力和斥力比液体内部的分子力和斥力都有所减少,但斥力比引力减小得快,所以在表面层上划一条分界线MN时(图1,两侧的分子在分界线上相互吸引的力将大于相互排斥的力.宏观上表现为分界线两侧的表面层相互拉引,即产生了表面张力.图1(3作用效果:液体的表面张力使液面具有收缩的趋势.如吹出的肥皂泡呈球形,滴在洁净玻璃板上的水银滴呈球形.草叶上的露球、小水银滴要收缩成球形.深化:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小.在体积相等的各种形状的物体中球形体积最小.三、浸润和不浸润1.定义浸润:一种液体会润湿某种固体并附在固体的表面上,这种现象叫做浸润.不浸润:一种液体不会润湿某种固体,也就不会附在这种固体的表面,这种现象叫做不浸润.2.决定液体浸润的因素液体能否浸润固体,取决于两者的性质,而不单纯由液体或固体单方面性质决定,同一种液体,对一些固体是浸润的,对另一些固体是不浸润的,水能浸润玻璃,但不能浸润石蜡,水银不能浸润玻璃,但能浸润锌.误区:不能以偏概全地说“水是浸润液体”,“水银是不浸润液体”.3.浸润和不浸润的微观解释(1附着层:跟固体接触的液体薄层,其特点是:附着层中的分子同时受到固体分子和液体内部分子的吸引.(2解释:当水银与玻璃接触时,附着层中的水银分子受玻璃分子的吸引比内部水银分子弱,结果附着层中的水银分子比水银内部稀硫,这时在附着层中就出现跟表面张力相似的收缩力,使跟玻璃接触的水银表面有缩小的趋势,因而形成不浸润现象.相反,如果受到固体分子的吸引相对较强,附着层里的分子就比液体内部更密,在附着层里就出现液体分子互相排斥的力,这时跟固体接触的表面有扩展的趋势,从而形成浸润现象.总之,浸润和不浸润现象是分子力作用的表现.深化:浸润不浸润取决于固体分子对附着层分子的力和液体分子间力的关系.4.弯月面液体浸润器壁时,附着层里分子的推斥力使附着层有沿器壁延展的趋势,在器壁附近形成凹形面.液体不浸润器壁时,附着层里分子的引力使附着层有收缩的趋势,在器壁附近形成凸形面.如图2所示.图2深化:“浸润凹,不浸凸”.四、毛细现象1.含义浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为毛细现象.2.特点(1浸润液体在毛细管里上升后,形成凹月面,不浸润液体在毛细管里下降后形成凸月面.(2毛细管内外液面的高度差与毛细管的内径有关,毛细管内径越小,高度差越大.误区:在这里很多同学误认为只有浸润液体才会发生浸润现象.3.毛细现象的解释当毛细管插入浸润液体中时,附着层里的推斥力使附着层沿管壁上升,这部分液体上升引起液面弯曲,呈凹形弯月面使液体表面变大,与此同时由于表面层的表面张力的收缩作用,管内液体也随之上升,直到表面张力向上的拉伸作用与管内升高的液体的重力相等时,达到平衡,液体停止上升,稳定在一定的高度.联想:利用类似的分析,也可以解释不浸润液体的毛细管里下降的现象.五、液晶1.定义有些化合物像液体一样具有流动性,而其光学性质与某些晶体相似,具有各向异性,人们把处于这种状态的物质叫液晶.深化:液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.2.液晶的特点(1分子排列:液晶分子的位置无序使它像液体,排列有序使它像晶体.从某个方向上看液晶的分子排列比较整齐;但是从另一个方向看,液晶分子的排列是杂乱无章的.辨析:组成晶体的物质微粒(分子、原子或离子依照一定的规律在空间有序排列,构成空间点阵,所以表现为各向异性;液体却表现为分子排列无序性和流动性;液晶呢?分子既保持排列有序性,保持各向异性,又可以自由移动,位置无序,因此也保持了流动性.(2液晶物质都具有较大的分子,分子形状通常是棒状分子、碟状分子、平板状分子.3.液晶的物理性质(1液晶具有液体的流动性;(2液晶具有晶体的光学各向异性.液晶的光学性质对外界条件的变化反应敏捷.液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质.如计算器的显示屏,外加电压使液晶由透明状态变为浑浊状态.4.液晶的用途液晶可以用作显示元件,液晶在生物医学、电子工业,航空工业中都有重要应用.联想:液晶可用显示元件:有一种液晶,受外加电压的影响,会由透明状态变成浑浊状态而不再透明,去掉电压,又恢复透明,当输入电信号,加上适当电压,透明的液晶变得浑浊,从而显示出设定的文字或数码.。
固体、液体与气体知识点固体的微观结构、晶体和非晶体、液晶的微观结构Ⅰ1.晶体和非晶体分类比较项目晶体非晶体单晶体多晶体外形规则不规则01不规则熔点确定02确定不确定物理性质各向异性03各向同性各向同性原子排列有规则每个晶粒的排列04无规则无规则转化晶体和非晶体05在一定条件下可以相互转化。
如天然水晶是晶体,熔化再凝固成的石英玻璃是非晶体典型物质石英、云母、明矾、06食盐玻璃、橡胶2.晶体的微观结构(1)如图所示,金刚石、石墨晶体的晶体微粒07有规则地、08周期性地在空间排列。
(2)晶体特性的解释现象原因具有规则的外形晶体微粒09有规则地排列各向异性晶体内部从任一结点出发在不同方向的相等10距离上的微粒数11不同具有异构性有的物质在不同条件下能够生成不同的晶体,是因为组成它们的微粒能够按照12不同的规则在空间分布,如碳原子可以形成石墨和金刚石3.液晶(1)概念:有些有机化合物像液体一样具有13流动性,又在一定程度上具有晶体分子的14规则排列的性质,这些化合物叫作液晶。
(2)微观结构:液晶态物质分子的取向具有一定程度的有序性,所以液晶具有15晶体的各向异性,同时分子的取向不是完全有序的,且分子重心的位置是无序的,所以液晶也具有液体的流动性,如图所示。
(3)有些物质在特定的16温度范围之内具有液晶态;另一些物质,在适当的溶剂中溶解时,在一定的17浓度范围具有液晶态。
(4)天然存在的液晶并不多,多数液晶是人工合成的。
(5)应用:显示器、人造生物膜。
知识点液体的表面张力现象Ⅰ1.液体的表面张力(1)01绷紧的力。
(2)02收缩的趋势。
(3)03相切,且与分界面04垂直。
2.浸润和不浸润:一种液体会润湿某种固体并附着在固体的表面上,这种现象叫作05浸润。
一种液体不会润湿某种固体,也就不会附着在这种固体的表面,这种现象叫作06不浸润。
如图所示。
3.毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为毛细现象。
《6.固体、液体和气体》优质教案一、教学内容本节课选自教材《物理》第六章,主题为“固体、液体和气体”。
具体内容包括:6.1 固体的特性;6.2 液体的特性;6.3 气体的特性;6.4 相态变化及其微观机制。
二、教学目标1. 理解并掌握固体、液体和气体的基本特性;2. 了解相态变化的过程及其微观机制;3. 能够运用所学知识解释日常生活中的相关现象。
三、教学难点与重点重点:固体、液体和气体的特性;相态变化及其微观机制。
难点:相态变化过程中物质微观结构的理解。
四、教具与学具准备教具:PPT课件、实验器材(固体、液体和气体样品,热源,冷源等)。
学具:笔记本、教材、实验报告册。
五、教学过程1. 导入:通过展示生活中常见的固体、液体和气体物质,引导学生思考它们的特性及区别。
2. 新课内容:(1)固体:讲解固体的定义、特性,结合实验观察固体的微观结构。
(2)液体:讲解液体的定义、特性,结合实验观察液体的微观结构。
(3)气体:讲解气体的定义、特性,结合实验观察气体的微观结构。
(4)相态变化:讲解相态变化的种类、过程及其微观机制,通过实验演示相态变化。
3. 例题讲解:结合新课内容,讲解相关例题,巩固所学知识。
4. 随堂练习:布置相关习题,让学生独立完成,并及时给予反馈。
六、板书设计1. 固体的特性2. 液体的特性3. 气体的特性4. 相态变化及其微观机制七、作业设计1. 作业题目:(1)简述固体、液体和气体的特性。
(2)解释生活中一个相态变化的现象,并分析其微观机制。
2. 答案:(1)固体:具有一定的形状和体积,不易压缩;液体:具有一定的体积,无固定形状,不易压缩;气体:无固定形状和体积,易压缩。
(2)例如:冰融化成水,微观机制是温度升高,固体内部的分子间作用力减弱,分子间距增大,从而导致固体变成液体。
八、课后反思及拓展延伸1. 反思:本节课学生对固体、液体和气体的特性有了基本的了解,但相态变化微观机制的理解还需加强。
小学科学固体液体和气体(课件)固体、液体和气体是我们日常生活中最常见的几种物态。
在小学科学课程中,学生们需要了解这三种物态的特点、性质以及它们在不同条件下的变化规律。
通过这份课件,我们将深入探讨固体、液体和气体的定义、性质以及相互转化的过程,帮助学生更好地理解这些概念和现象。
一、固体的特点和性质1.定义:固体是物质的一种物态,具有固定的形状和体积。
2.特点:(1)形状稳定:固体分子之间的相互作用力较强,使得固体具有固定的形状和体积。
(2)不可压缩:由于固体分子之间的距离较近,无法被外力挤压或变形。
(3)密度较大:固体通常比同等体积的液体和气体更加紧密。
3.性质:(1)硬度:不同的固体具有不同的硬度,通过比较它们的硬度可以区分不同的物质。
(2)熔点和沸点:固体具有特定的熔点和沸点,通过加热或者降低温度,固体可以发生熔化和凝固的相变过程。
(3)断裂性:固体在受到外力撞击或过大的压力时会发生断裂,而不会发生形状的改变。
二、液体的特点和性质1.定义:液体是物质的一种物态,具有较低的粘度和固定的体积,但没有固定的形状。
2.特点:(1)可流动性:液体分子之间的相互作用力比固体弱,使得液体具有流动性,可以改变位置形成不固定的形状。
(2)表面张力:液体分子分布不均,表面上的分子受到较强的相互作用力,使得液体具有表面张力现象。
(3)不可压缩:液体的体积是固定的,但可以通过外力改变其形状。
3.性质:(1)流动性:液体能够流动并适应容器形状。
(2)溶解性:液体可以溶解其他物质,形成溶液。
(3)沸点和凝固点:液体具有特定的沸点和凝固点,通过加热或降低温度,液体可以发生沸腾和凝固的相变过程。
三、气体的特点和性质1.定义:气体是物质的一种物态,没有固定的形状和体积。
2.特点:(1)无固定形状:气体没有固定的形状,可以充满容器的所有空间。
(2)无固定体积:气体没有固定的体积,可以被压缩或膨胀。
(3)分子速度较快:气体分子之间的相互作用力较弱,分子运动速度较快。
物理总复习:固体、液体和气体编稿:李传安审稿:张金虎【考纲要求】1、知道气体分子运动速率的统计分布规律;2、知道气体的三大实验定律、内容、熟悉其图像;3、知道理想气体的状态方程,能结合力学知识解相关气体状态变化的问题。
【知识络】【考点梳理】考点一、气体分子动理论要点诠释:1、气体分子运动的特点:①气体分子间距大,一般不小于10r0,因此气体分子间相互作用的引力和斥力都很小,以致可以忽略(忽略掉分子间作用力的气体称为理想气体)。
②气体分子间碰撞频繁,每个分子与其他的分子的碰撞多达65亿次/秒之多,所以每个气体分子的速度大小和方向是瞬息万变的,因此讨论气体分子的速度是没有实际意义的,物理中常用平均速率来描述气体分子热运动的剧烈程度。
注意:温度相同的不同物质分子平均动能相同,如H2和O2,但是它们的平均速率不相同。
③气体分子的速率分布呈“中间多,两头少”分布规律。
④气体分子向各个方向运动的机会均等。
⑤温度升高,气体分子的平均动能增加,随着温度的增大,分子速率随随时间分布的峰值向分子速度增大的方向移动,因此T1小于T2。
2、气体压强的微观解释:气体的压强是大量气体分子频繁地碰撞器壁而产生的,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。
气体分子的平均动能越大,分子越密,对单位面积器壁产生的压力就越大,气体的压强就越大。
考点二、气体的状态参量要点诠释:对于气体的某种性质均需用一个物理量来描述,如气体的热学性质可用温度来描述,其力学性质可用压强来描述。
描述气体性质的物理量叫状态参量。
1、温度:温度越高,物体分子的热运动加剧,分子热运动的平均动能也增加,温度越高,分子热运动的平均动能越大,温度越低,分子热运动的平均动能越小。
微观含义:温度是分子热运动的平均动能的标志。
温标:温度的数量表示法。
(1)摄氏温标:标准状况下冰水混合的温度为0度,水沸腾时的温度为100度,把0到100之间100等份,每一等份为1摄氏度(1℃)。
(2)热力学温标:19世纪英国物理学家开尔文提出一种与测温物质无关的温标,叫热力学温标或绝对温标。
用符T表示,单位是开尔文,简称开,符K。
用热力学温度和摄氏温度表示温度的间隔是相等的,即物体升高或降低的温度用开尔文和摄氏度表示在数值上是相同的。
热力学温度和摄氏温度的数量关系T=t+273.15K 2、体积:(1)体积是描述气体特性的物理量。
由于气体分子的无规则热运动,每一部分气体都要充满所能给予它的整个空间。
(2)一定质量的气体占有某一体积,气体分子可以自由移动,因而气体总要充满整个容积,气体的体积就是指气体所充满的容器的容积。
在国际单位之中,体积用V表示,单位立方米m3。
体积的单位还有升、毫升,符是L、mL,关系1m3=103L(dm3)=106ml (cm3)3、压强:(1)压强是描述气体力学特性的宏观参量。
(2)气体作用在器壁单位面积上的压力叫做气体的压强,用符P表示。
气体分子做无规则热运动,对器壁频繁撞击而产生压力,用打气筒把空气打到自行车的车胎里去,会把车胎胀得很硬,就是因为空气对车胎有压力而造成的。
(3)气体压强产生的原因:大量气体分子对器壁频繁碰撞而产生的。
(4)压强的单位:在国际单位制中,压强的单位是帕斯卡(Pa), 1 Pa = 1 N / m。
气体压强的单位在实际中还会见到“标准大气压”(符是atm)和“毫米汞柱”(符是mmHg), 1atm = 1.013 × 105 Pa,1mmHg = 133 Pa。
(5)压强的确定。
见类型四。
考点三、理想气体实验定律对于一定质量的气体,如果温度、体积、压强这三个量都不变,就说气体处于一定的状态。
一定质量的气体,p与T、V有关,三个参量中不可能只有一个参量发生变化,至少有两个或三个同时变化。
1、玻意耳定律要点诠释:(1)、内容:一定质量的理想气体,在温度不变的情况下,它的压强跟体积成反比。
(2)、公式:1122pVpV??恒量(3)、图像:等温线(pV?图,1pV?图,如图)说明:①pV?图为双曲线,同一气体的两条等温线比较,双曲线顶点离坐标原点远的温度高,即12TT?。
②1pV?图线为过原点的直线,同一气体的两条等温线比较,斜率(tan pV??)大的温度高,12TT?。
(4)、微观解释:①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子的平均动能保持不变,因此气体压强只跟单位体积的分子数有关。
②气体发生等温变化时,体积增大到原来体积的几倍,单位体积内的分子数就减少到原来的几分之一,压强就会减少到原来的几分之一;反之,体积减小到原来体积的几分之一,单位体积内的分子数就增大到原来的几倍,压强就会增大到原来的几倍。
所以对于一定质量的气体,温度不变时,压强和体积成反比。
2、查理定律要点诠释:(1)、内容:a.一定质量的理想气体,在体积不变的情况下,温度每升高(降低)1℃,增加(或减少)的压强等于它在0℃时压强的1273。
b.一定质量的理想气体,在体积不变的情况下,它的压强跟热力学温度成正比。
(2)、公式:00273t pppt??或1212ppTT?或0(1)273t tpp??(3)、图像:等容线说明:①pt?图线为过-273℃的直线,与纵轴交点是0℃时气体的压强,同一气体的两条等容线比较,12VV?。
②pT?图线为过原点的直线,同一气体的两条等容线比较,斜率(tanpT??)大的体积小,即12VV?。
(4)、微观解释:①一定质量的气体,体积保持不变时,从微观上表示单位体积内的分子数保持不变,因此气体的压强只跟气体分子的平均动能有关。
②气体发生等容变化时,温度升高,气体分子的平均动能增大,气体的压强会增大;反之,温度降低气体分子的平均动能减小,气体压强减小。
3、盖·吕萨克定律要点诠释:(1)、内容:a.一定质量的理想气体,在压强不变的情况下,温度每升高(降低)1℃,增加(或减少)的体积等于它在0℃时体积的1273。
b.一定质量的理想气体,在压强不变的情况下,它的体积跟热力学温度成正比。
(2)、公式:00273t VVVt??或0(1)273t tVV??或1212VVTT?(3)、图像:等压线说明:①Vt?图线为过-273℃的直线,与纵轴交点为0℃时气体的体积,同一气体的两条等压线比较,12pp?。
②VT?图线为过原点的直线,同一气体的两条等压线比较,斜率大(tanVT??)的压强小,即12pp?。
(4)、微观解释:①一定质量的气体,压强保持不变时,从微观上看是由于单位体积内分子数的变化引起的压强变化与由分子的平均动能变化引起的压强变化相抵消。
②气体发生等压变化时,气体体积增大,单位体积内的分子数减少,会使气体压强减小,气体温度升高,气体分子的平均动能增大,从而使气体压强增大来抵消由气体体积增大而造成的气体压强的减小。
相反,气体体积减小,单位体积分子数增多,会使气体压强增大,只有气体的温度降低,气体分子的平均动能减小,才能使气体的压强减小来抵消由气体体积减小而造成的气体压强的增大。
考点四、理想气体状态方程(1)一定质量的理想气体,pTV、、三者之间的关系是:pVCT?,C是一个定值。
(2)气体实验定律可看成理想气体状态方程的特例。
当m不变,12TT?时,1122pVpV?玻意耳定律当m不变,12VV?时,1212ppTT?查理定律当m不变,12pp?时,1212VVTT?盖·吕萨克定律【典型例题】类型一、气体分子运动的特点例1、关于气体分子的运动情况,下列说法中正确的是()A. 某一时刻具有任一速率的分子数目是相等的B. 某一时刻一个分子速度的大小和方向是偶然的C. 某一时刻向任意一个方向运动的分子数目相等D. 某一温度下,大多数气体分子的速率不会发生变化【答案】BC【解析】在运用统计规律时,不要把大量分子的统计规律用在个别分子的运动上,也不能因为少量的差异去要求整体上、规律上的严密性。
大量气体分子的热运动中,分子速率呈“中间多,两头少”的统计规律分布,具有某一速率的分子数目并不是相等的,故A选项错误;由于分子之间频繁的碰撞,分子随时都会改变自己的运动情况,因此在某一时刻,一个分子速度的大小和方向完全是偶然的,故B选项是正确的;虽然每个分子的速度瞬息万变,但是大量分子的整体存在着统计规律,由于分子数目巨大,某一时刻向任意一个方向运动的分子数目只有很小的差别,可以认为是相等的,故选项C正确。
某一温度下,每个分子的速度仍然是随时可以变化的,只是分子运动的平均速率相同,故D选项错误。
【总结升华】气体分子运动的规律应从两个方面去理解:一是个别分子运动的偶然性,另一个是大量分子所具有的统计规律。
举一反三【变式】1859年麦克斯韦从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律。
若以横坐标v表示分子速率,纵坐标()fv表示各速率区间的分子数占总分子数的百分比。
下面四幅图中能正确表示某一温度下气体分子速率分布规律的是(填选项前的字母)【答案】D【解析】各速率区间的分子数占总分子数的百分比不能为负值,A、B错;气体分子速率的分布规律呈现“中间多,两头少”的趋势,速率为0的分子几乎不存在,故C错、D对。
类型二、气体压强的微观解释例2、一定质量的气体,下列叙述中正确的是()A. 如果体积减小,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大B. 如果压强增大,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大C. 如果温度升高,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大D. 如果分子密度增大,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大【答案】B【解析】气体分子在单位时间内对单位面积器壁的碰撞次数,是由单位体积内的分子数和分子的平均速率共同决定的。
选项A和D都是单位体积内的分子数增大,但分子的平均速率如何却不知道,选项C由温度升高可知分子的平均速率增大,但单位体积内的分子数如何变化未知,所以选项A、C、D都不能选。
气体分子在单位时间内对单位面积器壁的碰撞次数正是气体压强的微观表现,所以选项B是正确的。
【总结升华】正确理解气体压强从微观上与哪些因素有关是解题的关键。
气体的压强从微观看也正是由单位体积内的分子数和分子的平均速率所决定的,单位体积的分子数越多,分子的平均速率越大,气体的压强就越大。
举一反三【变式】对一定质量的理想气体,下列论述中正确的是()A. 当分子热运动变得剧烈时,压强必变大B. 当分子热运动变得剧烈时,压强可以不变C. 当分子间的平均距离变大时,压强必变大D. 当分子间的平均距离变大时,压强必变小【答案】B【解析】一定质量理想气体的压强由温度和分子密度共同决定的,也可以说是由分子热运动的剧烈程度和分子间的平均距离共同决定。