函数发生器设计
- 格式:doc
- 大小:12.00 MB
- 文档页数:83
函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
函数发生器课程设计实验报告实验名称:函数发生器课程设计实验目的:1.掌握函数发生器的基本原理和特性;2.熟悉常见函数发生器的操作方法;3.学会使用函数发生器进行实际测量与实验。
实验原理:函数发生器是一种可以产生不同频率和波形的电子仪器,常用于科学研究、电子工程实验和生产测试等。
函数发生器可以通过调节工作模式、频率、幅度和偏移量等参数来产生不同的电信号。
常见的波形包括正弦波、方波、锯齿波和三角波等。
实验器材与仪器:1.函数发生器2.示波器3.电源实验步骤:1.连接函数发生器、示波器和电源,确保电路连接正确并稳定。
2.打开函数发生器,并将频率设置为100Hz,幅度设置为5V。
3.在示波器上观察输出波形,并记录实际测量值。
4.将函数发生器的频率和幅度分别调节为500Hz和10V,重复步骤3。
5.将函数发生器的工作模式切换为方波,重复步骤3。
6.将函数发生器的工作模式切换为锯齿波,重复步骤3。
7.将函数发生器的工作模式切换为三角波,重复步骤3。
实验结果与数据分析:经过实验测量得到的数据如下:1.正弦波频率为100Hz,峰峰值为4.88V。
2.正弦波频率为500Hz,峰峰值为9.79V。
3.方波频率为100Hz,峰峰值为4.88V。
4.锯齿波频率为100Hz,峰峰值为4.88V。
5.三角波频率为100Hz,峰峰值为4.88V。
由实验数据可知,函数发生器能够按照设定参数的要求产生不同频率和波形的电信号。
通过调节频率和幅度等参数,可以控制输出信号的特性,满足实际需求。
同时,通过示波器对输出信号进行测量和观察,可以验证函数发生器的工作状态和输出波形的准确性。
实验总结:本次实验通过对函数发生器的使用,熟悉了其基本原理和操作方法,并能够进行实际测量与实验。
函数发生器作为一种常用的仪器设备,广泛应用于各个领域的科学研究和工程实践中。
掌握函数发生器的使用方法对于今后的学习和工作具有重要的意义。
在实验过程中,需要注意正确连接电路和设备,并确保信号的稳定性和准确性。
简单函数发生器的设计函数发生器(function generator)是一种能生成不同函数形式输出信号的仪器。
它广泛应用于电子、通信、自动控制等领域,用于测试、仿真、教学以及其他各种应用。
函数发生器通常由以下几个组成部分组成:信号源、波形形状选择电路、频率选择电路和幅度控制电路。
下面将分别对这些部分进行设计。
首先是信号源。
在函数发生器中,常用的信号源有信号发生器和稳压电源。
信号发生器产生正弦、方波、三角波等各种波形信号。
稳压电源用于提供稳定的电压输出。
这里我们选择使用信号发生器作为信号源。
接下来是波形形状选择电路。
波形形状选择电路用于选择输出信号的波形形状,包括正弦波、方波、三角波等。
这里我们采用多路开关电路来实现波形形状的选择。
多路开关电路可以通过切换不同的开关状态来选择不同的波形形状。
然后是频率选择电路。
频率选择电路用于选择输出信号的频率。
一种常见的频率选择电路是使用可变频率振荡器(VFO)。
可变频率振荡器可以通过调节电路中的电阻、电容或电感等参数来改变输出信号的频率。
最后是幅度控制电路。
幅度控制电路用于控制输出信号的幅度大小。
一种常用的幅度控制电路是使用可变增益放大器。
可变增益放大器可以通过调节放大器的增益来改变输出信号的幅度。
综上所述,一个简单函数发生器的设计包括信号源、波形形状选择电路、频率选择电路和幅度控制电路四个部分。
其中信号源使用信号发生器,波形形状选择电路使用多路开关电路,频率选择电路使用可变频率振荡器,幅度控制电路使用可变增益放大器。
通过调节这些电路的参数,我们可以生成不同形式的函数输出信号。
函数发生器在电子、通信、自动控制等领域具有广泛的应用。
它可以用于测试电路的频率响应、幅度响应等性能指标,也可以用于信号仿真和教学实验。
由于函数发生器的灵活性和可调节性,它成为了各种实验和应用中不可或缺的仪器之一。
函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。
下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。
硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。
可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。
2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。
根据频率范围选择合适的振荡器、计数器等电路元件。
3.精度:考虑信号的精度要求,如频率精度、相位精度等。
可以通过使用高精度的时钟源和自动频率校准电路来提高精度。
4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。
可以使用滤波电路、反馈电路等技术来改善波形质量。
5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。
软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。
2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。
可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。
3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。
对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。
4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。
存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。
5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。
总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。
在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。
函数发生器课程设计实验报告函数生成器课程设计实验报告引言函数生成器是计算机科学中常用的一种工具,它可以帮助我们生成特定规律的函数。
在本次课程设计实验中,我们使用函数生成器来实现一些常见的函数生成任务。
本报告将详细介绍实验的目标、方法、结果和分析。
一、实验目标本次实验的目标是设计和实现一个函数生成器,能够生成满足特定条件的函数。
具体来说,我们将实现以下几个功能:1. 生成等差数列函数;2. 生成等比数列函数;3. 生成斐波那契数列函数;4. 生成阶乘函数;5. 生成幂函数。
二、实验方法为了实现上述目标,我们采用了以下步骤:1. 设计函数生成器的接口,包括输入参数和返回值类型;2. 实现等差数列函数生成器,通过输入起始值、公差和长度来生成等差数列函数;3. 实现等比数列函数生成器,通过输入起始值、公比和长度来生成等比数列函数;4. 实现斐波那契数列函数生成器,通过输入长度来生成斐波那契数列函数;5. 实现阶乘函数生成器,通过输入数字来生成阶乘函数;6. 实现幂函数生成器,通过输入底数和指数来生成幂函数。
三、实验结果经过实验,我们成功实现了上述功能,并得到了以下结果:1. 等差数列函数生成器可以根据输入的起始值、公差和长度生成相应的等差数列函数;2. 等比数列函数生成器可以根据输入的起始值、公比和长度生成相应的等比数列函数;3. 斐波那契数列函数生成器可以根据输入的长度生成相应的斐波那契数列函数;4. 阶乘函数生成器可以根据输入的数字生成相应的阶乘函数;5. 幂函数生成器可以根据输入的底数和指数生成相应的幂函数。
四、实验分析通过本次实验,我们可以得出以下几点分析:1. 函数生成器是一种非常有用的工具,可以帮助我们快速生成特定规律的函数;2. 等差数列函数生成器和等比数列函数生成器可以帮助我们生成常见的数列函数,对数学问题的解决有很大帮助;3. 斐波那契数列函数生成器可以帮助我们生成斐波那契数列,这在算法设计和动态规划等领域有广泛应用;4. 阶乘函数生成器可以帮助我们生成阶乘函数,这在数学计算和组合问题等领域有重要作用;5. 幂函数生成器可以帮助我们生成幂函数,这在数学建模和函数拟合等领域有实际应用。
函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。
二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。
它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。
函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。
三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。
2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。
(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。
(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。
(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。
(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。
四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。
2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。
3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。
五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。
实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。
简单函数发生器课程设计一、课程目标知识目标:1. 学生能理解简单函数发生器的原理,掌握其基本构成和功能。
2. 学生能运用已学的数学知识,描述简单函数发生器中常见函数的类型及其特点。
3. 学生能运用函数知识,解释简单函数发生器在实际应用中的问题。
技能目标:1. 学生能通过实际操作,掌握简单函数发生器的使用方法,并绘制出相应的函数图像。
2. 学生能运用问题解决策略,分析并解决与简单函数发生器相关的实际问题。
3. 学生能通过小组合作,进行实验设计和数据分析,提高团队协作和沟通能力。
情感态度价值观目标:1. 学生对数学产生兴趣,认识到数学在科技发展中的重要性,增强学习数学的自信心。
2. 学生培养动手实践、勇于探索的精神,提高面对问题的挑战意识。
3. 学生通过学习简单函数发生器的实际应用,体会数学与生活的紧密联系,培养实用主义价值观。
二、教学内容本节课以教材中关于函数的基础知识为基础,结合以下内容进行教学:1. 简单函数发生器的原理与构成:介绍函数发生器的定义、工作原理及其基本构成,使学生理解其内部结构和功能。
2. 常见函数类型及特点:回顾已学的线性函数、二次函数、指数函数等,分析这些函数在简单函数发生器中的应用和特点。
3. 函数图像的绘制:指导学生使用简单函数发生器,绘制出不同类型的函数图像,并分析图像与函数性质之间的关系。
4. 实际应用问题:结合实际生活中的案例,引导学生运用函数知识解决与简单函数发生器相关的问题。
教学内容安排如下:第一课时:简单函数发生器的原理与构成,常见函数类型及特点。
第二课时:使用简单函数发生器绘制函数图像,分析图像与函数性质之间的关系。
第三课时:实际应用问题,小组合作进行实验设计和数据分析。
教学进度按照以上三个课时进行,确保学生在掌握基础知识的同时,能够将所学应用于实际问题中,达到学以致用的目的。
三、教学方法为了提高学生对简单函数发生器的理解和应用,本节课将采用以下多样化的教学方法:1. 讲授法:教师通过生动的语言和形象的比喻,向学生讲解简单函数发生器的原理、构成以及常见函数类型等基础知识,为学生奠定扎实的理论基础。
函数发生器的设计函数生成器的设计是一种用于生成函数对象的工具,它可以根据特定的需求和规则自动创建函数。
这种设计模式可以提供更灵活和可重用的代码结构,使开发人员能够更容易地创建和管理各种不同类型的函数。
函数生成器的设计可以包括以下几个关键组成部分:1.接口设计:-函数生成器应该定义一个明确的接口,使开发人员能够方便地使用和配置生成器。
这可以包括输入参数、输出类型和其他必要的选项。
-接口设计应该尽量简洁和易于理解,以便于其他开发人员能够轻松地使用和扩展生成器。
2.参数和选项处理:-函数生成器应该能够接受一些输入参数和选项,以便根据这些参数和选项生成不同类型的函数。
例如,可以通过参数来指定生成函数的名称、参数列表、返回类型等。
-生成器应该能够验证和处理输入参数和选项,以确保生成的函数符合预期的规范和需求。
3.函数生成逻辑:-生成器应该定义一个生成函数的逻辑,根据输入参数和选项来创建函数对象。
这可以包括使用模板、元编程或其他技术来生成函数的源代码。
-生成器应该能够根据不同的需求和规则生成不同类型的函数。
例如,可以根据输入参数和选项生成不同的函数体、返回值或异常处理逻辑。
4.函数对象的包装和管理:-生成器应该能够将生成的函数对象包装成可执行的代码,并提供一些管理函数对象的功能。
这可以包括保存函数对象到文件、加载函数对象、执行函数对象等。
-包装和管理函数对象的功能可以提供更方便和可靠的方式来使用和维护生成器生成的函数。
5.错误处理和异常处理:-生成器应该能够处理输入参数和选项的错误,并提供适当的错误消息和异常处理机制。
这可以包括输入验证、异常捕获和错误提示等。
-错误处理和异常处理的功能可以提高生成器的健壮性和可靠性,使开发人员能够更好地调试和优化生成器的代码。
函数生成器的设计可以根据具体的需求和场景进行扩展和定制。
例如,可以根据不同的编程语言、应用领域或项目需求来设计特定的函数生成器。
此外,还可以结合其他设计模式和技术,如工厂模式、装饰器模式、元编程等,来增强生成器的功能和灵活性。
函数发生器电路的设计函数发生器是一种用于产生各种波形信号的电路。
它广泛应用于电子测试、仪器仪表、通信和音频设备中。
函数发生器可以产生多种波形,如正弦波、方波、三角波和锯齿波等。
设计一个函数发生器电路需要考虑到以下几个方面:1.波形生成器:波形生成器是函数发生器电路的核心部分。
它由振荡器和滤波器组成。
振荡器一般采用反馈电路,如RC电路、LC电路或晶体振荡器。
滤波器可以通过电容、电感等元件来实现,用于调整波形的频率和幅值。
2.频率控制电路:函数发生器应具备频率可调的功能,可以通过调节电路中的元件值或电压来改变输出波形的频率。
常见的频率控制电路有电位器、电子开关和频率锁相环等。
3.幅值控制电路:函数发生器应具备幅值可调的功能,可以通过调节电路中的元件值或电压来改变输出波形的幅值。
常见的幅值控制电路有电位器、变压器和运算放大器等。
4.波形调制电路:函数发生器通常还具备波形调制的功能,可以通过调节电路中的元件值或电压来改变输出波形的形状。
常见的波形调制电路有振荡电路、计数器和加减法器等。
下面将以正弦波函数发生器的设计为例,详细说明函数发生器电路的设计步骤:1.确定频率范围:首先需要确定函数发生器的频率范围,例如1Hz至100kHz。
2.确定振荡器的类型:根据频率范围,选择合适的振荡器类型。
一般低频区可以采用RC电路,高频区可以采用晶体振荡器。
3.计算振荡器的元件值:根据所选振荡器类型和频率范围,计算振荡器所需的元件值,如电阻、电容或晶体的参数。
4.选取滤波器类型:根据所需的波形形状,选择合适的滤波器类型。
例如,如果需要输出纯净的正弦波,可以采用低通滤波器。
5.计算滤波器的元件值:根据所选滤波器类型和频率范围,计算滤波器所需的元件值,如电容、电感或电阻的参数。
6.添加频率控制电路:根据设计需要,选择合适的频率控制电路。
例如,可以使用电位器或变压器来实现频率的可调。
7.添加幅值控制电路:根据设计需要,选择合适的幅值控制电路。
函数发生器设计课程设计任务书学院:电气工程及其自动化学院专业班级:学生:学号:指导教师:闫晓梅时间:2014年12题目: 函数发生器设计课程设计目的:1)掌握电子系统的一般设计方法;2)培养综合应用所学知识来指导实践的能力;3)掌握常用元器件的识别和测试;4)熟悉常用仪表并且了解电路调试的基本办法。
课程设计容和要求:1)输出波形:正弦波、方波、三角波等;2)频率围:10Hz~10kHz;3) 输出电压:方波Up-p=15V,三角波Up-p=5V,正弦波Up-p=3V;4) 波形特征:方波的上升时间T<2ms,三角波失真系数THD<1%,正弦波失真系数THD<3%;5)单元电路设计,进行必要的计算;初始条件:恒压源,运算放大器,万用电路板,电容,三极管,开关,导线。
时间安排:第17周:理论讲解;第18周:理论设计及实验室安装调试;第19周:撰写设计报告及答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日摘要函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、含方波、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。
采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
经过仿真得出了方波、三角波、正弦波、方波。
1. 方案的论证与比较1.1方案一采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
1.2 方案二采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
1.3 方案三由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
本电路可以很好的结合已学的知识与实践,且输出波形幅度及频率均可通过改变元件参数进行调整,方便且成本较低。
综合以上对各个方案优劣势的分析,最终选择了方案三做为本次模拟电子技术课程设计的总设计方案。
2.课程设计的目的和任务2.1 设计目的1)掌握电子系统的一般设计方法;2)培养综合应用所学知识来指导实践的能力;3)掌握常用元器件的识别和测试;4)熟悉常用仪表并且了解电路调试的基本办法。
2.2设计任务设计方波——三角波——正弦波函数信号发生器2.3课程设计的要求及技术指标1)设计、组装、调试函数发生器;2)输出波形:正弦波、方波、三角波;3)频率围:在10Hz-10kHz围连续可调;4)输出电压:方波Up-p≤15V,三角波Up-p≤5V,正弦波Up-p≤3V。
3.单元电路原理及设计3.1 方波发生电路的工作原理此电路由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。
Uo通过R3对电容C正向充电,如图中实线箭头所示。
反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un 趋于+Uz ;但是,一旦Un=+Ut,再稍增大,Uo 从+Uz 跃变为-Uz,与此同时Up从+Ut 跃变为-Ut 。
随后,Uo 又通过R3对电容C 反向充电,如图中虚线箭头所示。
Un 随时间逐渐增长而减低,当t 趋于无穷大时,Un 趋于-Uz ;但是,一旦Un=-Ut,再减小,Uo 就从-Uz 跃变为+Uz ,Up 从-Ut 跃变为+Ut ,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
3.2 方波---三角波转换电路的工作原理3.2 方波---三角波转换电路的工作原理图1 方波—三角波产生电路…………………………………………………公式(1)………………………………………………… 公式(2)图2 迟滞电压传输特性图3 三角波发生器工作波形m o p U R R R U 2132T +±=±131242)(4p p R R C R R R T ++=工作原理:若a 点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。
运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee跳到高电平Vcc 。
设Uo1=+Vcc,则 312231231()0CC ia R RP R U V U R R RP R R RP ++=++=++++…………………………公式(3)将上式整理,得比较器翻转的下门限单位Uia-为 223131()CC CC ia R R U V V R RP R RP ---=+=++ …………………………… 公式(4) 若Uo1=-Vee,则比较器翻转的上门限电位Uia+为 223131()EE CC ia R R U V V R RP R RP +-=-=++……………………………………公式(5) 比较器的门限宽度2312H CC ia ia R U U U I R RP +-=-=+………………………公式(6) 由以上公式可得比较器的电压传输特性,如图所示。
a 点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221()O O U U dt R RP C -=+⎰ ………………………………………………公式(7) 1O CC U V =+时,2422422()()()CC CC O V V U t t R RP C R RP C -+-==++…………………公式(8) 1O EE U V =-时,2422422()()()CC EE O V V U t t R RP C R RP C --==++…………………公式(9) 可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。
a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为2231O m CC R U V R RP =+……………………………………………………… 公式(10) 方波-三角波的频率f 为3124224()R RP f R R RP C +=+…………………………………………………公式(11) 由以上两式可以得到以下结论:(1)电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。
若要求输出频率的围较宽,可用C2改变频率的围,PR2实现频率微调。
(2)方波的输出幅度应等于电源电压+Vcc 。
三角波的输出幅度应不超过电源电压+Vcc 。
电位器RP1可实现幅度微调,但会影响方波-三角波的频率。
3.3 三角波---正弦波转换电路的工作原理图4 三角波产生电路三角波——正弦波的变换电路主要由差分放大电路来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:22/1id T C E U U aI I aI e ==+………………………………………………公式(12)11/1id T C E U U aI I aI e -==+………………………………………………公式(13)式中/1C E a I I =≈ 0I ——差分放大器的恒定电流;TU ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。
如果Uid 为三角波,设表达式为 44434m id m U T t T U U T t T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨-⎛⎫⎪- ⎪⎪⎝⎭⎩022T t T t T ⎛⎫≤≤ ⎪⎝⎭⎛⎫≤≤ ⎪⎝⎭……………………公式(14) 式中 Um ——三角波的幅度;T ——三角波的周期。
1)为使输出波形更接近正弦波,由图可见:2)传输特性曲线越对称,线性区越窄越好;3)三角波的幅度Um 应正好使晶体管接近饱和区或截止区。
图为实现三角波——正弦波变换的电路。
其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。
电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。
C4VCCR5R6R7R8R9R11-12VVCCR1250%R13C5C2 R14I O2图5 三角波—正弦波变换电路图6 正弦波分析图3.4电路的参数选择及计算(1)方波-三角波中电容C1变化(关键性变化之一)实物连线中,我们一开始很长时间出不来波形,后来将C2从10uf (理论时可出来波形)换成0.1uf 时,顺利得出波形。
实际上,分析一下便知当C2=10uf 时,频率很低,不容易在实际电路中实现。
(2)三角波-正弦波部分比较器A1与积分器A2的元件计算如下。
由式(3-61)得2231O m CC R U V R RP =+…………………………………………(15) 即223141123O m CCU R R RP V ===+……………………………………………………(16) 取 210R K =Ω,则3130R RP K +=Ω,取320R K =Ω ,RP1为47K Ω的点位器。
区平衡电阻1231//()10R R R RP K =+≈Ω由式(3-62)3124224()R RP f R R RP C +=+……………………………………………(17) 即3141224R RP R RP R C ++=+…………………………………………………………(18) 当110Z H f Z ≤≤H 时,取210C F μ=,则42(75~7.5)R RP k +=Ω,取4 5.1R k =Ω,为100K Ω电位器。