第1章 粉体性质汇总
- 格式:ppt
- 大小:21.06 MB
- 文档页数:54
粉体知识点整理第⼀章绪论1.粉体学的重要意义(对应“粉体及其技术的重要性”)1)粉体是许多材料构成、组分或原料;2)粉体技术是制备材料的基础技术之⼀;3)超细粉体材料,尤其是纳⽶粉体材料在新型材料的开发研究中越来越重要;4)粉体容易⼤批量⽣产处理,产品质量均匀,成本低,控制精确,成为许多⼈⼯合成材料必然选择的合成⽅法。
2.颗粒的定义:是在⼀特定范围内具有特定形状的⼏何体。
⼤⼩⼀般在毫⽶到纳⽶之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
3.粉体的定义:⼤量颗粒的集合体,即颗粒群,⼜称粉末(狭义的粉末是指粒度较⼩的部分)。
颗粒与粉体的关系:颗粒是粉体的组成单元,是粉体中的个体,是研究粉体的出发点。
颗粒⼜总是以粉体这种集合体的形式出现,集合体产⽣了个体所所不具有的性质。
4.粉体学的特点:以粉体为研究对象,研究其性质及加⼯利⽤技术。
5.粉体技术包括:制备、加⼯、测试。
制备有各种物理、化学、机械⽅法;加⼯作业有粉碎、分级、分散、混合、制粒、表⾯处理、流态化、⼲燥、成形、烧结、除尘、粉尘爆炸、输运、储存、包装等;测试对粉体各种⼏何、⼒学、物理、化学性能表征。
6.粉体的存在状态:通常所指的粉体是⼩尺⼨的固体,但⽓体中的液滴、液体中的⽓泡也属于颗粒;固态的物质中⼜分为分散态和聚集态,多数粉体为分散态。
7.粉体的分类:1)按照成因分类:天然粉体与⼈⼯粉体2)按制备⽅法分类:机械粉碎法和化学法粉体3)按分散状态分类:原级颗粒(⼀次颗粒)、聚集体颗粒(⼆次颗粒)、凝聚体颗粒(三次颗粒)、絮凝体颗粒4)按颗粒⼤⼩(粒径)分类:粗粉体(>0.5mm)、中细粉体(0.074~0.5mm)、细粉体(10~74µm)、微粉体(0.1~10 µm )、纳⽶粉体(<100nm)第⼆章粉体的⼏何性质1.粒度定义:粒度是指粉体颗粒所占空间的线性尺⼨。
2.颗粒尺⼨常⽤的表征⽅法:三轴径、定向径、当量径、3.粉体平均粒径计算公式:4.粒度分布及其表⽰⽅法:粒度分布依据的统计基准:∑n的⽐例。
粉体学简介中粉体的性质: 1.粉体的粒⼦⼤⼩与粒度分布及其测定⽅法 (1)粉体的粒⼦⼤⼩与粒度分布粉体的粒⼦⼤⼩是粉体的基本性质,它对粉体的溶解性、可压性、密度、流动性等均有显著影响,从⽽影响药物的溶出与吸收等。
粒径的⼏种表⽰⽅法:定⽅向径(显微镜测定)、等价径、体积等价径(库尔特计数法测定)、有效径(称Stocks径)、筛分径(筛分法测得)。
粒度分布:⼀定量的粉体,不同粒径的粒⼦所占⽐例。
了解粒度分布的意义,在于了解粒⼦⼤⼩的均匀性,⽽均匀性对药物制剂研究很重要。
粒度分布,常⽤频率分布来表⽰,即各个平均粒径相对应的粒⼦占全体粒⼦群中的百分⽐。
(2)粒径测定⽅法: 1)光学显微镜法:测定粒径范围0.5~100µm,⼀般需测定200~500个粒⼦,才具有统计意义。
2)库尔特计数法:将粒⼦群混悬于电解质溶液中。
本⽅法可⽤于混悬剂、乳剂、脂质体、粉末药物等粒径的测定。
3)沉降法:是根据Stocks⽅程求出的粒⼦的粒径,适⽤于100µm以下的粒径的测定。
4)筛分法:使⽤最早、应⽤最⼴泛的粒径测定⽅法,常测定45µm以上的粒⼦。
粒径测定注意的有关事项:粒径分析前对样品应进⾏合理的选择与处理;取样应采⽤⼀定的⽅法保证粒⼦的均匀性,流动样品可采取不同时间取样,静⽌样品可采取不同部位置医学教|育搜集整理取样,然后混合测定;为使取样具有代表性,应适当数量的取样量,⼤量样品取样量应在100g~1kg;库尔特计数法与沉降法测定是在液体中进⾏的为保证粒⼦的均匀性,可加⼊适当量的表⾯活性剂。
2.粉体的⽐表⾯积 粉体的⽐表⾯积是表征粉体中粒⼦粗细及固体吸附能⼒的⼀种量度。
粒⼦的表⾯积不仅包括粒⼦的外表⾯积,还包括由裂缝和空隙形成的内部表⾯积。
直接测定粉体的⽐表⾯积的常⽤⽅法有⽓体吸附法、还有⽓体透过法(测外表⾯积)。
3.粉体的孔隙率 孔隙率是粉体中总孔隙所占有的⽐率。
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
第一章绪论1.粉体学的重要意义(对应“粉体及其技术的重要性”)1)粉体是许多材料构成、组分或原料;2)粉体技术是制备材料的基础技术之一;3)超细粉体材料,尤其是纳米粉体材料在新型材料的开发研究中越来越重要;4)粉体容易大批量生产处理,产品质量均匀,成本低,控制精确,成为许多人工合成材料必然选择的合成方法。
2.颗粒的定义:是在一特定范围内具有特定形状的几何体。
大小一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
3.粉体的定义:大量颗粒的集合体,即颗粒群,又称粉末(狭义的粉末是指粒度较小的部分)。
颗粒与粉体的关系:颗粒是粉体的组成单元,是粉体中的个体,是研究粉体的出发点。
颗粒又总是以粉体这种集合体的形式出现,集合体产生了个体所所不具有的性质。
4.粉体学的特点:以粉体为研究对象,研究其性质及加工利用技术。
5.粉体技术包括:制备、加工、测试。
制备有各种物理、化学、机械方法;加工作业有粉碎、分级、分散、混合、制粒、表面处理、流态化、干燥、成形、烧结、除尘、粉尘爆炸、输运、储存、包装等;测试对粉体各种几何、力学、物理、化学性能表征。
6.粉体的存在状态:通常所指的粉体是小尺寸的固体,但气体中的液滴、液体中的气泡也属于颗粒;固态的物质中又分为分散态和聚集态,多数粉体为分散态。
7.粉体的分类:1)按照成因分类:天然粉体与人工粉体2)按制备方法分类:机械粉碎法和化学法粉体3)按分散状态分类:原级颗粒(一次颗粒)、聚集体颗粒(二次颗粒)、凝聚体颗粒(三次颗粒)、絮凝体颗粒4)按颗粒大小(粒径)分类:粗粉体(>0.5mm)、中细粉体(0.074~0.5mm)、细粉体(10~74μm)、微粉体(0.1~10 μm )、纳米粉体(<100nm)第二章粉体的几何性质1.粒度定义:粒度是指粉体颗粒所占空间的线性尺寸。
2.颗粒尺寸常用的表征方法:三轴径、定向径、当量径、3.粉体平均粒径计算公式:4.粒度分布及其表示方法:粒度分布依据的统计基准:①个数基准分布(又称频度分布) 以每一粒径间隔内的颗粒数占颗粒总数∑n的比例。
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
第一章粉体基本性质1—1 粉体是细小颗粒状物料的集合体.粉体物料是由无数颗粒构成的, 颗粒是粉体物料的最小单元. 1-2 工程上常把在常态下以较细的粉粒状态存在的物料,称为粉体。
1—3 颗粒的大小、分布、结构、形态和表面形态等因素,是粉体其他性能的基础. 1-4 构成粉体颗粒的大小,一般在几个纳米到几十毫米区间。
1—5 如果构成粉体的所有颗粒,其大小和形状都是一样的,则称这种粉体为单分散粉体。
大多数粉体都是由参差不齐的各种不同大小的颗粒所组成,这样的粉体称为多分散粉体.粉体颗粒的大小和在粉体颗粒群中所占的比例分别称为粉体物料的粒度和粒度分布。
1-6“目"是一个长度单位,代表在1平方英寸上的标准试验筛网上筛孔数量.1—7 粒度是颗粒在空间范围所占大小的线性尺度。
粒度越小,颗粒越细。
所谓粒径,即表示颗粒大小的一因次尺寸.1-8以颗粒的长度l 、宽度b 、高度h 定义的粒度平均值称为三轴平均径,适用于必须强调长形颗粒存在的情况。
1—9 沿一定方向与颗粒投影轮廓两端相切的两平行线间的距离。
称为弗雷特直径。
沿一定方向将颗粒投影面积等分的线段长度,称为马丁直径。
1—10 与颗粒同体积的球的直径称为等体积球当量径;与颗粒等表面的球的直径称为等表面积球当量径;与颗粒投影面积相等的圆的直径称为投影圆当量径(亦称heywood 径.1-11若以Q 表示颗粒的平面或立体的参数,d 为粒径,则形状系数Φ定义为n d Q =Φ;若以S 表示颗粒的表面积,d 为粒径,则颗粒的表面积形状系数形状系数Φs 定义为2d Ss =Φ ; 对于球形颗粒,Φs=;对于立方体颗粒,Φs= 6 .若以V 表示颗粒的体积,d 为粒径,则颗粒的体积形状系数Φv 定义为Φv = 3d V 对于球形颗粒,Φv= 6π;对于立方体颗粒,Φv= 1。
1-12比表面积形状系数定义为表面积形状系数与体积形状系数之比,用符号Φsv 表示:Φsv=V S ΦΦ,对于球形颗粒和立方体颗粒,Φsv= 6。