微生物燃料电池
- 格式:doc
- 大小:176.50 KB
- 文档页数:8
微生物燃料电池12级新能源材料,程妮,学号106微生物燃料电池(microbial fuel cells ,MFCs)是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的装置,是一种生物反应器。
自1911年英国植物学家Potter 发现微生物可以产生电流开始,有关MFCs 的研究一直在进行,但进展缓慢。
直到研究人员发现某些微生物能在无介体的条件下直接将体内产生的电子传递到电极,MFCs 的研究获得了突破性进展。
目前,MFCs 研究的主要内容是无介体MFCs 产电性能的改善,体现在污水处理、生物传感器的应用和生物修复等方面。
一、原理微生物燃料电池以附着于阳极的微生物作为催化剂,通过降解有机物(例如,葡萄糖、乳酸盐和醋酸盐等),产生电子和质子。
产生的电子传递到阳极,经外电路到达阴极产生外电流。
产生的质子通过分隔材料(通常为质子交换膜、盐桥),也可以直接通过电解液到达阴极。
在阴极与电子、氧化物发生还原反应,从而完成电池内部电荷的传递。
如图所示为MFCs 的工作原理示意图。
典型反应如下:阳极:C 6H 1206+6H 20一6C02+24H ++24e -阴极:602+24H ++24e -一一12H 20二、微生物燃料电池的结构微生物燃料电池主要有三种结构类型,即单室结构、双室结构和填料式结构。
[1](一)、单室结构的MFCs 单室MFCs 通常直接以空气中的氧气作为氧化剂,无需曝气,因而具有结构简单、成本低和适于规模化的优势。
单室的功率密度为480~492mW /m 2,单室MFCs 无分隔材料和阴极液,内阻较双室小。
但是单室MFCs 的库仑效率(CE)比双室低(单室库仑效率为10%,而双室则为42%~61%)。
(二)、双室结构的MFCs 典型的双室MFCs 包括阳极室和阴极室,中间由PEM 或盐桥连接。
双室的功率密度为38~42mW /m 2。
MFCs 从外形上又分为平板型和管型。
以厌氧污泥为活性微生物,以葡萄糖为底物,以颗粒石墨为阳极的管状ACMFCs,其最大功率密度达到50.2W/m2。
微生物燃料电池的原理与应用微生物燃料电池是一种利用微生物酵解产生的电子传递到电极上产生电力的技术,它的特点是能够将有机废弃物转化为电能,同时减少污染、降低能源成本,因此备受关注。
本文将讨论微生物燃料电池的原理与应用。
一、微生物燃料电池的原理微生物燃料电池的核心原理是将来自微生物代谢的电子传递到电极上来产生电力。
在微生物燃料电池中,微生物活性产生的氢离子(H+)和电子通过呼吸链途径转移到氧气或氧化的底物上,达到能量代谢的目的。
而当微生物呼吸链的末端正好是电极表面时,电子可以被导向电极表面形成电流,故而产生电力。
微生物燃料电池中的微生物可分为两类:一是光合微生物,如藻类和细菌等,其使用太阳能将二氧化碳和水转化为有机物进行代谢;二是好氧和厌氧微生物,如大肠杆菌等,其使用底物在代谢过程中产生的氢离子和电子转移到电极上形成电流。
于是,我们可以通过对不同类型的微生物进行研究和利用,来产生不同种类和强度的电流。
二、微生物燃料电池的应用微生物燃料电池由于具有高效、便捷和环保的优点,被广泛运用于生产和生活的多个领域。
以下就是微生物燃料电池的应用:1. 生物废弃物处理微生物燃料电池可以将厨余垃圾、污泥和废水等有机废弃物转化为电能,实现废物处理和能源回收的双重效果。
利用微生物燃料电池处理废弃物不仅能节约大量处理成本,而且可以减少对环境的污染。
2. 智能物联网微生物燃料电池可以产生小型电源,已经应用于智能物联网设备。
这些设备包括传感器、监控装置、移动通信设备和环境检测仪器等,都需要能够稳定供应电能,而微生物燃料电池可以为这些设备提供稳定的电源。
3. 医疗、军事和安全领域微生物燃料电池还可以应用于一些不便使用电网的场合,如医疗方面的义肢、覆盖物和人造耳蜗,军事方面的夜视仪、无人机和常规电力供应等,安全领域的消防器材、探矿工具和遥控钻机等,都可以通过微生物燃料电池进行供电。
三、微生物燃料电池的未来发展随着科技的不断进步,微生物燃料电池在未来的发展前景非常广阔。
微生物燃料电池原理与应用微生物燃料电池(Microbial Fuel Cell, MFC)是一种利用微生物氧化有机物产生电能的装置。
它基于微生物的电化学反应来产生电力,将化学能直接转化为电能。
微生物燃料电池的原理是通过利用微生物的代谢作用将有机废物(如人类粪便、废水等)中的化学能转化为电能,实现能量回收和减少污染物的排放。
该技术有着巨大的潜力,能够广泛应用于废水处理、能源生产和环境保护等领域。
微生物燃料电池中的关键组成部分是阳极和阴极。
阳极是微生物活动的场所,它提供了一个良好的电子传递通道。
通常情况下,阳极材料是由导电性好的物质构成,如碳纳米管、碳纳米颗粒等。
阴极则是电子和氧气进行还原反应的场所,它常常使用氧化剂(如氧气或氯离子)来参与电子转移反应。
阳极和阴极之间的电子传递通过外部电路完成,从而产生电能。
微生物燃料电池的关键是利用微生物的代谢作用。
在阳极的表面,微生物通过氧化有机物来产生电子和质子。
微生物中的电子经过阳极材料传递到外部电路中去,形成电流。
同时,微生物释放质子到电解质中去。
质子在电解质中通过离子交换膜传递到阴极处与氧气结合,还原发生的氧化反应,并接受电子,形成水。
这个过程实际上是微生物通过氧化有机物来释放能量,将化学能转化为电能。
这个电能可以直接用来驱动负载,如电灯、泵浦等。
微生物燃料电池的应用非常广泛。
一方面,它可以作为一种有效的废水处理技术。
通过将微生物燃料电池应用于废水处理厂,可以不仅处理废水中的有机物,还能够产生电能。
这就在一定程度上实现了能源回收和环境保护的双重效果。
另一方面,微生物燃料电池还可以应用于能源生产。
有机废物广泛存在于农村、城市和工业生产中,通过利用微生物燃料电池来转化这些有机废物为电能,可成为一种可再生能源来源。
此外,微生物燃料电池还可以应用于生物传感器和无源传感器等领域。
尽管微生物燃料电池具有广泛的应用前景,但目前仍然有一些挑战需要克服。
首先,阳极材料的选择和优化对微生物燃料电池的性能至关重要。
生物燃料电池的工作原理及其应用生物燃料电池是一种利用微生物或酶类催化物氧化有机物生成电能的电池。
它是一种新型的可再生能源技术,可以利用生物质、有机垃圾、农业废弃物等可再生资源,将其转化为电能。
生物燃料电池具有结构简单、环保无污染、能量密度高、装置便携等优点,具有广泛的应用前景。
一、生物燃料电池的工作原理生物燃料电池的工作原理是通过微生物或酶类催化物将有机物氧化成无机物,从而产生电流。
生物燃料电池主要有两种工作机制:微生物燃料电池和酶催化燃料电池。
1. 微生物燃料电池微生物燃料电池是利用微生物催化物将废弃物或生物质转化为电能。
微生物燃料电池包括两种类型:一种是微生物生产电流燃料电池(MFC),另一种是微生物生产氢气燃料电池(MBFC)。
MFC的原理是利用微生物合成有机物质并在阳极上进行氧化反应,同时在阴极上进行还原反应,这种反应可以产生电流。
MBFC的主要反应是通过微生物将废弃物或生物质转化成氢气,然后在阳极上进行氧化反应,同时在阴极上进行还原反应,从而产生电流。
2. 酶催化燃料电池酶催化燃料电池是利用酶类催化物将废弃物或生物质转化为电能。
酶催化燃料电池主要分为直接电子转移酶催化燃料电池(DET-MFC)和间接电子转移酶催化燃料电池(IET-MFC)。
DET-MFC是直接将底物化学能转换为电能,该反应是通过电子转移方式实现的。
IET-MFC是通过酶类催化物介导电子转移实现的。
二、生物燃料电池的应用生物燃料电池具有广泛的应用前景,主要应用领域包括环境保护、生物传感、能源供应等。
1. 环境保护生物燃料电池可以通过利用生物质、有机垃圾等废弃物,将其转化为电能。
这种技术可以有效降低废弃物的排放量和环境污染,达到环境保护的目的。
2. 生物传感生物燃料电池可以被用作生物传感器,通过监测微生物代谢产物或酶催化物代谢产物来分析环境中的有害物质,如氨、硫化氢等。
这种技术可以在不使用外部电力和电池的情况下,实时监测水质、土壤和大气环境中的有害物质。
新型化学电源生物燃料电池及其发展前景摘要:微生物燃料电池是以微生物为催化剂,通过降解有机物将化学能转化成电能的一种新型发电装置。
它能够利用废弃物和生活垃圾等生物资源进行发电,还能有效地处理废水,并能从实际的可生物降解的有机物中生物制氢,为有效获取氢能开辟了新途径,在环境保护和新能源开发等领域具有广阔的应用前景,因此成为上述领域当前的研发新热点1.生物燃料电池简介1.1、生物燃料电池定义所谓的生物燃料电池(Biofuel cell),就是按照燃料电池的原理,利用生物质能将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。
1.2、生物燃料电池分类目前有人将生物燃料电池分为间接型和直接型两种。
在间接型生物燃料电池中,由水的厌氧酵母或光解作用产生氢等电活性成分,然后在通常的氢- 氧燃料电池的阳极上被氧化。
在直接型生物燃料电池中,有一种氧化还原蛋白质作为电子由基质直接转移到电极的中间物根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。
1.3、两种生物燃料电池工作过程简介典型的微生物燃料电池由阳极室和阴极室组成,质子交换膜将两室分隔开。
它的基本工作原理可分为四步:(1) 在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2) 介体捕获电子并将其运送至阳极;;(3) 电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4) 氧气在阴极接收电子,发生还原反应。
酶燃料电池:葡萄糖在葡萄糖氧化酶和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。
双氧水得到电子,并在微过氧化酶的作用下还原成水。
2 MFC 的工作原理典型的微生物燃料电池(M F C )微生物燃料电池工作原理图由阴极区和阳极区组成,两区域之间由质子交换膜分隔。
MFC 的工作原理是:在阳极表面,水溶液或污泥中的有机物,如葡萄糖、醋酸、多糖和其他可降解的有机物等在阳极微生物的作用下,产生二氧化碳、质子和电子。
微生物燃料电池微生物燃料电池(MicrobialFuelCell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置。
目录物质解析分类介体性能参数进展物质解析依据电子传递方式进行分类,微生物燃料电池可分为直接的和间接的微生物燃料电池。
所谓直接的是指燃料在电极上氧化的同时,电子直接从燃料分子转移到电极,再由生物催化剂直接催化电极表面的反应,这种反应在化学中成为氧化还原反应;假如燃料是在电解液中或其它处所反应,电子通过氧化还原介体传递到电极上的电池就称为间接微生物燃料电池。
依据电池中是否需要添加电子传递介体又可分为有介体和无介体微生物燃料电池。
分类介体向微生物燃料电池中添加的介体重要有两种:第一类是人工合成的介体,重要是一些染料类的物质,如吩嗪、吩噻嗪、靛酚、硫堇等等。
这些介体必需充足肯定的条件:(1)能穿透进入微生物的细胞内发生氧化反应;(2)特别简单得电子;(3)在被还原之前能快速离开微生物细胞;(4)在阳极表面有很好的电化学活性;(5)稳定性好;(6)在阳极电解液中是可溶的;(7)对微生物没有毒性;(8)不会被微生物代谢掉。
第二类是某些微生物自身可以合成介体,如PseudomonasaeruginosastrainKRP1能够合成绿脓菌素和吩嗪—1—甲酰胺等物质,它合成的介体不光本身可以使用,其它的微生物也可以利用它产生的介体传递电子。
作用原理参加传递电子的介体与微生物和阳极之间的作用形式有三种:(1)微生物将氧化还原反应产生的电子直接传递给溶解在溶液中的介体,介体再将电子传递给电极;(2)介体能进入到微生物体内,参加反应被还原,从微生物体内出来后再将电子传递给电极;(3)微生物吸附在电极表面,它将反应产生的电子传递给在细胞表面的介体,再通过介体传递给电极。
优势与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势:首先,它将底物直接转化为电能,保证了具有高的能量转化效率;其次,不同于现有的全部生物能处理,微生物燃料电池在常温环境条件下能够有效运作;第三,微生物燃料电池不需要进行废气处理,由于它所产生的废气的重要组分是二氧化碳,一般条件下不具有可再利用的能量;第四,微生物燃料电池不需要输入较大能量,由于若是单室微生物燃料电池仅需通风就可以被动的补充阴极气体;第五,在缺乏电力基础设施的局部地区,微生物燃料电池具有广泛应用的潜力,同时也扩大了用来充足我们对能源需求的燃料的多样性。
微生物燃料电池:清洁能源新途径随着全球能源需求的不断增长和环境问题的日益严重,寻找可再生、清洁的能源替代品已成为当今社会的重要任务。
微生物燃料电池作为一种新兴的能源技术,具有巨大的潜力。
本文将介绍微生物燃料电池的原理、应用领域以及未来发展方向。
微生物燃料电池的原理微生物燃料电池是一种利用微生物代谢产生的电子来产生电能的装置。
其基本原理是通过微生物在阳极上进行氧化反应,释放出电子,并通过外部电路传输到阴极上,在阴极上与氧气反应产生水。
微生物燃料电池可以利用各种有机废弃物作为燃料,如废水、食品残渣等,实现废弃物资源化利用和能源回收。
微生物燃料电池的应用领域废水处理微生物燃料电池可以应用于废水处理领域。
传统的废水处理方法需要大量的能源和化学药剂,而微生物燃料电池可以利用废水中的有机物质产生电能,实现废水处理与能源回收的一体化。
这不仅可以降低废水处理的成本,还可以减少对环境的污染。
生物传感器微生物燃料电池还可以应用于生物传感器领域。
通过将特定的微生物与传感器结合,可以实现对环境中特定物质的检测和监测。
微生物燃料电池可以将微生物代谢产生的电子信号转化为可测量的电流信号,从而实现对目标物质的定量分析。
移动电源由于微生物燃料电池具有体积小、重量轻、可持续供电等特点,因此可以应用于移动电源领域。
例如,在野外探险、紧急救援等场景中,微生物燃料电池可以作为一种可靠的能源来源,为移动设备提供持久稳定的电力支持。
微生物燃料电池的未来发展方向提高能源转化效率目前微生物燃料电池的能源转化效率还比较低,需要进一步提高。
未来的研究可以从优化微生物的代谢途径、改进电极材料和结构等方面入手,提高微生物燃料电池的能源转化效率。
拓宽燃料种类目前微生物燃料电池主要利用有机废弃物作为燃料,未来可以拓宽燃料种类,如利用太阳能转化的光合细菌产生的有机物质作为燃料,进一步扩大微生物燃料电池的应用范围。
提高稳定性和可持续性微生物燃料电池在长时间运行过程中容易受到微生物活性的影响而导致性能下降。
微生物燃料电池的工作原理微生物燃料电池(Microbial Fuel Cell,简称MFC)是一种利用微生物氧化有机物质来产生电能的装置。
它可以将有机废弃物或废水转化为电能,从而实现同时废物处理和能源生产的双重目的。
微生物燃料电池具有绿色环保、可再生、低成本等优势,因此受到了广泛的研究和应用。
微生物燃料电池的工作原理主要涉及到微生物的电催化活性和电子转移机制。
其基本原理可以概括为:有机物质被微生物菌群降解成为电子和陈化产物,其中电子通过外部电路流动,从而产生电流,同时陈化产物则通过阴、阳极间的传质隔膜流出。
具体而言,微生物燃料电池的工作可被分为两个半反应:氧化半反应和还原半反应。
氧化半反应发生在微生物的阳极附近,又被称为阳极反应。
在阳极附近,有机物质被微生物菌群通过代谢途径进行降解,产生电子和陈化产物。
这些电子可以通过细菌细胞的外膜或电导性纤毛传递到细胞外。
其中最常见的微生物是厌氧腐蚀细菌,其具有氧化有机物而不需要氧气存在的能力。
还原半反应发生在微生物的阴极附近,又被称为阴极反应。
在阴极附近,外部电路提供的电子进入阴极极板,并与接触的还原剂(如氧气、硫酸盐等)反应,从而生成水或硫化物等。
同时,阴极上的氧气和阳极上的电子形成的电流一起流回到微生物的阳极附近,从而完成了整个电子传递和闭环。
微生物燃料电池通常包含多个电池单元,每个单元由阳极(陈化产物流出的地方)和阴极(还原剂与外部电子反应的地方)组成。
阳极和阴极之间通常通过阳离子交换膜或多孔陶瓷等材料进行分离,以防止阳极产生的陈化产物与阴极产生的还原剂直接接触。
电流可以通过连接多个电池单元构成的电池栈进行累加。
微生物燃料电池的性能受到多个因素影响,包括微生物种类和电化学条件等。
其中,微生物的种类决定了它们的代谢途径和电子转移能力,从而直接影响了电池的电流输出。
此外,电化学条件如溶液的pH值、温度和电极材料等也会对电池性能产生影响。
因此,对微生物燃料电池的研究旨在寻找高效的微生物菌群和优化电化学条件,以提高电池的电能转化效率。
微生物燃料电池:新型产能生物技术【摘要】微生物燃料电池是一种新型的产能生物技术,可以利用微生物的代谢活动直接转化有机废弃物为电能。
本文从微生物燃料电池的工作原理、优势与应用、发展前景、在能源领域的重要性以及挑战与解决方案等方面进行探讨。
微生物燃料电池具有清洁、可持续、高效等优点,未来在能源领域有着巨大的潜力和发展前景。
该技术对可持续发展有着积极的贡献,并在解决能源危机、减少环境污染等方面具有重要作用。
微生物燃料电池作为新型产能生物技术,其发展前景广阔,具有重要性和巨大的应用前景。
【关键词】微生物燃料电池,产能生物技术,工作原理,优势,应用,发展前景,能源领域,重要性,挑战,解决方案,未来发展,可持续发展,贡献,应用前景。
1. 引言1.1 微生物燃料电池:新型产能生物技术的简介微生物燃料电池是一种利用微生物将有机物转化为电能的新型能源技术。
其核心原理是利用微生物代谢产生的电子传递到电极上,从而实现电能的产生。
相比传统燃料电池,微生物燃料电池具有更高的环境友好性和可再生性,使其成为一种备受关注的新型产能生物技术。
微生物燃料电池的应用领域广泛,可以用于废水处理、生物传感器、远程能源供应等方面。
其优势主要体现在能源利用效率高、减少了对传统燃料的依赖,有望成为未来可持续发展的重要能源形式。
随着科技的不断进步,微生物燃料电池在能源领域的潜在发展前景巨大。
目前微生物燃料电池还面临着一些挑战,比如效率不高、寿命短等问题。
针对这些挑战,科研人员也在不断寻求解决方案,以提高微生物燃料电池的性能和稳定性。
2. 正文2.1 微生物燃料电池的工作原理微生物燃料电池是一种利用微生物将有机物质转化为电能的生物技术。
其工作原理基于微生物的代谢活动,通过将有机物质氧化为二氧化碳和水,同时释放出电子。
这些电子被导向阳极,而经过阳极的电子则流向阴极,通过外部电路形成电流。
在阴极,氧气被还原为水,与阳极反应相呼应,形成完整的氧化还原反应过程。
微生物燃料电池在生物医学中的应用在当今生物医学领域,不断涌现出各种创新技术和研究成果,为人类健康带来了新的希望。
其中,微生物燃料电池作为一种新兴的能源转化技术,正逐渐展现出其在生物医学方面的巨大潜力。
微生物燃料电池,简称 MFC,是一种利用微生物作为催化剂将有机物中的化学能直接转化为电能的装置。
其基本原理是在阳极室中,微生物分解有机物产生电子和质子,电子通过外电路传递到阴极,质子则通过质子交换膜迁移到阴极,在阴极与电子和氧化剂结合生成水等产物,从而形成电流。
那么,微生物燃料电池在生物医学领域究竟有哪些应用呢?首先,它在生物传感器方面有着重要的作用。
生物传感器是一种能够对生物体内或环境中的化学物质进行检测和分析的装置。
将微生物燃料电池与生物传感器相结合,可以实现对各种生物标志物的实时、连续监测。
例如,通过特定的微生物对人体内的葡萄糖、胆固醇等物质进行代谢转化,产生的电信号能够反映这些物质的浓度变化,从而为疾病的诊断和治疗提供重要依据。
其次,微生物燃料电池在药物释放系统中也有出色的表现。
药物释放系统的关键在于能够根据病情的需要,精确控制药物的释放时间和剂量。
利用微生物燃料电池产生的电能,可以驱动微型泵或其他装置,实现药物的按需释放。
例如,当体内的某些生理指标发生变化时,微生物燃料电池产生的电信号可以触发药物释放机制,将治疗药物准确地输送到病变部位,提高治疗效果的同时降低药物的副作用。
再者,微生物燃料电池在植入式医疗器械的供电方面具有广阔的前景。
许多植入式医疗器械,如心脏起搏器、神经刺激器等,都需要稳定的电源供应。
传统的电池存在寿命有限、需要定期更换等问题,而微生物燃料电池可以利用人体内的有机物,如葡萄糖等,持续产生电能,为这些器械提供长期、稳定的能源支持。
这不仅减少了患者更换电池的痛苦和风险,还提高了医疗器械的可靠性和安全性。
此外,微生物燃料电池在生物修复和伤口愈合方面也发挥着积极的作用。
在生物修复中,微生物燃料电池可以促进有害物质的降解和转化,减少环境污染对人体健康的影响。
微生物燃料电池1.引言能源紧张和环境污染是可持续发展面临的重大挑战。
经济发展的同时,能源消耗也在急剧增长,而现有的化石能源消耗则带来了环境质量的不断恶化。
寻找新型能源,实现经济、社会和环境的可持续发展是当今社会的主要研究问题。
清洁能源的发展则成为解决问题的关键。
与此同时,不断发展的生物燃料电池成为了人们关注的焦点。
微生物燃料电池的兴起为可再生能源的生产和废弃物的处理开辟了新途径。
首先,微生物电池的燃料来源比较多样化,如多种有机无机材料,甚至能够直接利用废液、废物作为原料产生电能,净化环境。
其次,微生物燃料电池能够实现无污染、零排放、无需能量输入,满足环境友好型电池的需求。
此外,微生物燃料电池的能量转化效率非常高,可以发展成长效、低廉的能量系统;加上其操作条件是在常温常压的温和条件下工作,实现了电池的低维护成本和高安全性[1]。
微生物燃料电池的发展历史中,经历了几次重大进步。
1911年Potter用酵母和大肠杆菌进行实验,首次实现了微生物产电,从此开启了微生物燃料电池发展的道路[2]。
20世纪80年代,细菌发电取得重大进步,随后微生物燃料电池的输出功率也有了较大的提高,其作为小功率电源使用的实际应用也进一步成为可能。
2002年以后,微生物燃料电池的研究更是进入了飞速发展阶段,研究人员不仅发明了无需电子传递中间体的燃料电池,也在降低内阻、功率输出、优化结构和降低成本等方面都取得了重大进步。
近年来,微生物燃料电池的应用领域也更加宽泛。
2.微生物燃料电池的原理微生物燃料电池是一种利用微生物进行能量转换,把呼吸作用产生的电子传递到电极上的装置,能够通过产电菌代谢可生物降解的有机物,并将代谢产生的电子传递到外电路输出电能。
原理如图1所示[3]。
微生物燃料电池中,氧化底物的细菌通常在厌氧条件下将电子通过电子传递中介体或者细菌自身的纳米导线传递给阳极,电子通过连接阴阳两极的导线传递给阴极,而质子通过隔开两极的质子交换膜(Proton exchange membrane, PEM)到达阴极,在含铂的阴极催化下与电路传回的电子和O2反应生成水[4]。
图1 微生物燃料电池的原理示意图根据电子传递方式的不同,微生物燃料电池可分为直接微生物燃料电池和简介微生物燃料电池。
直接微生物燃料电池是指燃料在电极上氧化的同时,电子直接从燃料分子转移到电极。
简介微生物燃料电池是指燃料在电解液或其他处所反应,电子通过电子传递中间体传递到电极上的。
微生物电池以葡萄糖或蔗糖为燃料,利用介体从细胞代谢过程中接受电子并传递到阳极。
理论上,各种微生物都可能作为这种微生物燃料电池的催化剂。
但是大部分微生物并不具有电化学活性,电子无法从微生物直接到达电极上,因此电子传递中间体的参与解决了很多微生物燃料电池的需要,即构成间接微生物燃料电池。
在间接生物燃料电池的阳极上,底物在微生物或酶的作用下被氧化,电子通过介体的氧化还原态的转变从而将电子转移到电极上。
氧化还原介体一般具有以下性质[11]:电极反应快、无毒、溶解性好、易穿过细胞壁获取电子等。
较为典型的氧化还原介体有硫堇、Fe(Ⅲ)EDTA和中性红[12]等。
氧化还原介体的功能主要依赖于介体的氧化还原速率常数(主要与介体所接触的电极材料有关)。
为了达到更好的效果,提高介体的氧化还原反应的速率,可以将两种介体适当混合使用。
为了将微生物燃料电池中的生物催化体系组合在一起,需要将微生物细胞和电子传递中间体共同固定在阳极表面。
微生物细胞在多种营养底物存在下可以更好地繁殖、生长。
有研究证明,几种营养物质的混合使用可以提供更高的电流输出,因此可以考虑改变碳的来源以使微生物产生不同的代谢,这样有可能激发出燃料电池的更大功率[13]。
微生物燃料电池通过引入电子传递中间体从而为电子传递提供有效通道,在一定程度上解决了电子传递问题,但是却增大了电子传递距离,使得整体效果不好。
并且电子传递中间体往往有毒且容易分解,阻碍了微生物燃料电池商业化的进程。
研究人员发现,有些微生物可以把有机物代谢过程中的电子传递到阳极上,称为产电菌。
于是Liu[14]和Logan等开发了无介体的直接微生物反应器,并用空气电极作为阴极,该反应器的电池输出功率较好,由此引发了人们更多的关注。
产电菌可以在无电子传递中间体存在的条件下,将电子传递给电极从而产生电流。
另外,从废水或海底沉积物中富集的微生物群落也可用于构建直接微生物燃料电池。
无介体生物燃料电池的出现大大推动了燃料电池的商业化进展。
在直接微生物燃料电池中,电子不通过介体而通过燃料直接传递给电子受体[15]。
3.微生物电池产电的影响因素及改进影响MFC功率输出的因素很多,尽管如此,MFC扩大化过程中功率输出降低的原因一定在这些因素之中。
大量的研究表明对MFC功率输出存在影响因素主要包括:反应器类型、微生物代谢途径、底物、外加电阻和外电路设计。
微生物燃料电池阳极MFC中最主要的组成部分是阳极。
MFC阳极利用微生物作为催化剂氧化有机物的特性使得MFC能够在处理废水的同时产生电能。
阳极生物膜内主要发生的是微生物与电极之间的电子交换。
因为微生物将电子传递到电极表面需要有氧化反应才能实现,所以,阳极的材料对阳极性能和阳极表面附着的细菌量和覆盖率有着直接的影响。
微生物燃料电池阳极材料的必要条件是高导电率、无腐蚀性、高比表面积以碳为基本原料的碳纸碳布泡沫碳等由于其良好的导电性与生物惰性成为十分普遍的阳极材料[5]。
Scott等[6]分别以泡沫碳、碳布、碳纸、石墨、网状玻璃碳为阳极,研究阳极材料对MFC功率输出的影响。
结果表明,泡沫碳获得了最大的功率输出(55 mW/m2)石墨电极比较脆,在规模化生产中的应用受到限制。
Dumas 等[7]以不锈钢作为阳极,获得了23 mW/m2的能量输出。
不锈钢虽然符合阳极材料的要求,却得不到很好的产能效果,需要考虑在表面涂层以促进其性能。
其他常用阳极材料有导电聚合物,碳材料的改性,金属涂层与非金属处理等。
微生物燃料电池阴极在MFC中,阴极是必不可少的结构之一。
在研宄MFC的早期,铁氰化钾(K3[Fe(CN)6])常作为阴极的电子受体。
当前MFC的产电性能主要受阴极反应的限制,因此阴极的材料与设计对MFC具有重要影响碳与石墨是常用的阴极材料,但如果没有催化剂,氧气还原速率很低。
在国内的研究中,Song等[8]分别以不锈钢网和颗粒活性炭作为阴极,表明颗粒活性炭对功率输出有很好的促进作用当阴极不使用氧气时则不需要催化剂。
多种含水电解液已被用于试验中,最常见的是铁氰化物或六价高铁酸盐[9]。
相对氧气而言,铁氰化物可提高开路电压而降低过电位,从而增大功率密度阴极附生的细菌也可进行好氧生长催化氧气的还原,进行反硝化或铁还原,增大氧化还原电位,提高功率输出碳毡是作生物阴极最优的材料,相反,不锈钢网与生物膜的组合会降低MFCs的产电性能。
Jeon等[10]将Chlorella vulgaris接种至SMFC阴极,发现藻类生物量与电流都有很大的提高小球藻可利用阴极还原产物CO2生长,并释放出氧气提供给阴极。
3.1反应器类型MFC反应器主要分为两类:一类是双室MFC,另一类是单室MFC。
双室MFC又分为矩形式[16]、双瓶式[17]、平盘式[18]及升流式等[19],构造简单,易于改变运行条件,便于分别对阳极、质子膜(或分隔材料)、阴极进行研究,但由于阴极室和阳极室间存在一定距离,且传质阻力较大,欧姆电阻较高,产电密度相对较低。
在反应器构型方面,一个重大的突破就是在MFC设计中引入普通燃料电池中使用的直接空气阴极。
在双室MFC中,一般是将阴极浸入到含饱和氧的水中,以溶解氧作为电子受体。
但氧在水中的溶解性较差,而且基质传递受限,致使其在电极表面的还原较慢。
以空气中的氧直接作为电子受体的空气型阴极可以克服这些缺点,进一步提高MFC 功率输出,这样就可以省去阴极室,而构建出单室型MFC。
单室MFC从电极形式上还可分为“二合一型和“三合一”型两种。
“二合一”型指阴极和质子膜压合在一起,阳极相对独立,故对阳极上产电微生物的影响较小;“三合一”型是将阳极、质子膜和阴极依次压合在一起,使内阻大幅度降低,但由于阳极和阴极距离过小,氧气易透过质子膜传递到阳极上对产电微生物会有一定影响[20]。
3.2微生物代谢途径微生物代谢途径为特效菌的筛选、驯化提供了有力依据。
Kim等发现呼吸链中的多种抑制剂会抑制MFC中电流的产生,表明细菌在氧化代谢过程中通过呼吸链传递电子,此时筛选的为兼性需氧菌及厌氧菌。
若阳极液中存在NO3-、SO24-等电子受体,厌氧微生物进行无氧呼吸。
若不存在其他电子受体,发酵为主要代谢途径,此时筛选的为兼性及严格厌氧菌[21]。
3.3底物底物是阳极微生物生长工作的必需物质,它的种类对MFC产电性能的影响较小,这就为运用实际环境中各种性质的污水发电提供了便利。
有研究[22]表明,底物代谢副产物的种类和性质对MFC的产电稳定性以及持续时间都起到一定作用。
由于MFC阳极室接入的是厌氧微生物,不适于采用混合底物的方式进行培养,而且每种微生物所能够利用的基质都有其特定的种类和优先类别,如果采用混合型底物会引起微生物的种内竞争[23]。
常作为阳极底物的有乙酸钠、乳酸钠、葡萄糖、蔗糖等[24]。
对于以葡萄糖、蔗糖等作为底物,代谢过程中能产生多种挥发性脂肪酸,可供混合菌生物膜长时间利用,但是若利用乳酸钠、乙酸钠等离子型底物,投加后可迅速增加阳极液的离子浓度,加快电子的传递速率,这样就缩短了电池的运行周期,有利于实验室研究。
3.4燃料电池限制因素的改进微生物燃料电池自身潜在的优点使其具有较好的发展前景,但要作为电源应用于实际生产与生活还较遥远,主要原因是输出功率密度远远不能满足实际要求。
研究人员指出,电子传递速率是由电势差、重组能和电子供体与受体之间的距离决定的。
针对上述影响因素,提高电子回收率和电流密度的方法有以下几种:在电极表面进行贵金属纳米粒子以及碳纳米管等物质的修饰;利用纳米粒子的尺寸效应#表面效应等奇妙的特性来实现直接的快速的电子传递或在比微生物细胞更小的尺度上直接使用导电聚合物固定酶,使导电聚合物深入到酶的活性中心附近,从而大大缩短电子传递的距离,实现电子的直接传递;改进阴极和阳极的材料,增大电极比表面积-增大电极比表面积可以增大吸附在电极表面的细菌密度,从而增大电能输出;提高质子交换膜的质子穿透性-质子交换膜的好坏与性质直接关系到微生物燃料电池的工作效率及产电能力。
4.微生物燃料电池的应用4.1废水处理微生物燃料电池不仅可以净化污水水质,还可以产生电能,它的出现有望使污水处理变成一个前景广阔的产业[25-26]。
MFC技术应用于废水处理的节能方式除了自身产电不需外加电源以外,还包括节省了曝气处理和固体废物处置的费用。