塔式太阳能热发电技术
- 格式:docx
- 大小:433.04 KB
- 文档页数:4
塔式光热电站的原理塔式光热电站的工作原理可以分为几个步骤。
首先,该系统利用大面积的反射镜(也称为聚光器)将太阳能聚焦到一个集热器上。
这个集热器位于塔顶部,是一个中空的结构,内部涂有吸热涂层。
当太阳光经过反射镜聚焦到集热器上时,集热器吸收光能,并将其转化为热能。
接下来,集热器中的工作介质(通常是水或油)会被加热,形成高温高压的蒸汽。
这个高温高压的蒸汽会被输送到塔底部的蒸汽发电机中。
在蒸汽发电机中,蒸汽的能量被转化为机械能,驱动发电机产生电能。
与传统的光伏发电技术相比,塔式光热电站具有许多优势。
首先,塔式光热电站可以实现集中式发电,通过将大面积的太阳能聚焦到一个集热器上,可以获得更高的温度和更高的能量密度。
这使得塔式光热电站比分散式的光伏发电系统能够更高效地利用太阳能资源。
塔式光热电站可以实现可储存性。
由于集热器可以将太阳能转化为热能,并将其储存为蒸汽的形式,因此塔式光热电站可以在夜间或阴雨天等无法直接利用太阳能的情况下仍然进行发电。
这种储存性使得塔式光热电站可以实现可靠的24小时不间断供电。
塔式光热电站还具有较低的环境影响。
与传统的化石燃料发电厂相比,塔式光热电站不会产生任何二氧化碳等温室气体排放。
它是一种清洁的能源选择,有助于减少对环境的污染和气候变化的影响。
然而,塔式光热电站也存在一些挑战和限制。
首先,塔式光热电站的建设成本相对较高。
由于需要大面积的反射镜和集热器,以及复杂的输送系统和发电设备,塔式光热电站的建设成本较高。
此外,塔式光热电站对地理位置的要求较高,需要充足的日照和足够的空间来安置反射镜和集热器。
在未来,随着技术的不断进步和成本的降低,塔式光热电站有望成为一种重要的可再生能源发电技术。
它可以为我们提供可靠的清洁能源,并有助于减少对化石燃料的依赖,减少温室气体的排放。
塔式光热电站是一种利用太阳能进行发电的技术。
它通过将太阳能转化为热能,并利用热能驱动发电机来产生电能。
塔式光热电站具有集中式发电、可储存性和较低的环境影响等优势,但也面临着建设成本高和对地理位置要求高的挑战。
光热技术路线指的是太阳能光热发电的技术路线,主要有以下三种:
1.塔式光热发电技术:塔式光热发电系统通过反射镜将太阳光聚焦到集热塔上,
在塔顶安装有吸热器,吸热器将聚焦后的太阳光转化为热能,然后通过换热器将热能转化为蒸汽,驱动汽轮机发电。
塔式光热发电技术的优点是聚光比高、热效率高、储能能力强等。
2.槽式光热发电技术:槽式光热发电系统通过槽式抛物面反射镜将太阳光聚焦到
集热管上,集热管内装有吸热介质,集热管接受聚焦后的太阳光能量后加热吸热介质,将热能转化为蒸汽,驱动汽轮机发电。
槽式光热发电技术的优点是聚光比相对较高、运行温度高、可靠性好等。
3.线性菲涅尔式光热发电技术:线性菲涅尔式光热发电系统通过大面积的线性反
射镜将太阳光聚焦到接收器上,接收器接受聚焦后的太阳光能量后加热内部的工质,将热能转化为蒸汽,驱动汽轮机发电。
线性菲涅尔式光热发电技术的优点是聚光比和运行温度相对较高、系统集成度高、易于维护等。
以上是三种主流的光热技术路线,每种路线都有其自身的优缺点和适用场景。
在实际应用中,可以根据具体需求选择合适的技术路线。
塔式太阳能光热发电站运行规程一、引言太阳能光热发电技术是一种以太阳能为能源,采用光热转换技术将光能转化为热能,然后再将热能转化为电能的发电方式。
塔式太阳能光热发电站是其中的一种发电方式,本规程旨在指导塔式太阳能光热发电站的正常运行,确保发电站的效率和安全。
二、塔式太阳能光热发电站的基本原理1.系统概述:–塔式太阳能光热发电站由太阳能反射镜组成,用于集中太阳光线。
–高温工质在集中的太阳光照射下被加热,并传递给蒸汽锅炉。
–蒸汽通过汽轮机转化为动力,带动发电机发电。
2.基本工作原理:–反射镜根据太阳位置实时调整,确保光线始终集中在接收器上。
–高温工质通过接收器流动,受热后进入蒸汽锅炉,产生高压高温蒸汽。
–高压高温蒸汽通过汽轮机转动涡轮,带动发电机发电。
三、塔式太阳能光热发电站运行策略1.日常运行策略:–确保反射镜清洁度,定期进行清洗和维护。
–检查并保持接收器的正常工作状态。
–准确调整反射镜,使其能够跟随太阳运动。
–定期检查和维护蒸汽锅炉和汽轮机系统。
2.太阳能资源利用策略:–根据太阳能资源的变化,调整反射镜的角度和位置,最大限度地利用太阳能。
–根据天气预报和太阳角度预测,调整塔式太阳能光热发电站的工作模式。
3.安全策略:–设置安全阀,避免发生爆炸等安全事故。
–定期进行安全演练,提高应急处理能力。
–定期检查线路和设备的绝缘性能,确保电气安全。
四、塔式太阳能光热发电站运行管理1.运行监测:–使用监测设备对发电站的温度、压力、能量产生等参数进行实时监测。
–建立运行数据记录和分析系统,定期对数据进行分析和评估。
2.运行维护:–定期进行设备巡检和维护,确保发电站的正常运行。
–根据设备检查结果制定维护计划,在保证安全的前提下进行设备维修和更换。
3.运行升级:–根据技术发展和设备更新要求,定期进行发电站的技术升级和设备更新。
4.应急预案:–制定塔式太阳能光热发电站的应急预案,包括火灾、地震等各种安全事故应急处理措施。
塔式太阳能热发电技术浅析14121330 彭启1. 前言太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发电的技术[1]。
我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套功率为IkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为IKW的平板式低沸点工质太阳能热发电模拟实验装置[2~3]。
目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4],这4种太阳能光热发电技术各有优缺点。
塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展方向。
槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。
碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。
线性菲涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较短,技术尚未完全成熟,目前处于示范工程研究阶段。
2. 发电原理与系统塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。
塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。
塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝器冷凝后送入蒸汽发生器循环使用。
三种太阳能热发电原理随着环保意识的不断提升,太阳能热发电技术得到了越来越广泛的应用和关注。
太阳能热发电是一种利用太阳辐射热能转换为电能的技术,相比于传统的化石能源,具有环保、可再生、无污染等优点。
本文将介绍三种主要的太阳能热发电原理。
一、塔式太阳能热发电原理塔式太阳能热发电是一种利用太阳能热量发电的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。
其原理是将太阳辐射能通过反射镜或聚光镜集中到一个点上,使集热器内的工质受热,产生高温高压的蒸汽,驱动汽轮机发电。
该技术具有集热效率高、发电效率高、功率密度大等优点,但制造成本高、维护难度大等缺点。
二、槽式太阳能热发电原理槽式太阳能热发电是一种将太阳能转化为电能的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。
其原理是将太阳辐射能通过槽式集热器集中到一条管道内,使工质受热,产生高温高压的蒸汽,驱动汽轮机发电。
该技术具有产能稳定、制造成本低、维护难度小等优点,但集热效率低、占地面积大等缺点。
三、抛物面膜式太阳能热发电原理抛物面膜式太阳能热发电是一种利用太阳能热量发电的技术,主要包括太阳能集热器、储热系统、蒸汽发生器、汽轮机和发电机等组成部分。
其原理是将太阳辐射能通过抛物面膜反射到集热管内,使工质受热,产生高温高压的蒸汽,驱动汽轮机发电。
该技术具有集热效率高、制造成本低、占地面积小等优点,但抛物面膜制造难度大、维护成本高等缺点。
总之,太阳能热发电技术是一种非常有前途的发电方式,具有环保、可再生、无污染等优点。
随着技术的不断进步和应用的不断推广,相信太阳能热发电技术将会在未来的能源结构中扮演越来越重要的角色。
塔式太阳能热发电原理
塔式太阳能热发电是一种利用太阳能转化为热能然后进一步转化为电能的发电技术。
其原理可以分为三个步骤:集热、蓄热和发电。
首先,太阳能通过反射板或镜面等器件集中到一个集热器中。
集热器通常由聚光器组成,可以将太阳光线集中到一个焦点上。
这个焦点通常是一个集热器的中心,也可以是一个小的接收器。
接下来,集热器中的热能被吸收并转化为热量。
通常使用的是聚光器将太阳光线集中在一个小面积上,使得集热器能够高效地转化太阳能为热能。
集热器中的工作介质(如水或油)被加热并转化为高温蒸汽。
然后,高温蒸汽被导入一个蓄热器中,蓄热器的作用是将热能暂时保存起来,使得发电可以在需要的时候进行。
蓄热器通常是一个储存热能的设备,如蓄热器罐或熔盐储存器。
蓄热器可将热能保存数小时,以应对夜间或阴天等太阳能不可用的情况。
最后,从蓄热器中释放出来的高温蒸汽被导入一个发电机中,利用蒸汽的压力将涡轮转动,激活发电机产生电能。
发电机可以是蒸汽涡轮发电机,也可以是通过热发电技术产生电能。
总的来说,塔式太阳能热发电利用太阳能将工作介质加热并转化为蒸汽,然后通过蓄热和发电过程将蒸汽转化为电能。
这种技术可以实现太阳能的高效利用,并具有潜力成为一种可再生的清洁能源发电方式。
塔式太阳能热发电站吸热器技术要求
塔式太阳能热发电站是一种重要的清洁能源发电设备,其吸热器是整
个设备中的关键部件之一,直接影响到太阳能热能的吸收和利用效率。
因此,塔式太阳能热发电站吸热器的技术要求也非常高。
首先,塔式太阳能热发电站吸热器需要具备较高的吸收率和透过率。
其吸收率指的是吸热器对太阳辐射的吸收能力,透过率则指吸热器对
太阳辐射的透过能力。
高吸收率和透过率可以提高吸热器对太阳辐射
的利用效率,从而提高整个设备的发电效率。
其次,吸热器还需要具备较好的耐高温性能和耐腐蚀性能。
由于塔式
太阳能热发电站常常工作在高温高压环境下,吸热器需要能够承受较
高的温度和压力,并保持稳定的性能。
同时,由于热发电设备往往位
于沙漠等潮湿度较低、气候干燥的地区,吸热器还需要具备防腐蚀的
性能。
除此之外,吸热器还需要具备可靠的密封性能和灵活的设计。
密封性
能指的是吸热器内部不能有漏风,以保证太阳能热能能够完全被吸收。
而灵活的设计则可以根据设备的具体情况进行调整,比如可以增加吸
热器的面积来提高吸收效率。
总之,塔式太阳能热发电站吸热器的技术要求非常高,需要具备高吸收率、高透过率、耐高温性、耐腐蚀性、可靠的密封性和灵活的设计等特点。
这些特点都非常关键,只有在吸热器技术得到了完美的应用和优化,才能保证整个设备能够实现高效率的发电。
关于塔式太阳能热发电技术北京机械工业自动化研究所穆勒电气(上海)有限公司关于塔式太阳能热发电技术1.前言自从有了人类以来,随着人们对化石能源的疯狂掠取及不合理利用,目前已造成化石能源的严重短缺甚至已濒临枯竭,同时也严重危害了人类赖以生存的环境。
去年和今年两次G8峰会,都把应对气候变化作为主要议题,这背后其实主要还是能源结构问题。
当煤、天然气等化石燃料逐渐减少, 同时要求减少对大气排放污染, 发电将形成包括水力发电、核电技术、各种类型的可再生能源发电、太阳能技术等多种形式能源结构。
由干用电形式的原因, 担任基础负荷的发电形式主力是煤电、核电、水电和能够持续稳定发电的部分可再生能源, 风电、太阳能发电等由于其自身的特殊性, 不可能成为电力市场的主角。
风力发电和太阳能发电的区别在于, 风力发电为变动负荷,发电量不稳定, 发电量在电网中的比例不宜超过一定的数值, 比如5%~10%。
太阳能发电有规律, 发电量较稳定, 在电网中的比例可大于风电, 是天然的电网调峰负荷, 负荷量的形成时间, 正是电网中电量需求大的时间区段, 因此负荷量可根据电网白天和晚上的最大负荷差确定负荷比例, 一般来讲在10%~20%范围内是有可能的。
电网的负荷曲线形状, 在白天与太阳能发电自然曲线相似,上午负荷随时间上升, 下午随时间下降, 因此对于太阳能发电, 可利用这一特点, 形成被动式自然发电特点, 即白天发电, 晚上停机, 担任调峰负荷的机组。
蓄热装置在启动时和少云到多云状态时补充能量, 保证机组的稳定运行。
太阳能发电还是最清洁和环保的可用资源,太阳能发电减少了化石燃料向大气中的污染物排放, 减少了温室气体二氧化碳的排放。
表1为我国太阳能辐射资源表,太阳能发电站宜建在表中太阳能辐射的第一、第二、第三类区域,根据计算, 在第三类区域内年每平方公里的太阳能总能量, 相当于20万吨的标煤所发出的热量。
如果以太阳能热电转换平均效率17%计算, 全年相当于发电2.5亿千瓦时, 按照目前我国的环保排放标准, 相当于减少60吨的烟尘排放量, 450吨的二氧化硫排放量, 500吨的氮氧化物排放量, 18万吨的二氧化碳排放量。
塔式太阳能热发电技术浅析14121330 彭启1.前言太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发电的技术[1]。
我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为lKW的平板式低沸点工质太阳能热发电模拟实验装置[2~3]。
目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4],这4种太阳能光热发电技术各有优缺点。
塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展方向。
槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。
碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。
线性菲涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较短,技术尚未完全成熟,目前处于示范工程研究阶段。
2.发电原理与系统塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。
塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。
塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝器冷凝后送入蒸汽发生器循环使用。
在蒸汽发生器中放出热量的传热介质重新回到低温蓄热罐中,再送回吸热器加热。
塔式太阳能热发电系统概念设计原理系统如图1所示。
图1 塔式太阳能电站系统流程示意图3.系统构成3.1 定日镜定日镜由刚性金属结构支撑,通过控制系统调整方位和角度,实现对太阳光线的准确跟踪接收,并聚集反射太阳光线进入塔顶的接收器内,如图2所示。
定日镜由反射镜、跟踪传动机构、镜架及基座组成,是塔式电站最关键也是最昂贵的部件,美国Solar One电站1.42亿美元投资中,定日镜占52%[5]。
目前,定日镜的控制精度、运行稳定性和安全可靠性及降低建造成本是定日镜研究开发的主要内容。
图2 美国Solar One塔式太阳能热发电站美国在塔式太阳能热发电技术方面,除建成Solar Two电站外,还开发研制了一种新型的张膜式定日镜[6],其反射镜由镀银聚合物薄膜覆盖于薄金属箔上制成,然后张紧到金属构架上,对太阳的平均反射率约为0.92。
这种薄膜定日镜的制造成本较低,不到玻璃反射镜的1/3。
3.2 接收器除定日镜群外,塔式太阳能热发电集热系统的另一主要组成部分是太阳能接收器,也称为太阳锅炉,是光热转换的关键部件。
接收器位于定日镜群中央的高塔上,将定日镜捕捉、反射、聚焦的太阳能直接转化为可以高效利用的高温热能,加热工作介质至500℃以上,驱动发电机组产生电能。
国际上现有的塔式太阳能接收器主要分为间接照射接收器和直接照射接收器两大类。
间接照射接收器向载热工质的传热过程不发生在太阳照射面,工作时聚焦入射的太阳能先加热受热面,受热面升温后再通过壁面将热量向另一侧的载热工质传递。
管状接收器即为间接式。
直按照射接收器也称空腔式接收器,特点是接收器向载热工质的传热与入射阳光加热受热面在同一表面发生,由于特定形状的内表面具有几近黑体的特性,可有效吸收入射的太阳能,避免选择性吸收涂层的问题[7]。
按照制作材料,接收器又可分为金属和非金属两大类。
金属接收器的整体密封性、导热性、承压能力较好,但耐高温性能比非金属差。
非金属接收器的优点在于耐高温、耐腐蚀,使用寿命长,常用材料有陶瓷、石墨、玻璃及氟塑料等。
塔式太阳能热发电站Solar One采用的是管状接收器,管外壁涂有耐高温吸收涂层,能最大限度吸收太阳辐射热能,结构如图3所示。
工质介质为水/蒸汽;Solar Two仍采用管状接收器,工作介质为熔盐,在平均太阳辐射能流密度430KW/m2条件下,吸热器额定功率为42.2MW,将进口温度为288℃的熔盐加热到565℃,经管道和泵输往热盐罐储存。
图3 Solar One管状接收器空腔式接收器最早应用在PHOEBUS系统中,利用金属丝网直接吸收太阳辐射,温度可高达800℃。
后来,金属丝网逐渐被SiC或Al2O3,材料所取代。
新型空腔式接收器置于有压容器中,阳光通过抛物面状石英玻璃窗口进入容器,如图4所示[8]。
图4 压力空腔式接收器Rein Buck等人提出了一种新型的双重接收器[9],结合了空腔式和管式接收器的特点。
研究结果表明,改进后可使接收器达到更高的热效率,更低的温度和更少的热损失,年电能产量可提高27%。
3.3 传热蓄热介质目前应用的传热蓄热介质主要有水/蒸汽、导热油、熔盐、液态金属(如液态钠)、空气等。
水/蒸汽具有热导率高、无毒、无腐蚀性等优点,如美国Solar One、西班牙PS10等电站采用水蒸汽作为传热工质,但水蒸汽在高温时有高压问题,在实际使用时蒸汽温度受到限制。
导热油既可用于蓄热又可用于传热介质,一般用于400℃以下的场合,限制了塔式系统接收器的聚焦温度。
油类在高温时的蒸汽压力非常大(400℃时大于1MPa),使用其作为蓄热介质需要特殊的压力阀等设备,存在很大的困难,容易引发火灾,且价格昂贵。
Solar One 采用的蓄热介质是牌号为Caloria HT-43的导热油和6100t砂石,利用价格低廉的砂石作为填充材料以降低蓄热系统成本。
液态金属能应用于较高的温度,且金属材料密度大,导热率高,整体温度分布均匀,但高温下与空气接触易燃易爆,由此带来的安全问题制约了其在塔式电站蓄热系统中的应用。
西班牙的SSPS型太阳能发电系统采用液态钠作为传热蓄热工质,在运行中出现过液态钠泄露问题,1986年发生了钠燃烧事故。
常见的熔盐有碳酸盐、氯化物、氟化物和硝酸盐,其中,硝酸熔盐在太阳能热发电中的应用较为广泛。
具有代表性的三种混合硝酸熔盐分别是:Hitec(NaNO2、NaNO3、KNO3的混合物,凝固温度120℃),Hitec XL(Ca(NO3)2、NaNO3、KNO3的混合物,凝固温度130℃),以及NaNO3、KNO3,的混合物,凝固温度为220℃。
其中最后一种熔盐成本最低[10]。
4.结语塔式太阳能热力发电是不需要耗费化石能源,无任何污染排放的清洁发电技术,美国、西班牙等国都进行了深入的研究和应用,经过几十年的发展,该项技术日臻成熟。
我国的日照条件、土地使用情况等均适宜于塔式太阳能热电站的建设和运行,发展塔式太阳能热发电对于满足我国快速增长的能源需求和保护生态环境具有重要的战略意义。
我国在这方面的研究起步较晚,成本和技术是制约我国塔式太阳能热发电商业运作的两大瓶颈,我们应学习借鉴国外已有的研究成果,加大在塔式太阳能热发电方面的研究,尤其是所涉及的关键技术,研制出符合塔式太阳能热发电系统要求的部件并在适宜地区进行试验,尽可能降低成本,以大力推广塔式太阳能热发电技术。
美国能源部主持的研究表明,在大规模发电方面,塔式太阳能热发电将是所有太阳能发电技术中成本最低的一种方式。
随着我国能源形势和生态环境的发展,太阳能塔式热发电作为一种更适合于大规模电力供应的补充方式,将会受到越来越多的重视,也必然会得到更大的发展。
参考文献:[1] 李和平. 加快太阳能热发电关键技术的研究和开发[J]. 高科技与产业化. 2008(11):27.[2] 郝雷,顾宝霞,王树茂,等. 太阳能热发电的研究现状与前景展望[J]. 阳光能源. 2009(3):40.[3] 许继刚,王正. 太阳能热发电技术的发展现状[J]. 2009全国发电厂热工自动化年会论文.[4]王泽凯. 太阳能光热发电技术应用与发展[J]. 玻璃. 2012(6):30.[5] 张耀明,王军,张文进,等. 塔式与槽式太阳能热发电[J]. 太阳能. 2006, 2:30-32.[6] 李斌,李安定. 太阳能热发电的分析与思考[J]. 电力设备. 2004, 5(5):83-85.[7] 范志林,张耀明,刘德有,等. 塔式太阳能热发电站接收器[J]. 太阳能, 2007, 1:12-14.[8] Hans M, Franz T. Concentrating solar power-a review of the technology [J]. Ingenia. 2004,18:43-50.[9] Buck R, Barth C, Eck M, et al. Dual-receiver concept for solar towers [J]. Solar Energy. 2006,80(10):1249-1254.[10] Herrmann U, Kelly B, Price H. Two—tank molten salt storage for parabolic solar powerplants [J]. Energy, 2004, 29(5-6):883-893.。